开放式记忆合金人工椎体的研制和生物力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:设计一种开放式记忆合金人工椎体,可用于胸腰椎肿瘤、爆裂性骨折、侧弯、后凸畸形等脊柱疾患手术切除病变椎体后脊柱结构的重建,且可使手术变得简便、安全,并对其进行生物力学分析。
     方法:课题分为两部分:(1)开放式记忆合金人工椎体的研制:依据胸腰椎的解剖特点,研究正常国人腰椎脊髓神经根窗的高度,提出国人腰椎人工椎体的规格数据,研制出开放式记忆合金人工椎体。(2)开放式记忆合金人工椎体的生物力学分析:选取正常成年新鲜猪脊柱标本胸14-腰5(猪胸椎有15个)8具。每个标本制作4种状态的实验模型:完整椎体模型,行T15、L1、L3、L4椎弓根钉固定模型,记忆合金人工椎体重建L2椎体+T15、L1、L3、L4椎弓根钉固定模型,钛网重建L2椎体+T15、L1、L3、L4椎弓根钉固定模型。在美国MTS-858脊柱三维运动实验机上先依次完成完整椎体模型和椎弓根钉固定模型的三维活动范围(ROM)测试,再轮替进行记忆合金人工椎体置换模型和钛网置换模型的制作,进行脊柱稳定性测试。将计算机采集的数据应用SPSS13.0软件进行自身交叉设计实验的方差分析。
     结果:(1)开放式记忆合金人工椎体的形状记忆效应使其在冰水中可压缩体积通过相应的脊髓神经根窗,复温后可产生可靠的回复力,撑开恢复椎节的高度,因此记忆合金人工椎体可从后路植入椎体间,且操作简便。(2)与完整椎体模型相比,单纯椎弓根固定模型、记忆合金人工椎体置换模型和钛网置换模型各节段的前屈、后伸、左右侧弯、左右旋转活动范围均较小,稳定性好,有统计学差异(P<0.05),其中,在L1-L3节段记忆合金人工椎体置换模型前屈、后伸、左侧弯、右侧弯、左旋、右旋活动范围分别为完整椎体模型的11%、10%、6%、6%、15%、15%。与单纯行椎弓根固定模型相比,记忆合金人工椎体置换模型在各方向的活动度无统计学差异(P>0.05)。与钛网置换模型相比,记忆合金人工椎体置换模型在T15-L1及L3-L4节段的前屈、后伸、左右侧弯、左右旋转的活动范围较小,有统计学差异(P<0.05);在L1-L3节段各方向活动范围无明显统计学差异(P>0.05)。
     结论:开放式记忆合金人工椎体结构设计符合脊柱内固定器械设计的原理,具有创新性,生物力学性能良好。开放式记忆合金人工椎体能恢复椎节的高度,与钛网置换模型具有相近的术后即刻稳定性,在附加椎弓根钉固定的情况下能重建脊柱的即刻稳定。其对相邻节段影响较小,有助于减小应力集中,降低内固定失败的几率。研究结果为下一步的动物实验和初期临床应用提供了生物力学基础。
Objective To design an open shape memory alloy artificial vertebral body that can be used to reconstrut the vertebral body in spine diseases,such as thoracolumbar spine tumors, burst fracture of the vertebral,kyphotic and scoliosis.And to evaluate the biomechanical stability of lumbar functional segment unit after insertion with the shape memory alloy artificial vertebral body.
     Methods The research divided into two parts,(1)The development of open shape memory alloy artificial vertebral body:We collected the height of lumbar roots in normal people and according to the spine data,we made sure the size of the artificial vertebral body.Finally, we made the open nickel-titanium shape memory alloy artificial vertebral body. (2) The biomechanical analysis of open shape memory alloy artificial vertebral body:Eight normal adult fresh porcine spine specimens(thoracic 14-lumbar 5) (the pig has 15 thoracic vertebrae) was used to detect the range of motion(ROM) in four models,which were intact vertebral model, pedicle screw fixation inT15, L1, L3and L4 model, L2 total resection and reconstructed by open shape memory alloy artificial vertebral body model, lumbar 2 total resection and reconstructed by titanium mesh vertebral body model. The last two models were made by turns. All models were tested using a spinal three dimensional anlysis system (tipe:U.S. MTS-858).Undertake the data with medical statistical analysls.
