中孔分子筛(SBA-15,KIT-6)负载的钴基催化剂的费—托合成性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费-托合成是将合成气(CO+H2)转化为液体燃料和化学品的过程。钴基催化剂因其具有高的活性、高的重质烃选择性、较低的水煤气变换反应活性被广泛应用于费-托合成。中孔分子筛具有大的比表面积和良好的水热稳定性,以其作为催化剂的载体可以获得高度分散的钴催化剂。硅材料负载的钴催化剂的反应活性主要与催化剂的还原度密切相关。钴氧化物(四氧化三钴,无定形钴氧化物,钴硅氧化物,钴铝氧化物等)的形成依赖于载体表面的性质和前处理条件,如焙烧温度、前驱体溶液的pH值等。在高温下还原后,钴氧化物与载体之间相互作用生成难还原的化合物如硅酸钴仍有部分存在,有研究报道载体表面羟基(-OH)的存在导致了这些难还原化合物的生成。
     本文分别采用内表面氨基化修饰和硅烷化的方法改性SBA-15表面的性质,以浆态浸渍法和满孔浸渍法制备Co/SBA-15催化剂;以KIT-6为载体,制备不同钴负载量的钴基催化剂。使用元素分析、N2吸附-脱附、X-射线衍射、透射电子显微镜、程序升温还原、程序升温脱附及氧滴定等手段表征催化剂。并在微型固定床反应器上考察催化剂的费-托合成反应性能。主要研究结果如下:
     1. SBA-15经内表面氨基化修饰和负载钴后,其二维六方有序结构仍然保持;氨基化修饰后的与未修饰的催化剂相比,钴在载体表面的分散度增加,形成的Co3O4晶粒平均直径减小;钴更易负载到SBA-15孔道内部,催化剂较难还原。
     2.对于硅烷化后的Co/SBA-15催化剂,金属钴与载体之间的相互作用降低,氧化钴的还原度增加。随着三甲基氯硅烷用量的增加,三甲基硅基的表面覆盖度增加,钴的晶粒直径增大。硅烷化后的10Co/SBA-15催化剂的高活性归因于其高还原度,C5+选择性的增加归因于钴晶粒直径的增加。载体的硅烷化可以得到具有更高CO转化率和更好的重质烃选择性的费-托合成催化剂。
     3. KIT-6分子筛的水热稳定良好,是一种很好的催化剂载体。随钴负载量的增加,催化剂的比表面积和孔体积下降约50%左右,而平均孔径没有什么变化。对于Co/KIT-6系列催化剂来说,金属与载体之间的相互作用小。费-托合成反应研究发现,随着钴含量的增加,催化剂的活性、C5+选择性均增加,这归因于催化剂高的还原度以及大的钴颗粒直径。
Fischer-Tropsch synthesis (FTS) can convert syngas (CO+H2) into transportation fuels and chemicals. Cobalt-based FTS catalysts have been widely studied because of its high CO conversion, high selectivity for heavy hydrocarbons, low water-gas shift activity. Mesoporous molecularsieves are the most attractive catalyst supports with large surface area and high hydrothermal stability, allowing for the highly dispersed cobalt catalyst. The activity for FTS was strongly dependent on the catalyst reducibility. The formation of cobalt oxide species (crystalline Co3O4, amorphous cobalt oxides and cobalt silicates) depends on the surface nature of the support and the treatment conditions such as calcination temperature, pH of the precursor solution, etc. After reduction at high temperature, the strong interaction species between cobalt species and surface SiOH groups remain unreduced, some researchs reported that surface hydroxyl (-OH) led to the existence of these compounds hard to be reduced.
     In this paper, amino-modified within the surface and silylation of the SBA-15 modified the nature of the surface, cobalt catalysts supported on modified and silylated SBA-15 have been prepared by slurry and incipient wetness impregnation.Using KIT-6 as support,cobalt-based catalysts with different cobalt loading have also been prepared. The catalysts were characterized using different techniques such as elemental analysis, N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (TPR), temperature programmed desorption (TPD) and oxygen titration. The catalytic properties for the Fischer-Tropsch synthesis reaction were evaluated in a fixed-bed reactor. The main results are as follows:
     1. The 2-D hexagonal structure of the original support was retained in the prepared amino-modified SBA-15 and catalyst. Compared to the unmodified cobalt catalyst, the modified catalyst exhibited higher dispersion and smaller cobalt cluster size. Some cobalt oxide crystallites entered the inside of the SBA-15 pore and then led to the catalyst could not be reduced easily.
