RNA编辑酶ADAR1在T细胞发育中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RNA编辑是近年来分子生物学领域研究的热点。RNA编辑酶ADAR1通过脱氨作用,使RNA特异位点腺嘌呤核苷变为次黄嘌呤核苷,即A-I转换。而在核苷酸中次黄嘌呤核苷的功能与鸟嘌呤(G)的功能是一致的,因而A-I的转换实际上就是A-G的转换。A-I RNA编辑可以改变RNA的序列和二级结构,影响最终的蛋白和调节性RNA,还可以改变mRNA的翻译、pre-mRNA的剪接和与RNA结构相关的事件。
     ADAR1广泛分布于动物体内各组织,参与胚胎发育、中枢神经系统的神经递质传递、造血系统的发育和机体的免疫等生物学过程。许多维持生命活动的重要功能蛋白质都受到A-I RNA编辑的调控,使其结构和功能以及信号传导通路受到影响。因此,深入理解RNA编辑的机制和靶标将会揭示一些疾病的发病机理,乃至为治疗提供新的思路。
     目前,ADAR1在造血特别是造血前体细胞中的功能已经比较清楚,但是还不清楚它在T细胞发育中是否具有一定的功能。本研究首先建立T细胞特异ADAR1敲除小鼠模型,PCR分析发现ADAR1敲除特异发生在T细胞;通过对外周血、脾脏、淋巴结和胸腺细胞进行流式分析发现ADAR1基因敲除导致成熟T细胞大量减少;组织化学分析发现T细胞特异ADAR1敲除小鼠胸腺发育异常,与正常小鼠相比大量细胞缺失;进一步进行流式分析发现ADAR1敲除引起DN4前体细胞的死亡,并阻止其在胸腺中的成熟;同时,ADAR1敲除导致TCRβ+细胞大量减少,尽管目前通过重组PCR没有发现ADAR1敲除引起了TCRβ基因座重组的变化,但是这一问题还需要我们进一步研究。此外,Q-PCR结果显示敲除ADAR1激活干扰素信号通路,上调部分干扰素诱导基因的表达。
     本研究首次发现ADAR1在T细胞发育中具有十分重要的功能,对前体细胞的存活和进一步发育起着重要的作用,提示ADAR1介导的A-I RNA编辑可能参与免疫稳态的调节,它是克隆选择中决定T细胞发育命运的一个尚未被发现的调控因子。
The mechanisms accounting for self-tolerance by the immune system and clonal selection of functional lymphocytes that only react to alien antigens are of central concern to immunology. Lymphoid progenitors arising from bone marrow stem cells migrate into thymus where they interact with the cortical and medullar thymic epithelial cells to differentiate into mature T cells. From the progenitor to mature T cell stage, thymocytes have been phenotypically characterized to distinct stages featuring the differentiation antigen expression of CD4 and CD8, defined as double negative (DN), double positive (DP) and single positive (SP) cells. Based on the transient expression of CD44 and CD25, DN cells are further categorized into DN1, 2, 3 and 4 subpopulations. T cell development is an ordered process through multiple differentiation steps, and T cell receptor (TCR) expression is one of the most critical events in the differentiation and maturation processes. TCRβrecombination begins at the DN2 stage and continues to DN3 stage. Functional TCRβis expressed on the surface of DN3 cells, where it associates with pre-TCRαand CD3 elements to form the Pre-TCR which provides signals for proliferation, survival and further maturation. At DP stage, TCRαundergoes V(D)J recombination and both TCRαand TCRβare expressed to form the cell surface TCRα/βreceptors. Functional T cell clones subsequently undergo the positive and negative selection and lineage commitment of CD4 or CD8 SP cells. The mechanism responsible for cell fate during the selection is yet to be fully understood.
     Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-editing enzyme and plays an essential role in embryonic hematopoiesis. Through its deamination activity, ADAR1 converts adenosine to inosine in RNA molecules (A to I RNA editing); inosine is equivalent to guarnosine in Watson-Crick structure and during protein translation. A-I RNA editing therefore durably modifies sequences of targeted RNAs and can alter proteins that they encode. Proteins coded by edited RNAs, such as GluR-B and 5-HT2cR exhibit dramatically different properties from the genome coded forms. Splicing sites can be generated or eliminated by this A to I conversion. Some microRNA precursors were edited, which consequently modulated the efficacy of mature microRNA genesis or shifts their targets. In addition, ADAR1 has been proposed to participate, through protein-protein interaction, in the processes of RNA transportation, degradation, and regulation of gene expression. Our data has demonstrated an essential role of ADAR1 in T cell development which was associated with TCRβchain expression.
     ADAR1 plays an important role in host antiviral mechanisms and immunity. Interferons induce the upregulation of ADAR1, thus raising the possibility that ADAR1 functions in host defense mechanisms against viral infection and inflammation. For instance, ADAR1 edits the hepatitis C virus RNA genome and inhibits its replication. Inosine-containing mRNAs increase in T lymphocytes and macrophages stimulated with a variety of inflammatory mediators, including tumor necrosis factor-αand interferon-γ. Furthermore, ADAR1 interacts with nuclear factor 90 (NF90) family proteins. Dysfunction of the A-I RNA editing mechanism can cause human diseases or pathophysiology, Many human diseases related to A-I RNA editing has recently become known.