     Results (1)The open shape memory alloy artificial vertebral body can be putted through the lumbar roots windows when be compressed in the ice water.Then when temperature rised,the elastic recovered to revive the height of the spine.So the open shape memory alloy artificial vertebral body made the operation easily. (2)Compared with the intact vertebral body model, the other three models were more stable in compression,flexion, left and right lateral bending, and rotation,there was significant difference(P0.05).Compared with the titanium mesh reconstructed model, the memory alloy artificial vertebral body reconstructed model had less degree of motion in T15-L1 and L3-L4 segments(P<0.05),but no statistic significance in L1-L3 segment.
     Conclusion The design of the open shape memory alloy artificial vertebral body meets the design principles.It is innovative and has a good biomechanical stability. It can be used to recover the height and stabilize the spinal segment with pedicle screw fixation.And there is less effective in the adjacent segments. It can help to reduce the stress concentration. So it can reduce the probability of failure.This study offers the bio-mechanical basis to the next phase of animal experiments and initial clinical application.
引文
[1]Fourney DR, Abi-Said D, Rhines LD, et al. Simultaneous anterior-posterior approach to the thoracic and lumbar spine for the radical resection of tumors followed by reconstruction and stabilization[J]. J Neurosurg,2001,94(2):232-244.
    [2]Alici E, Alku OZ,Dost S. Prostheses designed for vertebral body replacement [J].J Biomech,1990,23(8):799-809.
    [3]Younger EM,Chapman MW.Morbidity at bone graft donor sites[J].J Orthop Trauma,1989,3 (3):192-195.
    [4]Knop C, Fabian HF, Bastian L, et al. Late results of thoracolumbar fractures after posterior intrumentation and transpedicular bone grafting[J]. Spine,2001,26(1):88-89.
    [5]Goulet JA, Senunas LE, DeSilva GL, et al. Autogenous iliac crest bone graft. Complications and functional assessment[J].Clin Orthop Relat Res,1997,6 (339):76-81.
    [6]Ernstberger T, Kogel M, Konig F, et al. Expandable vertebral body replacement in patients with thoracolumbar spine tumors[J]. Arch Orthop Trauma Surg,2005,125(10):660-669.
    [7]彭明,黄佳军,马晓程,等.钢板骨水泥“人工椎体”在脊柱转移瘤手术中的重建[J].中国骨肿瘤骨病,2007,6(4):206-210.
    [8]Ernstberger T,Brilning T, Konig F. Venebrectomy and anterior reconstruction for the treatment of spinal metastases[J]. Acta Orthop Belg,2005,71(4):459-466.
    [9]Bai B, Kummer FJ, Spivak J. Augmentation of anterior vertebral body screw fixation by an injectable, biodegradable calcium phosophate bone substitute [J]. Spine,2001,26(24): 2679-2683.
    [10]Allen BL, Tencer AF, Ferguson RL, et al. The biomechanics of decompressive laminectomy [J]. Spine,1987,12 (8):803.
    [11]Yongcheng Hu, Qun Xia, Jingtao Ji, et al. One-Stage Combined Posterior and Anterior Approaches for Excising Thoracolumbar and Lumbar Tumors [J].Spine,35(5):590-595.
    [12]Lowery GL, Harms J. Titanium surgical mesh for vertebral defect replacement and intervertebral spacers[J]. Manual of Internal Fixation of the Spine.1996:127-146.
    [13]原林,郝松林,钟世镇.弹性活动式人工椎体构形及其力学性能[J].医用生物力学,1995,10(4):245-248.
    [14]Knop C, Lange U, Bastian L, et al. Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine[J]. Eur Spine J,2000,9(6):472-485.