     2. It was found that the interaction between cobalt and support was decreased and the reducibility of cobalt oxides species increased on the silylated Co/SBA-15 catalyst. With increasing trimethylchlorosilane (TMCS) loading, the surface coverage of trimethylsilyl group increased and the cobalt cluster size was larger. The higher activity of silylated 10Co/SBA-15 catalysts is ascribed to the higher reducibility. The increase in selectivity of C5+ hydrocarbons is attributed to the increase of cobalt cluster size. Improved catalysts with higher CO conversion and better C5+ hydrocarbon selectivity for FTS were obtained.
     3. KIT-6 molecular sieve is a good catalyst support because of its high hydrothermal stability. With increasing cobalt loading, catalyst surface area and pore volume decreased significantly about 50%, while average pore size remained. For Co/KIT-6 catalyst, the interaction between cobalt and support was very low. With increasing the cobalt loading, catalyst activity and C5+ selectivity for FTS increased due to the high degree of reduction as well as the large cobalt particles size.
引文
[1]加藤顺,小林博行,村田义夫著,金革等译,碳一化学工业生产技术.化学工业出版社,北京,1990, 467-523
    [2]吴春来,煤炭间接液化技术及其在中国的产业化前景.煤炭转化,2003, 26 (2): 17-24
    [3]廖汉湘,现代煤炭转化与煤化工新技术新工艺实用全书.安徽文化音像出版社,2004
    [4]陈建刚,相宏伟,李永旺等,费-托合成液体燃料关键技术研究进展.化工学报,2003, 54 (4):227-241
    [5] Anderson R B, Fischer-Tropsch Synthesis. New York: Academic Press, Inc., 1984
    [6]贺永德,现代煤化工技术手册.北京:化学工业出版社,2004: 997-1044
    [7] Espinoza R L, Steynberg A P , Jager B. Low temperature Fischer-Tropsch synthesis from a Sasol perspective. Applied Catalysis A: General, 1999, 186(1-2): 13-26
    [8] Sasol Company, South Africa, Sasol Annual Report 2004, http://www.Sasol.com/, 2004
    [9] Geerlings J J C, Wilson J H, Kramer G J. Fischer-Tropsch technology-from active site to commercial process, Applied Catalysis A: General, 1999, 186(1-2): 27-40
    [10] Krylova A J, Lapidus A L, Tsapkina M V. Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst composition, use of the catalysts for conducting such reactions, and the products of such reactions. United States Patent, 6313062, 2001-11-6
    [11] Arcuri K B, Agee K L, Agee M A. Structured Fischer-Tropsch catalyst system and method. United States Patent, 6797243, 2004-9-28
    [12] Jess A, Popp R, Hedden K. Fischer-Tropsch synthesis with nitrogen-rich syngas: fundamental and reactor design aspects. Applied Catalysis A: General, 1999, 186(1-2): 321-342
    [13] O'Rear D J. Conversion of syngas to distillate fuels. United States Patent, 6864398, 2005-3-8
    [14]周敬来,张志新,张碧江.煤基合成液体燃料的MFT工艺技术,燃料化学学报,第27卷增刊, 1999, 27(12): 58-64
    [15] Yang Y, Xiang H, Xu Y, et al. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2004, 266(2): 181-194
    [16] Yang Y, Xiang H, Tian L, et al. Structure and Fischer-Tropsch performance ofiron-manganese catalyst incorporated with SiO2. Applied Catalysis A: General, 2005, 284(1-2): 105-122
    [17] Zhang J, Chen J, Ren J, et al. Chemical treatment ofγ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2003, 243(1): 121-133
    [18] Zhang J, Chen J, Ren J, et al. Support effect of Co/Al2O3 catalysts for Fischer-Tropsch synthesis. Fuel, 2003, 82(5): 581-586
    [19]马文平,丁云杰,罗洪原,等.铁/活性炭催化剂上费-托合成反应产物分布的非Anderson-Schulz-Flory特性.催化学报, 2001, 22(3): 279-282
    [20]李强,沈师孔. Co-CeO2/SiO2催化剂上的费-托反应性能.催化学报, 2002, 23(6): 513-516
    [21] Tang Q, Wang Y, Zhang Q, et al. Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer-Tropsch synthesis. Catalysis Communications, 2003, 4(5): 253-258