     The RNA editing enzyme ADAR1 has been shown to be essential for embryonic development and for the survival of differentiating hematopoietic progenitors. We recently reported that RNA editing activity of ADAR1 was required for the differentiation of adult hematopoietic progenitor cells. ADAR1 is expressed throughout T cell development in the thymus. However, little is understood about its function because of the embryonic lethality of traditional ADAR1-null mutations. In order to explore the function of ADAR1 in T cells, we generated a mouse model in which ADAR1 was specifically deleted in the early stage of T cell differentiation. we found that ADAR1 is required for T cell development at the DN stage. Loss of ADAR1 caused cell death in the progenitors at the DN4 stage and prevented T cell maturation in the thymus. TCRβexpressing cells preferentially diminished in the absence of ADAR1 although the recombination of TCRβloci was shown to be ADAR1-independent. Interruption of IFN signaling was associated with the defect of ADAR1 deficiency. These findings demonstrated an essential role for the RNA editing enzyme ADAR1 supporting in T cell survival after pre-TCR expression and raise the prospect that RNA editing contributes to immunologic homeostasis and is a heretofore unrecognized regulator of T-cell fate during clonal selection.
引文
[1] Rothenberg, E.V.T. Taghon, Molecular genetics of T cell development. Annu Rev Immunol, 2005. 23: p. 601-49.
    [2] Bender, T.P., C.S. Kremer, M. Kraus, et al., Critical functions for c-Myb at three checkpoints during thymocyte development. Nat Immunol, 2004. 5(7): p. 721-9.
    [3] Jackson, A.M.M.S. Krangel, Turning T-cell receptor beta recombination on and off: more questions than answers. Immunol Rev, 2006. 209: p. 129-41.
    [4] Krangel, M.S., Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol, 2009. 21(2): p. 133-9.
    [5] Hayday, A.C.D.J. Pennington, Key factors in the organized chaos of early T cell development. Nat Immunol, 2007. 8(2): p. 137-44.
    [6] Mombaerts, P., J. Iacomini, R.S. Johnson, et al., RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 1992. 68(5): p. 869-77.
    [7] Shinkai, Y., G. Rathbun, K.P. Lam, et al., RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell, 1992. 68(5): p. 855-67.
    [8] Ciofani, M., T.M. Schmitt, A. Ciofani, et al., Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J Immunol, 2004. 172(9): p. 5230-9.
    [9] Hernandez-Hoyos, G., M.K. Anderson, C. Wang, et al., GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity, 2003. 19(1): p. 83-94.
    [10] Pai, S.Y., M.L. Truitt, C.N. Ting, et al., Critical roles for transcription factor GATA-3 in thymocyte development. Immunity, 2003. 19(6): p. 863-75.
    [11] Taniuchi, I., M. Osato, T. Egawa, et al., Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell, 2002. 111(5): p. 621-33.
    [12] Pearson, R.K. Weston, c-Myb regulates the proliferation of immature thymocytes following beta-selection. EMBO J, 2000. 19(22): p. 6112-20.
    [13] Gounari, F., I. Aifantis, K. Khazaie, et al., Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol, 2001. 2(9): p. 863-9.
    [14] Ioannidis, V., F. Beermann, H. Clevers, et al., The beta-catenin--TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol, 2001. 2(8): p. 691-7.
    [15] Liu, X.R. Bosselut, Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nat Immunol, 2004. 5(3): p. 280-8.
    [16] Telfer, J.C., E.E. Hedblom, M.K. Anderson, et al., Localization of the domains in Runx transcription factors required for the repression of CD4 in thymocytes. J Immunol, 2004. 172(7): p. 4359-70.
    [17] Woolf, E., C. Xiao, O. Fainaru, et al., Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci U S A, 2003. 100(13): p. 7731-6.
    [18] Amsen, D., J.M. Blander, G.R. Lee, et al., Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell, 2004. 117(4): p. 515-26.
    [19] Townsend, M.J., A.S. Weinmann, J.L. Matsuda, et al., T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity, 2004. 20(4): p. 477-94.
    [20] Bass, B.L.H. Weintraub, A developmentally regulated activity that unwinds RNA duplexes. Cell, 1987. 48(4): p. 607-13.
    [21] Rebagliati, M.R.D.A. Melton, Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell, 1987. 48(4): p. 599-605.
    [22] Melcher, T., S. Maas, A. Herb, et al., A mammalian RNA editing enzyme. Nature, 1996. 379(6564): p. 460-4.
    [23] Chen, C.X., D.S. Cho, Q. Wang, et al., A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA, 2000. 6(5): p. 755-67.
    [24] Slavov, D., T. Crnogorac-Jurcevic, M. Clark, et al., Comparative analysis of the DRADA A-to-I RNA editing gene from mammals, pufferfish and zebrafish. Gene, 2000. 250(1-2): p. 53-60.