    [15]Lange U.Edeling S, Knop C, et al. Anterior vertebral body replacement with a titanium implant of adjustable height:a prospective clinical study[J].Eur Spine,2007,16 (2): 161-172.
    [16]赵定麟,陈德玉,赵杰,等.可调式中空人工椎体的研制与临床应用[J].中华骨科杂志,2001, 21(4):222-225.
    [17]Desroches G Aubin CE. Sucato DJ. et al. Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model [J]. Med Biol Eng Comput 2007; 45(8):759-768.
    [18]娄朝晖,陈安民,陈建桥,等.生物陶瓷人工椎体以及脊柱前路解剖型钢板重建椎体的生物力学评价[J].中国组织工程研究与临床康复杂志,2008,12(9):1605-1608.
    [19]卢公标,权正学,蒋电明。人工椎体的发展及在脊柱外科中的应用[J].中国修复重建外科杂志,2006,20(4):419-422.
    [20]Knop C, Lang U, Bastian L, et al. Biomechanical compression tests with a new implant for thoracolumbar vertebral body replacement[J]. Eur Spine,2001,10(1):30-37.
    [21]郭世绂主编,临床骨科解剖学.天津科学技术出版社,天津.1988:P146-150.
    [22]Braun JT, Ogilvie JW, Akyuz E. et al. Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat[J]. Spine,2004,29 (18):1980-1989.
    [23]沈建雄,张智海,邱贵兴,等。多种记忆合金椎体撑开器设计与初步实验比较[J].脊柱外科杂志,2003,1(5):286-289.
    [24]Y eung KW,Poon RW, Liu XY, et al. Investigation of nickel suppression and cytocompatibility of surface-treated nickel-titanium shape memory alloys by using plasma immersion in implantation[J]. J Biomed Mater Res,2005,72(3):238-245.
    [25]胡有谷,党耕町,唐天驷主编,脊柱外科学[M].人民卫生出版社,北京.2000:P164.
    [26]Nachemson AL,Morris JM. In vivo measurements of intradiscal pressure:discometry, a method for the determination of pressure in the lower lumbar discs[J].J Bone Joint Surg,1964,46:1077-1092.
    [27]JOHNP.KOSTUIK,MD,FRCSC,et al. Pitfalls of Biomechanical Testing[J].Spine, 1991,16(10):1233-1235.
    [28]McDonough PW, Davis R, Tribus C, Zdeblick TA. The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation[J]. Spine,2004,29 (17):1901-1908.
    [29]Falavigna A, Righesso Neto O, Polesso MA, et al. Anterior approach in patients with traumatic compression fracture type of thoracolumbar spine(T11-L2) [J]. Arq Neuropsiquiatr, 2007,65(3B):906-911.
    [30]Wilke HJ, Jungkuna B, Wenger K, et al. Spinal Segment Range of Motion As a Function of In Vitro Test Conditions:Effects of Exposure Period, Accumulated Cycles, Angular-Deformation Rate, and Moisture Condition[J]. Anat Rec,1998,251 (1):15-19.
    [31]Panjabi MM,Krag M, Summers D, et al. Biomechanical time-tolerance of fresh cadaveric human spine specimens[J].J Orthop Res,1985,3(3):292-300.
    [32]Tomita K, Kawahara N, Baba H, et al. Total en bloc spondylectomy for solitary spinal metastasis[J]. Int Orthop,1994,18(5):291-298.
    [33]Scott K, Alexander J, Leonard I, et al. Flexion-Extension Response of the Thoracolumbar Spine Under Compressive Follower Preload[J]. Spine,2004,29 (22):E510-E514.
    [34]Patwardhan AG, Havey RM, Carandang G, et al. Effect of compressive follower preload on the flexion-extension response of the human lumbar spine [J]. J Orthop Res,2003,21(3): 540-546.
    [35]刘红欣,王以进.腰椎间植骨融合的三维有限元分析[J].医用生物力学,2001:16(3):169-173.
    [36]Wever DJ, Veldhuizen AG, Sanders MM, et al. Cytotoxic, allergic and genotoxic activity of a nickel-titanium allay[J].Biomaterials,1997,18(16):1115-1120.
