绿色木霉葡聚糖内切酶Ⅰ基因在大肠杆菌中的表达与分子改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素可以在纤维素酶系的作用下降解成葡萄糖,而葡萄糖又能用于生产一种新型清洁能源:燃料乙醇。在这个转化途径中,纤维素酶降解纤维素成葡萄糖是最大的瓶颈,因此构建高效表达纤维素酶的基因工程菌并获得高酶活的纤维素酶,对今后纤维素的发酵生产应用具有重要的意义。本研究使绿色木霉内切葡聚糖酶Ⅰ顺利地在大肠杆菌中获得表达,对该酶进行纯化并测定其酶学性质,研究发现在大肠杆菌中表达出的重组酶在以羧甲基纤维素纳(CMC-Na)作为底物时,其比活为3.8U/mg、Km为18.62mg/mL、Vmax为32.53μmol/min、其催化效率Kcat/Km为1.03 ml/mg.s、其最适反应温度约为48℃、最适反应pH值约为5.2、其Tm值在60℃附近。
     本研究还通过同源比比对法,确定了以与绿色木霉内切葡聚糖酶Ⅰ氨基酸序列相似性达到99%的瑞氏木霉内切葡聚糖酶Ⅰ的蛋白质3D结构为参考,预测并选择了绿色木霉内切葡聚糖酶Ⅰ的酶活性中心位点Glu217、Glu222进行定点突变,将其定向突变为Asp,而对活性中心位点Asp219位点进行定点饱和突变,并辅助结合蛋白质结构分析软件prosa2003对其进行能量计算,通过分析计算结果,选择了保守区的Pro366、Asp242、Pro198三个氨基酸位点进行定点随机突变。而后又通过多序列同源比对法,选择了非保守区的Gly291氨基酸位点进行定点随机突变通过筛选,最终只筛训揭恢暧忻富畹耐槐涿窯291S,即Gly突变为Ser,纯化并测定了该突变酶的酶学性质并与野生型酶进行了比较,该突变酶以羧甲基纤维素(CMC-Na)为底物时,其比活为野生型酶的2.2倍,达到8.3U/mg;Km值下降至12.34mg/mL,为野生型酶的0.66倍;其Vmax为40.04μmol/min,与野生型酶相比较没有明显的提高;其催化效率Kcat/Km达到2.03 ml/mg.s,为野生型酶的1.97倍;其最适反映温度和最适反应pH值没有发生改变;而其Tm值降至55℃至60℃之间。
Cellulose can be degraded to glucose by cellulase system,and glucose is easily transformed to a kind of new and clear energy source:fuel ethanol.So Construction of genetic engineering bacteria which can effectively express high activity cellulase would be helpful to the development of cellulose fermentation industry in future.In this research,EGⅠwas effectivitly expressed with endoglucanse activity from Escherichia coli,Then EGI was purified by metal affinity chromatography and was measured the characteristics of enzyme.When using CMC-Na as substract,The specific activity of EGⅠis 3.8U/mg, the value of Km is 18.62mg/mL,the value of Vmax is 32.53μmol/min,the value of catalytic efficiency constant Kcat/Km is 1.03 ml/mg.s,the optimum temperature and optimum pH were 48℃and 5.2,respectively.The value of Tm is approximate to 60℃.
     In this research,by using multiple sequnce homology alignment and choosing the crystal structure of endoglucanseⅠfrom Trichoderma reseei whose amino acid sequence has 99%similarity to endoglucanseⅠfrom Trichoderma viride as reference,the positions of Glu217、Glu222 were predicted to be the active sites of EGⅠfrom Trichoderma viride and were selected to be mutated to Asp.the position Asp219 which is speculated to be another active site was selected to perform to the site-directed saturation mutagenesis.Pro366、Asp242、Pro160 which are in conservative domain were also selected to process to site-directed random mutagenesis.And then by using protein structure analysis software prosa2003 to assist to calculate the stucture energy,The result showed that if Pro366、Asp242、Pro198 are mutated to other amino acids,the energy which is responsible to maintain nature configuration of enzyme was predicted to descend.And the position of Gly291 which is confirmed to be in non-conservative domain by multiple sequence homology alignment was selected to perform to site-directed random mutagenesis.Finally,only one mutant G291S which is retain the enzyme activity was screened,The amino acid residue of Gly in position 291 was confirmed to be transformed to Ser by sequencing.The mutant G291S was purified and measured the characteristics of this mutated enzyme and was used to compare to the wild type enzyme.When using CMC-Na as substract,the specific activity of mutant G291S is 8.3U/mg which is 2.2 times than that of wid type,the value of Km declined to 12.34mg/mL which is 0.66 times than that of wild type.The value of Vmax is 40.04μmol/min,it has not distinctly change when compare to that of wild type. The value of catalytic efficiency constant Kcat/Km is reach up to 2.03 ml/mg.s, which is 1.97 times than that of wild type.The optimum temperature and optimum pH of mutant G291S are not change when compare to that of wild type. The value of Tm is fall down into the range of between 55℃and 60℃.