    [25] Jin, Y., W. ZhangQ. Li, Origins and evolution of ADAR-mediated RNA editing. IUBMB Life, 2009. 61(6): p. 572-8.
    [26] George, C.X., M.V. WagnerC.E. Samuel, Expression of interferon-inducible RNA adenosine deaminase ADAR1 during pathogen infection and mouse embryo developmentinvolves tissue-selective promoter utilization and alternative splicing. J Biol Chem, 2005. 280(15): p. 15020-8.
    [27] George, C.X.C.E. Samuel, Characterization of the 5'-flanking region of the human RNA-specific adenosine deaminase ADAR1 gene and identification of an interferon-inducible ADAR1 promoter. Gene, 1999. 229(1-2): p. 203-13.
    [28] Liu, Y., C.X. George, J.B. Patterson, et al., Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J Biol Chem, 1997. 272(7): p. 4419-28.
    [29] Wang, Y., Y. Zeng, J.M. Murray, et al., Genomic Organization and Chromosomal Location of the Human Dsrna Adenosine-Deaminase Gene - the Enzyme for Glutamate-Activated Ion-Channel Rna Editing. Journal of Molecular Biology, 1995. 254(2): p. 184-195.
    [30] Weier, H.U., C.X. George, K.M. Greulich, et al., The interferon-inducible, double-stranded RNA-specific adenosine deaminase gene (DSRAD) maps to human chromosome 1q21.1-21.2. Genomics, 1995. 30(2): p. 372-5.
    [31] Weier, H.U., C.X. George, R.A. Lersch, et al., Assignment of the RNA-specific adenosine deaminase gene (Adar) to mouse chromosome 3F2 by in situ hybridization. Cytogenet Cell Genet, 2000. 89(3-4): p. 214-5.
    [32] Toth, A.M., P. Zhang, S. Das, et al., Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. Prog Nucleic Acid Res Mol Biol, 2006. 81: p. 369-434.
    [33] Kawakubo, K.C.E. Samuel, Human RNA-specific adenosine deaminase (ADAR1) gene specifies transcripts that initiate from a constitutively active alternative promoter. Gene, 2000. 258(1-2): p. 165-72.
    [34] George, C.X.C.E. Samuel, Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A, 1999. 96(8): p. 4621-6.
    [35] Shtrichman, R., D.M. Heithoff, M.J. Mahan, et al., Tissue selectivity of interferon-stimulated gene expression in mice infected with Dam(+) versus Dam(-) Salmonella enterica serovar Typhimurium strains. Infect Immun, 2002. 70(10): p. 5579-88.
    [36] Yang, J.H., X. Luo, Y. Nie, et al., Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation. Immunology, 2003. 109(1): p. 15-23.
    [37] Yang, J.H., Y. Nie, Q. Zhao, et al., Intracellular localization of differentially regulated RNA-specific adenosine deaminase isoforms in inflammation. J Biol Chem, 2003. 278(46): p. 45833-42.
    [38] Liu, Y., R.B. EmesonC.E. Samuel, Serotonin-2C receptor pre-mRNA editing in rat brain and in vitro by splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1. J Biol Chem, 1999. 274(26): p. 18351-8.
    [39] Liu, Y.C.E. Samuel, Mechanism of interferon action: functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase. J Virol, 1996. 70(3): p. 1961-8.
    [40] O'Connell, M.A., S. Krause, M. Higuchi, et al., Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol, 1995. 15(3): p. 1389-97.
    [41] Patterson, J.B., D.C. Thomis, S.L. Hans, et al., Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. Virology, 1995. 210(2): p. 508-11.
    [42] Darnell, J.E., Jr., STATs and gene regulation. Science, 1997. 277(5332): p. 1630-5.
    [43] Kuhen, K.L.C.E. Samuel, Isolation of the interferon-inducible RNA-dependent protein kinase Pkr promoter and identification of a novel DNA element within the 5'-flanking region of human and mouse Pkr genes. Virology, 1997. 227(1): p. 119-30.
    [44] Gallo, A., L.P. Keegan, G.M. Ring, et al., An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J, 2003. 22(13): p. 3421-30.
    [45] Cho, D.S., W. Yang, J.T. Lee, et al., Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J Biol Chem, 2003. 278(19): p. 17093-102.
    [46] Valente, L.K. Nishikura, ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog Nucleic Acid Res Mol Biol, 2005. 79: p. 299-338.
    [47] Ryter, J.M.S.C. Schultz, Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J, 1998. 17(24): p. 7505-13.
    [48] Ramos, A., S. Grunert, J. Adams, et al., RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J, 2000. 19(5): p. 997-1009.
    [49] Lai, F., R. DrakasK. Nishikura, Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J Biol Chem, 1995. 270(29): p. 17098-105.
    [50] Sansam, C.L., K.S. WellsR.B. Emeson, Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc Natl Acad Sci U S A, 2003. 100(24): p. 14018-23.
    [51] Herbert, A., J. Alfken, Y.G. Kim, et al., A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A, 1997. 94(16): p. 8421-6.