    [22] Jager B, Espinoza R L. Advances in low temperature Fischer-Tropsch synthesis. Catalysis Today, 1995, 23(1): 17-28
    [23] Friedel R A, Anderson R B, Composition of synthetic liquid fuels. I. Product distribution and analysis of C5-C8 paraffin isomers from cobalt catalyst. Journal of the American Chemical Society, 1950, 72(3): 1212-1215
    [24] Anderson R B. Catalysts for the Fischer-Tropsch synthesis. in“Catalysis”, Emmett P.H. ed., New York : Van Nostrand-Rheinhold, 1956, vol. IV, 29-255
    [25] Madon R J, Reyes S C, Iglesia E. Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis. Journal of Physical Chemistry, 1991, 95(20): 7795-7804
    [26] Madon R J, Iglesia E. The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium. Journal of Catalysis, 1993, 139(2):576-590
    [27] O'Brien R J, Xu L, Spicer R L, et al. Activation Study of Precipitated Iron Fischer-Tropsch Catalysts. Energy & Fuels, 1996 10(4): 921-926
    [29]吴越.催化化学,上册,增补.北京科学出版社. 1998
    [30] Reuel R C, Bartholomew C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt. Journal of Catalysis, 1984, 85(1): 78-88
    [31] Halvorsen S, Vinje K, Lofthus S, et al. CO-Hydrogenation Using Co- catalysts onSurface Modified Sifica Support. Studies in Surface Science and Catalysis, 1991, 61: 281-287
    [32] Iglesia E. Design, Synthesis and Use of Cobalt-based Fischer-Tropsch SynthesisCatalysts. Applied Catalysis A: General, 1997, 161(1): 59-78
    [33] Geerlings J J C, Zonnevylle M C, De Groot C P M. The Fischer-Tropsch reaction on a cobalt (0001) single crystal. Surface Science. 1991, 241(3): 302-314
    [34] Li J L, Coville N J. The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer-Tropsch catalysts. Applied Catalysis A: General, 1999, 181(1): 201-208
    [35] Kraum M, Baerns M. Fischer-Tropsch synthesis: the influence of various cobalt compounds applied in the preparation of supported cobalt catalyst on their performance. Applied Catalysis A: General, 1999, 186(1-2): 189-200
    [36]马中义,杨成,董庆年,等.不同形态ZrO2负载Co催化剂上CO+H2吸附与反应行为研究.高等学校化学学报,2005, 26(3): 902-906
    [37] Enache D I, Magalie Roy-Auberger, Renaud R. Differences in the characteristics and catalytic properties of cobalt-based Fishcer-Tropsch catalysts supported on zirconia and alumina. Applied Catalysis A: General, 2004, 268(1-2): 51-60
    [38] Venter J J, Vannice M A. Olefin Selectivity Carbon-Supported K-Fe-Mn CO drogenation Catalysts: A kinetic, Calorimetric, Chemisorption, Infraved Mossbauer Spectroscopic Investigation. Catalysis Letters, 1990, 7(1-4): 219-240
    [39] Barrault J, Guilleminot A, Achard J C, Paul-Boncour V A. Percheron-Guegan. Hydrogenation of carbon monoxide on carbon-supported cobalt rare earth catalysts. Applied Catalysis A: General, 1986, 21(2): 307-312
    [40] Guerrero-Ruiz A, Sepulveda-Escribano A, Rodriguez-Ramos I. Carbon monoxide drogenation over carbon supported cobalt or ruthenium catalysts. Promoting effects of magnesium, vanadium and cerium oxides. Applied Catalysis A: General, 1994, 120(1):71-83
    [41] Ma W P, Ding Y J, Lin L W. Fischer-Tropsch Synthesis over Activated-Carbon-Supported Cobalt Catalysts, Effect of Co Loading and Promoter On Catalyst Performance. Industrial Engineering Chemistry Research, 2004, 43(10): 2391-2398
    [42] Bezemer L G, Bitter J L, Kuipers H P C E, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. Journal of the American Chemical Society, 2006, 128(1-2): 3956-3964