引文
[1]何冠明,何国正,石油资源和能源可持续发展战略问题探析,国际石油经济,2006,14(8):7-11
    [2]瞿国华,新世纪中国石油风险分析,当代石油石化,2006,14(4):21-27
    [3]刘永,何卓旖,东方早报,2004.4.27.(http://news.qq.com)
    [4]Demain AL,Newcomb M,JHD Wu,Cellulase,Clostridia,and Ethanol.Microbiol Mol Biol Rev,2005,69:124-154
    [5]什么是燃料乙醇,中国经济网,2007.6.11(http://finance.ce.cn/dissertation/macro/rlyc/mcjd/200706/11/t20070611_11696958.shtml)
    [6]Lynd LR,Ahn HJ,Anderson G et al,Thermophilic ethanol production.Investigation of ethanol yield and tolerance in continuous culture,Appl Biochem Biotechnol.1991,29:549-570
    [7]Lynd LR,Cushman JH,Nichols RJ et al.Fuel ethanol from cellulosic biomass.Science.1991.251:1318-1323
    [8]Wyman CE,Hinman ND,Ethanol Fundamentals of production from renewable feedstocks and use as a transportation fuel,Appl Biochem Biotechnol.1990,24/25:735-753
    [9]Bayer EA,Chanzy H,Lamed R et al,Cellulose,cellulases and cellulosomes,Curr Opin Struct Biol.1998,8(5):548-557
    [10]Muniswaran A,Charyulu N,Solid substrate fermentation of coconut coir pith for cellulase production.Enzyme Microbiology Technology,1994,16(5):436-440
    [11]Gardner KH,Blackwell J,The structure of native cellulose,Biopolymers.1974,13:19-75
    [12]高培基,纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J],自然科学进展2003,13(1):21-29
    [13]吴大付,任秀娟,李东方等,纤维索酶的应用现状与前景[J],广西轻工业,2007,12:1-2.
    [14]邱雁临,纤维素酶的研究和应用前景[J],粮食与饲料工业,2001,8:30-31.
    [15]尚维,刘群,纤维素酶在清香型优质白酒中应用初探[J],酿酒科技,1996,2:20-21.
    [16]邱雁临,纤维素酶对啤酒糟蛋白酶解率的影响[J],粮油加工与食品机械,2001,9:39-40.
    [17]杨玉华,刘德海,王子光,纤维素酶在食醋酿造中的应用[J],河南农业大学报,1999.4:398-399
    [18]闫训友,刘志民,史振霞等,纤维素酶在食品工业中的应用进展[J].食品工业科技,2004,10:140-142.
    [19]刘德海,杨玉华,李新杰等,纤维素复合酶对奶牛的应用效果[J],饲料研究,2000,5:29-30
    [20]张海淌,纤维素酶在鸡猪日粮中的应用[J],中国饲料,2000,11:14-16,
    [21]冯杰,余东游,纤维素酶在动物营养上的研究进展[J],饲料研究。2000,5:20-22.
    [22]井长伟,纤维素酶在畜牧业中的应用田,中国饲料,2002,7,9-13、
    [23]Zhang Y-HP,Lynd LR,Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems,Biotechnol Bioeng,2004,88(7):797-824
    [24]Zhang Y-HP,Himmel ME,Mielenz JR,Outlook for cellulase improvement:screening and selection strategies,Biotechnol Advan,2006,24:452-481
    [25]刘树立,王华,王春艳等.纤维素酶分子结构及作用机理的研究进展.食品科技,2007,7:12-15.