    [52] Schwartz, T., M.A. Rould, K. Lowenhaupt, et al., Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science, 1999. 284(5421): p. 1841-5.
    [53] Kang, Y.M., J. Bang, E.H. Lee, et al., NMR spectroscopic elucidation of the B-Z transition of a DNA double helix induced by the Z alpha domain of human ADAR1. J Am Chem Soc, 2009. 131(32): p. 11485-91.
    [54] Schwartz, T., J. Behlke, K. Lowenhaupt, et al., Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat Struct Biol, 2001. 8(9): p. 761-5.
    [55] Kim, Y.G., M. Muralinath, T. Brandt, et al., A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sci U S A, 2003. 100(12): p. 6974-9.
    [56] Herbert, A.A. Rich, The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1. Proc Natl Acad Sci U S A, 2001. 98(21): p. 12132-7.
    [57] Koeris, M., L. Funke, J. Shrestha, et al., Modulation of ADAR1 editing activity by Z-RNA in vitro. Nucleic Acids Res, 2005. 33(16): p. 5362-70.
    [58] McCormack, S.J., L.G. Ortega, J.P. Doohan, et al., Mechanism of interferon action motif I of the interferon-induced, RNA-dependent protein kinase (PKR) is sufficient to mediate RNA-binding activity. Virology, 1994. 198(1): p. 92-9.
    [59] Fierro-Monti, I.M.B. Mathews, Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci, 2000. 25(5): p. 241-6.
    [60] Liu, Y., M. LeiC.E. Samuel, Chimeric double-stranded RNA-specific adenosine deaminase ADAR1 proteins reveal functional selectivity of double-stranded RNA-binding domains from ADAR1 and protein kinase PKR. Proc Natl Acad Sci U S A, 2000. 97(23): p. 12541-6.
    [61] Patterson, J.B.C.E. Samuel, Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol, 1995. 15(10): p. 5376-88.
    [62] Scott, J., A place in the world for RNA editing. Cell, 1995. 81(6): p. 833-6.
    [63] Maas, S., T. Melcher, A. Herb, et al., Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J Biol Chem, 1996. 271(21): p. 12221-6.
    [64] Kim, U., Y. Wang, T. Sanford, et al., Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci U S A, 1994. 91(24): p. 11457-61.
    [65] Betts, L., S. Xiang, S.A. Short, et al., Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex. J Mol Biol, 1994. 235(2): p. 635-56.
    [66] Desterro, J.M., L.P. Keegan, E. Jaffray, et al., SUMO-1 modification alters ADAR1 editing activity. Mol Biol Cell, 2005. 16(11): p. 5115-26.
    [67] Wang, Y.C.E. Samuel, Adenosine deaminase ADAR1 increases gene expression at the translational level by decreasing protein kinase PKR-dependent eIF-2alpha phosphorylation. J Mol Biol, 2009. 393(4): p. 777-87.
    [68] Wagner, R.W., C. Yoo, L. Wrabetz, et al., Double-stranded RNA unwinding and modifying activity is detected ubiquitously in primary tissues and cell lines. Mol Cell Biol, 1990. 10(10): p. 5586-90.
    [69] Kim, U., T.L. Garner, T. Sanford, et al., Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem, 1994. 269(18): p. 13480-9.
    [70] Eckmann, C.R., A. Neunteufl, L. Pfaffstetter, et al., The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol Biol Cell, 2001. 12(7): p. 1911-24.
    [71] Strehblow, A., M. HalleggerM.F. Jantsch, Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol Biol Cell, 2002. 13(11): p. 3822-35.
    [72] Nie, Y., Q. Zhao, Y. Su, et al., Subcellular distribution of ADAR1 isoforms is synergistically determined by three nuclear discrimination signals and a regulatory motif. J Biol Chem, 2004. 279(13): p. 13249-55.
    [73] Fritz, J., A. Strehblow, A. Taschner, et al., RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol Cell Biol, 2009. 29(6): p. 1487-97.
    [74] Poulsen, H., J. Nilsson, C.K. Damgaard, et al., CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol, 2001. 21(22): p. 7862-71.
    [75] Nie, Y., L. Ding, P.N. Kao, et al., ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol Cell Biol, 2005. 25(16): p. 6956-63.
    [76] Beal, P.A., O. MaydanovychS. Pokharel, The chemistry and biology of RNA editing by adenosine deaminases. Nucleic Acids Symp Ser (Oxf), 2007(51): p. 83-4.
    [77] Gommans, W.M., S.P. MullenS. Maas, RNA editing: a driving force for adaptive evolution? Bioessays, 2009. 31(10): p. 1137-45.
    [78] Seeburg, P.H.J. Hartner, Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol, 2003. 13(3): p. 279-83.
    [79] Reenan, R.A., The RNA world meets behavior: A-->I pre-mRNA editing in animals. Trends Genet, 2001. 17(2): p. 53-6.
    [80] Maydanovych, O.P.A. Beal, Breaking the central dogma by RNA editing. Chem Rev, 2006. 106(8): p. 3397-411.