    [37]Shabalovskaya SA. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material[J].Biomed Mater Eng,2002,12(1):69-109.
    [38]薛淼,陈希贤,李一鸣,等.模拟腐蚀实验[J].中华医学杂志,1982,62(12):758.
    [39]张辉,靳安民,赵卫东.腰椎峡部裂记忆合金节段固定器的生物力学评价[J].中国临床解剖学杂志.2002,20(4):301-302.
    [40]Daniel J, Brian L, Arun P,et al.SHAPE MEMORY ALLOYS:METALLURGY, BIOCOMPATIBILITY, AND BIOMECHANICS FOR NEUROSURGICAL APPLICATIONS[J]. Neurosurgery, 2009,64(2):199-215.
    [41]Yoneyama T, Doi H, Kobayashi E, et al:Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test[J].J Mater Sci Mater Med,2000,11(6): 333-336.
    [42]Hans-Joachim Wilke, Stefan Krischak, Lutz Claes. Biomechanical Comparison of Calf and Human Spines[J]. The lournal of Bone and Joint Surgery,1996,14(3):500-503.
    [43]Atlas OK,Dodds SD, Panjabi MM.Single and incremental trauma models:a biomechanical assessment of spinal instability. Eur Spine J,2003,12(2):205-210.
    [44]Lu WW, Cheung KM,Li YW, et al.Bioactive bone cement as a principal fixture for spinal burst fracture:an in vitro biomechanical and morphologic study[J]. Spine,2001, 26(24):2684-2690.
    [45]R. VESELY, Z. FLORIAN, P. WENDSCHE, et al. Biomechanical Evaluation of the Modular Anterior Construct System (MACS(?)) Internal Fixator for Thoracic Spinal Stabilisation[J]. ACTA VET.BRNO,2008,77:97-102.
    [46]Vidyadhar V. Claire Robertson, Deborah Lee, et al. Biomechanical Comparison of Kyphoplasty Versus a Titanium Mesh Implant With Cement for Stabilization of Vertebral Compression Fractures[J]. Spine,2010, being print.
    [47]Robert pflugmacher, Jan Schaefer, Kathrin Ludwig, et al. Biomechanical Comparison of Expandable Cages for Vertebral Body Replacement in the Thoracolumbar Spine[J].2004,29 (13):1413-1419.
    [48]Vishteh AG, Crawford NR,Chamberlain RH, et al. Biomechanical Comparison of Anterior Versus Posterior Lumbar Threaded Interbody Fusion Cages[J]. Spine,2005,30(3):302-310.
    [1]Tomita K,et al. Total en bloc spondylectomy for solitary spinal metastasis[J]. Int Orthop,1994,18:291-298.
    [2]K Singh, D Samartzis, A Vaccaro, et al. Current concepts in the management of metastatic spinal disease[J]. Journal of Bone and Joint Surgery,2006,88 (4):434-441.
    [3]Fourney DR, Abi-Said D, Rhines LD, et al. Simultaneous anterior-posterior approach to the thoracic and lumbar spine for the radical resection of tumors followed by reconstruction and stabilization[J]. J Neurosurg,2001,94(2):232-244.
    [4]Boriani S, Weinstein IN, Biagini R. Spine update:Primary bone tumor of the spine [J]. Spine, 1997,22:1036-1044.
    [5]富田胜郎,马原,田慧中.全脊椎整块切除术——种治疗原发性恶性脊柱肿瘤的新手术方法[J].中国矫形外科杂志,2006,14(7):500-505.
    [6]杜开利,黄东生,彭焰,等.脊柱原发性肿瘤的切除方式与疗效分析[J].脊柱外科杂志,2008,6(4):206-209.
    [7]郑燕平,刘新宇,李宪笃,等.胸椎单脊椎原发性肿瘤后路全脊椎切除的临床疗效[J].脊柱外科杂志,2006,4(3):129-132.