    [26]宋贤良,温其标,朱江.纤维素酶法水解的研究进展[J].郑州工程学院学报,2001,24(4):67-72
    [27]夏黎明.可再生纤维素资源酶法降解的研究进展[J].林产通讯,1999.33(1):23-28
    [28]Wood T M,The cellulase of fusarium solani purification and specificity of the(1,4)-glucosidase components[J],Biochem,1971,121:353
    [29]Beguin P,Aubert JP,The biological degradation of dellulose,FEMS Microbiol Rev.1994,13:25-58
    [30]Knowles J,Lehtovaara P,Teeri TT,Cellulase families and their genes,Trends Biotechnol,1987,5:255-261
    [31]Teeri TT,Reinikainen T,Ruohonen L,et al,Domain function in Trichoderma reesei cellobiohydrolases,J Biotechnol,1992,24:169-176
    [32]Tome P,Warren RAJ,Gilkes NR.Cellulose hydrolysis by bacteria and fungi.Advances in Microbial Physiology,1995,37:1-79
    [33]Ducros V,Czjzek M,Belaich A,et al,Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5.Structure,1995,3:939-949
    [34]Sinnott ML,Catalytic mechanisms of enzymatic glycosyl transfer,Chem Rev.1990.90:1171-1202
    [35]McCarter JD,Withers SG.,Mechanisms of enzymatic glucoside hydrolysis,Curt Opin Struct Biol.1994,4:885-892
    [36]Rye CS,Withers SG.,Glycosidases mechanisms,Curt Opin Chem Biol 2000,4:573-580
    [37]Ly HD,Withers SG.,Mutagenesis of glycosidases,Annu Rev Biochem,1999,68:487-522
    [38]Huang Y,Krauss G,Cottaz S et al,A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus Solfataricus,Biochem J,2005,385:581-588
    [39]Domingues F C,Queiroz J A.,Cabral J M S,et al,The influence of culture conditions on mycelial structure and cellulose production by Trichoderma reesei Rut C-30,Enzyme and Microbial Technology,2000,26:394-401.
    [40]Ilmen M,Thrane C,Penttila M,The glucose repressor genecrel of Trichoderma:isolation and expression of a full length and a truncated mutant form.,Mol Gen Genet,1996,251:451-60.
    [41]Baker J O,Adney W S,Thomas S R,et al.Synergism between purified bacterial and fungal cellulases.Enzymatic Degradation of Insoluble Polysaccharides,1995,618:113-141.
    [42]Himmel,M E,Adney W S,Baker J O,et al.Advanced bioethanol production technologies:A perspective.Fuels and Chemicals from Biomass,1997,666:2-45.
    [43]牛俊玲,崔宗均,李国学等.高效纤维素分解菌复合系的筛选构建及其对秸杆的分解特性.农业环境科学学报,2005,24(4):795-799.
    [44]Cheng C,Norihiro T,Shigezo U.Nucleotide sequence of the cellobiohydrase gene from Trichoderma viride[J].Nucleic Acids Res,1990,18:55-59.
    [45]Teeri,T.The cellulolytic enzyme system of Trichoderma reesei,Molecular cloning,characterization and expression of the cellobiohydrolase genes.Espoo,Finland.VTT Publications 1987,38:41-52
    [46]Saloheimo,Nakari-Setala,Tuna et al.,cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast.Eur.J.Biochem.1997,249:584-591.
    [47]Teeri.T,Salovuori.I and Knowles.J.The molecular cloning of the major cellulase gene from Trichoderma reesei.Bio/Technol.1983,1:696-699.
    [48]Hoemaker.S,Sehweickart,V,Ladner.M et al.Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27.Bio/Technol,1983,1:691-695.
    [49]Teeri.T.T.,Lehtovaara.P.,Kauppinen.S et al.Homologous domains in Trichoderma reesei cellulolytic enzymes:gene sequence and expression of cellobiohydrolase Ⅱ.Gene,1987,51:43-52.
    [50]enttila,M.E.,Andre.L.,Saloheimo.M.,et al,Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae,Yeast.1987,3,175-185.
    [51]enttila,M.E.,Andre,L.,Lehtovaara,et al,Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae,Gene.1988,63,103-112.
    [52]刘纯强,王祖农,纤维素酶基因克隆及应用前景[J],生物工程进展,1991,3:8-15.
    [53]Saloheimo,Nakari-Setal,Tuna,cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast.Eur.J.Biochem,1997,249,584-591.