    [81] Cho, D.S.C., W.D. Yang, J.T. Lee, et al., Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. Journal of Biological Chemistry, 2003. 278(19): p. 17093-17102.
    [82] Gallo, A., L.P. Keegan, G.M. Ring, et al., An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. Embo Journal, 2003. 22(13): p. 3421-3430.
    [83] Poulsen, H., R. Jorgensen, A. Heding, et al., Dimerization of ADAR2 is mediated by the double-stranded RNA binding domain. Rna-a Publication of the Rna Society, 2006. 12(7): p. 1350-1360.
    [84] Chilibeck, K.A., T. Wu, C. Liang, et al., FRET analysis of in vivo dimerization by RNA-editing enzymes. Journal of Biological Chemistry, 2006. 281(24): p. 16530-16535.
    [85] Valente, L.K. Nishikura, RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J Biol Chem, 2007. 282(22): p. 16054-61.
    [86] Hoopengardner, B., T. Bhalla, C. Staber, et al., Nervous system targets of RNA editing identified by comparative genomics. Science, 2003. 301(5634): p. 832-6.
    [87] Higuchi, M., F.N. Single, M. Kohler, et al., RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell, 1993. 75(7): p. 1361-70.
    [88] Wang, Q., P.J. O'Brien, C.X. Chen, et al., Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. Journal of Neurochemistry, 2000. 74(3): p. 1290-300.
    [89] Burns, C.M., H. Chu, S.M. Rueter, et al., Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature, 1997. 387(6630): p. 303-8.
    [90] Bhalla, T., J.J. Rosenthal, M. Holmgren, et al., Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol, 2004. 11(10): p. 950-6.
    [91] Nishikura, K., Functions and Regulation of RNA Editing by ADAR Deaminases. Annu Rev Biochem, 2009.
    [92] Kim, D.D., T.T. Kim, T. Walsh, et al., Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res, 2004. 14(9): p. 1719-25.
    [93] Eisenberg, E., S. Nemzer, Y. Kinar, et al., Is abundant A-to-I RNA editing primate-specific? Trends Genet, 2005. 21(2): p. 77-81.
    [94] Neeman, Y., E.Y. Levanon, M.F. Jantsch, et al., RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA, 2006. 12(10): p. 1802-9.
    [95] Zhang, Z.G.G. Carmichael, The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell, 2001. 106(4): p. 465-75.
    [96] Cattaneo, R., Biased (A-->I) hypermutation of animal RNA virus genomes. Curr Opin Genet Dev, 1994. 4(6): p. 895-900.
    [97] Cattaneo, R., A. Schmid, D. Eschle, et al., Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell, 1988. 55(2): p. 255-65.
    [98] Murphy, D.G., K. DimockC.Y. Kang, Numerous transitions in human parainfluenza virus 3 RNA recovered from persistently infected cells. Virology, 1991. 181(2): p. 760-3.
    [99] O'Hara, P.J., S.T. Nichol, F.M. Horodyski, et al., Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell, 1984. 36(4): p. 915-24.
    [100] Cattaneo, R.M.A. Billeter, Mutations and A/I hypermutations in measles virus persistent infections. Curr Top Microbiol Immunol, 1992. 176: p. 63-74.
    [101] Ma, J., R. Qian, F.M. Rausa, 3rd, et al., Two naturally occurring alpha2,6-sialyltransferase forms with a single amino acid change in the catalytic domain differ in their catalytic activity and proteolytic processing. J Biol Chem, 1997. 272(1): p. 672-9.
    [102] Feng, H.C., M. BhaveR.J. Fairclough, Regulation of oxytocin receptor gene expression in sheep: tissue specificity, multiple transcripts and mRNA editing. J Reprod Fertil, 2000. 120(1): p. 187-200.
    [103] Tanoue, A., T.A. Koshimizu, M. Tsuchiya, et al., Two novel transcripts for human endothelin B receptor produced by RNA editing/alternative splicing from a single gene. J Biol Chem, 2002. 277(36): p. 33205-12.
    [104] Jacobs, M.M., R.L. Fogg, R.B. Emeson, et al., ADAR1 and ADAR2 expression and editing activity during forebrain development. Dev Neurosci, 2009. 31(3): p. 223-37.
    [105] Liu, Y., K.C. Wolff, B.L. Jacobs, et al., Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity. Virology, 2001. 289(2): p. 378-87.
    [106] Samuel, C.E., The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem, 1993. 268(11): p. 7603-6.
    [107] Schneider, R.J., C. WeinbergerT. Shenk, Adenovirus VAI RNA facilitates the initiation of translation in virus-infected cells. Cell, 1984. 37(1): p. 291-8.
    [108] Ma, Y.M.B. Mathews, Structure, function, and evolution of adenovirus-associated RNA: a phylogenetic approach. J Virol, 1996. 70(8): p. 5083-99.
    [109] Ma, Y.M.B. Mathews, Secondary and tertiary structure in the central domain of adenovirus type 2 VA RNA I. RNA, 1996. 2(9): p. 937-51.