    [8]盛伟斌,刘忠军,曹力,等.一期后路全脊椎切除、环脊髓减压、植骨内固定治疗胸椎肿瘤[J].中国脊柱脊髓杂志,2004,14(8):465-469.
    [9]贾连顺,陈华江.脊柱转移瘤外科诊断治疗的现状与进展[J].中华骨科杂志,2003,6:331-334.
    [10]Bohm P, Huber J. The surgical treatment of the spine and limbs[J]. J Bone Joint Surg(Sr),2002,84(4):5212-5219.
    [11]Sundaresan N, Galicich JH, Lane JM, et al. Treatment of neoplastic epidural cord compression by vertebral body resection and stabilization[J]. Jeurosurg,1985,63:676-684.
    [12]Siegal T, Siegal T. Current consideration in the management of neoplastic spinal cord compression [J].Spine,1989,14(2):223.
    [13]Bradford DS, Tribus CB. Vertebral Column Resection for the Treatment of Rigid Coronal Decompensation[J]. Spine,1997,22:1590-1599.
    [14]Suk SI, Kim JH, Kim WJ, et al. Posterior Vertebral Column Resection For Severe Spinal Deformities[J]. Spine,2002,27:2374-2382.
    [15]E Abe, K Satol, H Tazawa. Total spondylectomy for primary tumor of the thoracolumbar spine[J].Spinal cord,2000, (38):146-152.
    [16]Murakami H, Kawahara N, Abdel-Wanis ME, et al. Total en bloc spondylectomy[J]. Semin Musculoskelet Radiol,2001,5(2):189-194.
    [17]郑燕平,汤继文,李建民,等.经后路一期全脊椎切除治疗胸椎单脊椎肿瘤的临床疗效[J].中华骨科杂志,2003,23(1):23-27.
    [18]Jules-Elysee K, Urban MK, Urquhart BI. Pulmonary complications in anterior-posterior thoracic lumbar fusions[J]. Spine,2004,29:312-316.
    [19]Abe E, Kobayashi T, Murai H, et al. Total spondylectomy for primary malignant, aggressive benign, and solitary metastatic bone tumors of the thoracolumbar spine[J].J Spinal Disord,2001,14(3):237-246.
    [20]Krepler P, Windhager R, Bretschneider W, et al. Total vertebrectomy for primary malignant tumours of the spine[J].J Bone Joint Surg Br,2002,84(5):712-715.
    [21]Abe E, Sato K, Tazawa H. Total spondylectomy for primary tumor of the thoracolumbar spine [J]. Spinal Cord,2000,38(2):146-152
    [22]Tomita K, Toribatake Y, Kawahara N, et al. Total en bloc spondylectomy and circumspinal decompression for solitary spinal metastasis[J]. Paraplegia,1994,32:36-46.
    [23]米川,马忠泰,施学东,等.脊柱转移瘤的手术方式选择[J]中国骨肿瘤骨病,2006,5(3):133-135
    [24]Oda I, Cunningham BW,Abumi K,et al. The stability of reconstruction methods after thoracolumbar total spondylectomy[J]. Spine,1999,24:1634-1638.
    [25]胡有谷,党耕町,唐天驷.脊柱外科学[M],北京:人民卫生出版社,2000:144-145.
    [26]Katsuro Tomita, Norio Kawahara, Hideki Murakami, et al. Total en bloc spondylectomy for spinal tumors:improvement of the technique and its associated basic background[J]. J Orthop Sci.2006,11:3-12.
    [27]Tomita K, Kawahara N, Baba H,. Total en bloc spondylectomy:a new surgical technique for primary malignant vertebral tumors[J]. Spine,1997,22(3):324-333.
    [28]Nambu K, Kawahara N, Murakami H, et al.Interruption of bilateral segmental arteries at several levels:influence on vertebral blood flow[J]. Spine,2004,29:1530-1534.
    [29]Ueda Y, Kawahara N, Tomita K, et al. Influence on spinal cord blood flow and spinal cord function by interruption of bilateral segmental arteries at up to three levels: experimental study in dogs[J]. Spine,2005,30:2239-2243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700