    [54]Teeri T.,Salovuori I.and Knowles J,The molecular cloning of the major cellulase gene from Trichoderma reesei,Bio/Technol,1983,1:696-699.
    [55]Teeri T.T.,Lehtovaara P.,Kauppinen S et al,Homologous domains in Trichoderma reesei cellulolytic enzymes:gene sequence and expression of cellobiohydrolase Ⅱ,Gene,1987,51:43-52.
    [56]Penttila M.Eandre.Saloheimo L.et al,Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae,Yeast,1987,3,175-185.
    [57]Penttila M.E and Lehtovaara L.,Bailey P et al,Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae,Gene,1988,63,103-112.
    [58]Ward M.,Wu S.,Dauberman J,et al,Cloning,sequence and preliminary structural analysis of a small,high pⅠ endoglucanase EGⅢ from Trichoderma reesei,Appl Environ Microbiol,1976,31:648-654.
    [59]Gekkssen G,Melber K,Janowicz Z A et al,Homologous gene expression in yeast[J],Gen Mole Microbiol,1991,62:79-93
    [60]Hirmen A,Buxton F,Chandhrui B et al,Gene expression in recombinant yeast.In Smith A(Ed)Gene expreseion in recombinant organisms,New York:Mal-cel Dekker,1994,13:121-193.
    [61]Winzeler E.V.,Davis R.W,Functional Analysis of the Yeast Genome.Current Opinion in Genetics&Development,1997,7(6):771-776
    [62]周璐,李越中,李健,酿酒酵母基因组学研究进展[J],生命科学,1999,11(2):87-91
    [63]Bassett D.E.,.Basrai M.A,Connelly C et al,Exploiting the Complete Yeast Genome Sequence,Current Opinionin Genetics&Development,1996,6(6):763-766
    [64]穆小民 吴显荣,纤维素酶分子生物学研究进展及趋向[J],生物工程进展,1994,14(4):25-27
    [65]Gerard J.Kleywegt L,Jin-Yu Zou et al,The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution,and a comparison with related enzymes,Journal of Molecular Biology.1997.272(3):383-397.
    [66]刘燕,张宏福,孙哲,纤维素酶的分子生物学与基因工程研究进展,饲料工业,2007,28(18):11-14
    [67]Saloheimo,Nakari-Setala,Tuna et al,cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast.Eur.J.Biochem,1997,249:584-591.
    [68]王大成,蛋白质工程,第一版,北京,化学工业出版社,2002:213.
    [69]王正祥,刘吉泉,诸葛健,微生物酶的分子改性和人工进化的研究进展[J],生物工程学报,2000,16:301-303
    [70]Yasushi Mitsuishi,Sunce Nitisinpraxert,Markku Salohcimot.et al,Site-directed mutagenesis of the putative catalytic residues of Trichoderma reesei cellobiohydrohase Ⅰand endoglucanase I,FEBS,1990,275(1):135-138
    [71]Desantis G,Jones J B.Towards understanding and tailoring the specificity of synthetically useful enzymes[J].Acc Chem Res,1999,32:99-107
    [72]Miyazaki K,Wintrode P L,Rowana G L,et al.Directef evolution study of temperature adaptation in a Psychrophillic enzyme[J].JMol Bio,2000,297:1015-1026.
    [73]Tatato Y,Shinya O,Hiroyuki K.Directed evolution of an aspartate aminotransferase with new substrate specificities[J].Proc Natl Acad Sci USA,1998,95:5511-5515.
    [74]You L,Arnold F H,Directed evolution of subtilisin E in Bacillus to enhance total activity in aqueous dimethyformamide[J],Protein Eng,1996,9:77-83.
    [75]Cedrone F,Menez A,QuemeneurE,Tailoring new enzyme functions by rational redesign [J],Curr Opin Struct Biol,2000,10:405-410.
    [76]Harris J L,Craik C S,Engineering enzyme specificity[J],Curr Opin Chem Biol,1998,2:127-132.
    [77]NicholasI J T,Directed evolution of enzymes for applied biocatalysis[J].Trands Biotechnol,2002,21:474-478.
    [78]Andrew E N,Steven M F,Frank G S,et al,Rational design of a scytalone dehyratase-likeenzyme using a structureally homologous protein scaffold[J],Proc Natl Acad Sci,USA,1999,96(35):571-683.
    [19]Rubingh D N,Protein engineering from a bioindustrial point of view[J],Curr Opin Biotech,1997,8:417-422.