    [110] Kitajewski, J., R.J. Schneider, B. Safer, et al., Adenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell, 1986. 45(2): p. 195-200.
    [111] O'Malley, R.P., T.M. Mariano, J. Siekierka, et al., A mechanism for the control of protein synthesis by adenovirus VA RNAI. Cell, 1986. 44(3): p. 391-400.
    [112] McCormack, S.J.C.E. Samuel, Mechanism of interferon action: RNA-binding activity of full-length and R-domain forms of the RNA-dependent protein kinase PKR--determination of KD values for VAI and TAR RNAs. Virology, 1995. 206(1): p. 511-9.
    [113] McCormack, S.J., D.C. ThomisC.E. Samuel, Mechanism of interferon action: identification of a RNA binding domain within the N-terminal region of the human RNA-dependent P1/eIF-2 alpha protein kinase. Virology, 1992. 188(1): p. 47-56.
    [114] Samuel, C.E., Mechanism of interferon action: phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Natl Acad Sci U S A, 1979. 76(2): p. 600-4.
    [115] Chang, H.W., J.C. WatsonB.L. Jacobs, The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A, 1992. 89(11): p. 4825-9.
    [116] Yuwen, H., J.H. Cox, J.W. Yewdell, et al., Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene. Virology, 1993. 195(2): p. 732-44.
    [117] Chang, H.W., L.H. UribeB.L. Jacobs, Rescue of vaccinia virus lacking the E3L gene by mutants of E3L. J Virol, 1995. 69(10): p. 6605-8.
    [118] Lei, M., Y. LiuC.E. Samuel, Adenovirus VAI RNA antagonizes the RNA-editing activity of the ADAR adenosine deaminase. Virology, 1998. 245(2): p. 188-96.
    [119] Brandt, T., M.C. Heck, S. Vijaysri, et al., The N-terminal domain of the vaccinia virus E3L-protein is required for neurovirulence, but not induction of a protective immune response. Virology, 2005. 333(2): p. 263-70.
    [120] Macbeth, M.R., H.L. Schubert, A.P. Vandemark, et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science, 2005. 309(5740): p. 1534-9.
    [121] Samuel, C.E., Antiviral actions of interferons. Clin Microbiol Rev, 2001. 14(4): p. 778-809, table of contents.
    [122] Clerzius, G., J.F. Gelinas, A. Daher, et al., ADAR1 interacts with PKR during human immunodeficiency virus infection of lymphocytes and contributes to viral replication. J Virol, 2009. 83(19): p. 10119-28.
    [123] Jayan, G.C.J.L. Casey, Increased RNA editing and inhibition of hepatitis delta virus replication by high-level expression of ADAR1 and ADAR2. J Virol, 2002. 76(8): p. 3819-27.
    [124] Wang, Q., J. Khillan, P. Gadue, et al., Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science, 2000. 290(5497): p. 1765-8.
    [125] Hartner, J.C., C. Schmittwolf, A. Kispert, et al., Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem, 2004. 279(6): p. 4894-902.
    [126] Wang, Q., M. Miyakoda, W. Yang, et al., Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem, 2004. 279(6): p. 4952-61.
    [127] Hartner, J.C., C.R. Walkley, J. Lu, et al., ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol, 2009. 10(1): p. 109-15.
    [128] Lim, L.P., N.C. Lau, P. Garrett-Engele, et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005. 433(7027): p. 769-73.
    [129] Srivastava, D., Making or breaking the heart: from lineage determination to morphogenesis. Cell, 2006. 126(6): p. 1037-48.
    [130] Higuchi, M., S. Maas, F.N. Single, et al., Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature, 2000. 406(6791): p. 78-81.
    [131] Palladino, M.J., L.P. Keegan, M.A. O'Connell, et al., A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell, 2000. 102(4): p. 437-49.
    [132] Tonkin, L.A., L. Saccomanno, D.P. Morse, et al., RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J, 2002. 21(22): p. 6025-35.
    [133] Mayer, M.L., Glutamate receptor ion channels. Curr Opin Neurobiol, 2005. 15(3): p. 282-8.
    [134] Rueter, S.M., C.M. Burns, S.A. Coode, et al., Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science, 1995. 267(5203): p. 1491-4.
    [135] Liu, Y.C.E. Samuel, Editing of glutamate receptor subunit B pre-mRNA by splice-site variants of interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1. J Biol Chem, 1999. 274(8): p. 5070-7.
    [136] Baxter, G., G. Kennett, F. Blaney, et al., 5-HT2 receptor subtypes: a family re-united? Trends Pharmacol Sci, 1995. 16(3): p. 105-10.
    [137] Cai, L., Y. Li, F. Liu, et al., The influence of ADAR1's regulation on lymphocyte cell function during rejection. Mol Biol Rep, 2009.
    [138] Rabinovici, R., K. Kabir, M. Chen, et al., ADAR1 is involved in the development of microvascular lung injury. Circ Res, 2001. 88(10): p. 1066-71.
    [139] Meister, G.T. Tuschl, Mechanisms of gene silencing by double-stranded RNA. Nature, 2004. 431(7006): p. 343-9.
    [140] Yang, W., Q. Wang, K.L. Howell, et al., ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J Biol Chem, 2005. 280(5): p. 3946-53.
    [141] Knight, S.W.B.L. Bass, The role of RNA editing by ADARs in RNAi. Mol Cell, 2002. 10(4): p. 809-17.
    [142] Hong, J., Z. Qian, S. Shen, et al., High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse. Biochem J, 2005. 390(Pt 3): p. 675-9.
    [143] Nishikura, K., Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol, 2006. 7(12): p. 919-31.
    [144] Bass, B.L., Double-stranded RNA as a template for gene silencing. Cell, 2000. 101(3): p. 235-8.
    [145] Scadden, A.D.C.W. Smith, RNAi is antagonized by A-->I hyper-editing. EMBO Rep, 2001. 2(12): p. 1107-11.
    [146] Czech, B., C.D. Malone, R. Zhou, et al., An endogenous small interfering RNA pathway in Drosophila. Nature, 2008. 453(7196): p. 798-802.
    [147] Tam, O.H., A.A. Aravin, P. Stein, et al., Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature, 2008. 453(7194): p. 534-8.
    [148] Watanabe, T., Y. Totoki, A. Toyoda, et al., Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 2008. 453(7194): p. 539-43.
    [149] Kawamura, Y., K. Saito, T. Kin, et al., Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature, 2008. 453(7196): p. 793-7.
    [150] Scadden, A.D., The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat Struct Mol Biol, 2005. 12(6): p. 489-96.
    [151] Kawahara, Y., M. Megraw, E. Kreider, et al., Frequency and fate of microRNA editing in human brain. Nucleic Acids Res, 2008. 36(16): p. 5270-80.
    [152] Yang, W., T.P. Chendrimada, Q. Wang, et al., Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol, 2006. 13(1): p. 13-21.
    [153] Kawahara, Y., B. Zinshteyn, T.P. Chendrimada, et al., RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep, 2007. 8(8): p. 763-9.
    [154] Kawahara, Y., B. Zinshteyn, P. Sethupathy, et al., Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science, 2007. 315(5815): p. 1137-40.
    [155] Heale, B.S., L.P. Keegan, L. McGurk, et al., Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J, 2009. 28(20): p. 3145-56.
    [156] Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
    [157] Du, T.P.D. Zamore, microPrimer: the biogenesis and function of microRNA. Development, 2005. 132(21): p. 4645-52.
    [158] Ohlson, J., J.S. Pedersen, D. Haussler, et al., Editing modifies the GABA(A) receptor subunit alpha3. RNA, 2007. 13(5): p. 698-703.
    [159] Rula, E.Y., A.H. Lagrange, M.M. Jacobs, et al., Developmental modulation of GABA(A) receptor function by RNA editing. J Neurosci, 2008. 28(24): p. 6196-201.
    [160] Wahlstedt, H., C. Daniel, M. Enstero, et al., Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res, 2009. 19(6): p. 978-86.
    [161] Wu, Y.M., S.S. Kung, J. Chen, et al., Molecular analysis of cDNA molecules encoding glutamate receptor subunits, fGluR1 alpha and fGluR1 beta, of Oreochromis sp. DNA Cell Biol, 1996. 15(9): p. 717-25.
    [162] Beghini, A., C.B. Ripamonti, P. Peterlongo, et al., RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet, 2000. 9(15): p. 2297-304.
    [163] Zilberman, D.E., M. Safran, N. Paz, et al., Does RNA editing play a role in the development of urinary bladder cancer? Urol Oncol, 2009.
    [164] Riedmann, E.M., S. Schopoff, J.C. Hartner, et al., Specificity of ADAR-mediated RNA editing in newly identified targets. RNA, 2008. 14(6): p. 1110-8.
    [165] Nishimoto, Y., T. Yamashita, T. Hideyama, et al., Determination of editors at the novel A-to-I editing positions. Neurosci Res, 2008. 61(2): p. 201-6.
    [166] Maas, S., S. Patt, M. Schrey, et al., Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A, 2001. 98(25): p. 14687-92.
    [167] Klimek-Tomczak, K., M. Mikula, A. Dzwonek, et al., Editing of hnRNP K protein mRNA in colorectal adenocarcinoma and surrounding mucosa. Br J Cancer, 2006. 94(4): p. 586-92.
    [168] Cenci, C., R. Barzotti, F. Galeano, et al., Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J Biol Chem, 2008. 283(11): p. 7251-60.
    [169] Skarda, J., N. AmariglioG. Rechavi, RNA editing in human cancer: review. APMIS, 2009. 117(8): p. 551-7.
    [170] Paz, N., E.Y. Levanon, N. Amariglio, et al., Altered adenosine-to-inosine RNA editing in human cancer. Genome Res, 2007. 17(11): p. 1586-95.
    [171] Tomita, Y.T. Suzuki, Genetics of pigmentary disorders. Am J Med Genet C Semin Med Genet, 2004. 131C(1): p. 75-81.