    [80]Lingen B.J.Grotzinger D,Kolter,et al,Improving the carboligase activity of benzoylformate decarboxylase from Pseudomonas putida by a combination of directed evolution and site-direted mutagenesis[J],Protein Engineering.2002.15:585-593.
    [81]RUI Lingyun,Young Man Kwon,Ayelet Fishman et al,Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for enhanced 1-Naphthol synthesis and Chloroform degradation[J].Applied and environment microbiology,2004,6:3246-3252.
    [82]Monal R,Parikh and Ichiro Matsumura,Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of β-Fucosidase from β-Galaetosidase[J],Mol.Biol.(2005)352:621-628.
    [83]Chang SW,Shieh CJ,Multiple mutagenesis of the Candida rugosa LIP 1 gene and optimum production of recombinant LIP 1 expressed in pichia 17,Appl Microbiol Biotechnol,2004,186(1):159-264
    [84]罗师平,冷希岗,基于PCR的体外诱变技术,国外医学生物医学工程分册,2005,28(3):190-191
    [85]朱俊晨,王小菁,酶的分子设计、改造与工程应用[J],中国生物工程杂志,2004,24(8):32-37.
    [86]Kwon I,Ekino K,Goto M et al,Heterologous expression and characterization of endoglucanase Ⅰ(EGⅠ)from Trichoderma viride HK-75[J].Biosci Biotechnol Biochem,1999,63(10):1714-1720.
    [87]Wang H Y,Jones R W,Cloning,characterization and funetional expression of an endoglueanase-encoding gene from the phytopathogenie fungus Macrophomina Phaseolina,Gene,1995,158:125-128.
    [88]王利英,刘一,杨登峰等,绿色木霉葡聚糖内切酶cDNA基因的克隆及其在酿酒酵母中的表达,广西科学,2007,12(3):315-319.
    [89]汪家政,范明,蛋白质技术手册[M],第一版,北京,中国科学出版社,2001:43-45.
    [90]周丽萍,周政,袁中一,青霉素酰化酶的定点突变及其稳定性研究[J],工业微生物,2003,33(1):9-13.
    [91]颜思旭,蔡红玉,酶催化动力学原理与方法[M],厦门,厦门大学出版社,1987:134-138.
    [92]罗贵民,曹淑桂,张今,酶工程,第一版,北京,化学工业出版社,2002:119-120
    [93]Kentaro Tomii,Takatsugu Hirokawa,Chie Motono,Protein structure prediction using a variety of profile libraries and 3D verification.Proteins:Structure,Function,and Bioinformatics,2005,61(S7):114-121.
    [94]Gerard J,Kleywegt1,Jin-Yu Zou et al,The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution,and a comparison with related enzymes,Journal of Molecular Biology,1997.272(3):383-397.
    [95]Mandecki W,Shallcross,M A.Sowadski J et al,Mutagenesis of conserved residues within the active site of Escherichia coli alkaline phosphatase yields enzymes with increased kcat,Protein Eng,1991,4(7):801-804.
    [96]Ajayi WU Chaudhuri M,Hill GC,Site-directed mutagenesis reveals the essentiality of the conserved residues in the putative diiron active site of the trypanosome altemative oxidase,J Biol Chem,2002,277:8187-8193.
    [97]Hadonou A.M.,Wilkin J.M.,Varetto L et al,Site-directed mutagenesis of the Streptomyces R61 DD-peptidase.Catalytic function of the conserved residues around the active site and a comparison with class-A and class-C beta-lactamases,Eur J Biochem,1992,207(1):97-102.
    [98]Muller-Newen G,Stoffel W,Site-directed mutagenesis of putative active-site amino acid residues of 3,2-trans-enoyl-CoA isomerase,conserved within the low-homology isomerase/hydratase enzyme family,Biochemistry,1993,32:11405-11412.
    [99]Zheng R.L,Kemp R.G,Site-directed mutagenesis of two highly conserved residues near the active site of phosphofructo-1-kinase,Biochem Biophys Res Commun,1994,199(2):577-581.
    [100]Doucet N,De Wals P.Y,Pelletier J.N,Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 beta-lactamase, J Biol Chem, 2004,279(44):46295-46303.
    
    [101] Davies G, Henrissat B, Structures and mechanisms of glycosyl hydrolases. Structure 3, 1995:853-859.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700