    [172] Cui, Y., J. Wang, S. Yang, et al., Identification of a novel mutation in the DSRAD gene in a Chinese pedigree with dyschromatosis symmetrica hereditaria. Arch Dermatol Res, 2005. 296(11): p. 543-5.
    [173] Gao, M., P.G. Wang, S. Yang, et al., Two frameshift mutations in the RNA-specific adenosine deaminase gene associated with dyschromatosis symmetrica hereditaria. Arch Dermatol, 2005. 141(2): p. 193-6.
    [174] Li, C.R., M. Li, H.J. Ma, et al., A new arginine substitution mutation of DSRAD gene in a Chinese family with dyschromatosis symmetrica hereditaria. J Dermatol Sci, 2005. 37(2): p. 95-9.
    [175] Suzuki, N., T. Suzuki, K. Inagaki, et al., Mutation analysis of the ADAR1 gene in dyschromatosis symmetrica hereditaria and genetic differentiation from both dyschromatosis universalis hereditaria and acropigmentatio reticularis. J Invest Dermatol, 2005. 124(6): p. 1186-92.
    [176] Zhang, X.J., P.P. He, M. Li, et al., Seven novel mutations of the ADAR gene in Chinese families and sporadic patients with dyschromatosis symmetrica hereditaria (DSH). Hum Mutat, 2004. 23(6): p. 629-30.
    [177] Kondo, T., T. Suzuki, Y. Mitsuhashi, et al., Six novel mutations of the ADAR1 gene in patients with dyschromatosis symmetrica hereditaria: histological observation and comparison of genotypes and clinical phenotypes. J Dermatol, 2008. 35(7): p. 395-406.
    [178] Zhang, F., H. Liu, D. Jiang, et al., Six novel mutations of the ADAR1 gene in Chinese patients with dyschromatosis symmetrica hereditaria. J Dermatol Sci, 2008. 50(2): p. 109-14.
    [179] Suzuki, N., T. Suzuki, K. Inagaki, et al., Ten novel mutations of the ADAR1 gene in Japanese patients with dyschromatosis symmetrica hereditaria. J Invest Dermatol, 2007. 127(2): p. 309-11.
    [180] Sodhi, M.S., P.W. Burnet, A.J. Makoff, et al., RNA editing of the 5-HT(2C) receptor is reduced in schizophrenia. Mol Psychiatry, 2001. 6(4): p. 373-9.
    [181] Niswender, C.M., K. Herrick-Davis, G.E. Dilley, et al., RNA editing of the human serotonin 5-HT2C receptor. alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology, 2001. 24(5): p. 478-91.
    [182] Yang, W., Q. Wang, S.J. Kanes, et al., Altered RNA editing of serotonin 5-HT2C receptor induced by interferon: implications for depression associated with cytokine therapy. Brain Res Mol Brain Res, 2004. 124(1): p. 70-8.
    [183] Akbarian, S., M.A. SmithE.G. Jones, Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia. Brain Res, 1995. 699(2): p. 297-304.
    [184] Kawahara, Y., K. Ito, H. Sun, et al., Glutamate receptors: RNA editing and death of motor neurons. Nature, 2004. 427(6977): p. 801.
    [185] Peng, P.L., X. Zhong, W. Tu, et al., ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron, 2006. 49(5): p. 719-33.
    [186] Gingrich, J.R.J. Roder, Inducible gene expression in the nervous system of transgenic mice. Annu Rev Neurosci, 1998. 21: p. 377-405.
    [187] Liu, Q., L. Jiang, W.L. Liu, et al., Two novel mutations and evidence for haploinsufficiency of the ADAR gene in dyschromatosis symmetrica hereditaria. Br J Dermatol, 2006. 154(4): p. 636-42.
    [188] Buckland, J., D.J. Pennington, L. Bruno, et al., Co-ordination of the expression of the protein tyrosine kinase p56(lck) with the pre-T cell receptor during thymocyte development. Eur J Immunol, 2000. 30(1): p. 8-18.
    [189] Bogue, M.A., C. Zhu, E. Aguilar-Cordova, et al., p53 is required for both radiation-induced differentiation and rescue of V(D)J rearrangement in scid mouse thymocytes. Genes Dev, 1996. 10(5): p. 553-65.
    [190] Delker, R.K., S.D. FugmannF.N. Papavasiliou, A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol, 2009. 10(11): p. 1147-53.
    [191] Muramatsu, M., K. Kinoshita, S. Fagarasan, et al., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell, 2000. 102(5): p. 553-63.
    [192] Muramatsu, M., V.S. Sankaranand, S. Anant, et al., Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem, 1999. 274(26): p. 18470-6.
    [193] XuFeng, R., M.J. Boyer, H. Shen, et al., ADAR1 is required for hematopoietic progenitor cell survival via RNA editing. Proc Natl Acad Sci U S A, 2009. 106(42): p. 17763-8.
    [194] Gommans, W.M.S. Maas, Characterization of ADAR1-mediated modulation of gene expression. Biochem Biophys Res Commun, 2008. 377(1): p. 170-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700