    [43] Yu Z X, Borgφ, Chen D, et al. Carbon nanofiber supported cobalt catalysts for Fischer-Tropsch synthesis with high activity and selectivity. Catalysis Letters, 2006, 109(1-2): 43-47
    [44] Bezemer G L, Radstake P B, Koot V, et al. Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneousdeposition-precipitation. Journal of Catalysis, 2006, 237(2): 291-302
    [45] Bessel S. Support effects in cobalt-based Fischer-Tropsch catalysts. Applied Catalysis A: General, 1993, 96(2): 253-268
    [46] Iwasaki T, Reinikainen M, Onodera Y, et al. Use of Silicate Crystallite Mesoporous Material as Catalyst Supportfor Fischer-Tropsch Reaction. Applied Surface Science, 1998, 130-132(1-4): 845-850
    [47] Yin D H, Li W H, Yang W S, et al. Mesoporous HMS Molecular Sieves Supported Cobalt Catalysts for Fischer-Tropsch Synthesis. Microporous and Mesoporous Materials, 2001, 47(1):15-24
    [48] Wei M D, Okabe K, Arakawa H, et al. Fischer-Tropsch Synthesis over Cobalt Catalysts Supported on Mesoporous Aluminosilicate. New Journal of Chemistry. 2002, 26: 20-23
    [49]杨文书,高海燕,相宏伟,等.新型钴基介孔催化剂合成性能和烃分布研究.高等学校化学学报,2002, 23(9):1748-1752
    [50] Khodakov A Y, Griboval-Constant A, Bechara R, et al. Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas. Journal of Catalysis, 2002, 206(2):230-241
    [51] Zhang Y, Hanayama K, Tsubaki N. The surface modification effects of silica support by organic solvents for Fischer-Tropsch synthesis catalysts. Catalysis Communication, 2006, 7(5): 251-254
    [52] Ming H, Baker B G. Characterization of cobalt Fischer-Tropsch catalysts I. Unpromoted cobalt-silica gel catalysts. Applied Catalysis, 1995, 123(1-2):23-36
    [53] Ho S W, Su Y S. Effects of ethanol impregnation on the properties of silica-supported cobalt catalysts. Journal of Catalysis, 1997, 168(1): 51-59
    [54] Iglesia E, Soled S L, Fiato R A, et al. Bimetallic synergy in cobalt ruthenium Fischer-Tropsch synthesis catalysts. Journal of Catalysis, 1993, 143(2): 345-368
    [55] Hench L L, West J K. The sol-gel process. Chemical Reviews, 1990, 90(1): 33-72
    [56] Okabe K, Li X H, Matsuzaki T, et al. Novel activation of Co/SiO2 catalysts prepared by alkoxidc method for Fischer-Tropsch synthesis. Preprint ACS Divi Petroleum Chem, 1999, 44 (1): 93-96
    [57] Ernst B, Libs S, Chaumette P, et al. Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts. Applied Catalysis A: General, 1999, 186(1-2): 145-168
    [58] Kresge C T, Leonwicz M Z, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710-712
    [59] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 1992,114: 10834-10843
    [60] Monnier A, Schüth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261: 1299-1303
    [61] Huo Q, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science, 1995, 268: 1324-1327
    [62] Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactantand biomimetic assemblies, Science, 1995, 267: 1138-1143
    [63] Rhijn V W M, Vos D D E, Sels B F, et al. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communication, 1998, 317-318
    [64] Corma A, Domine M, Gaona JA, et al. Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41. Chemical Communication, 1998, 2211-2212
    [65] Tatsumi T, Koyano K A, Igarashi N. Remarkable activity enhancement by trimethylsilylation in oxidation of alkenes and alkanes with H2O2 catalyzed by titanium-containing mesoporous molecular sieves. Chemical Communication, 1998, 325-326
    [66] Imperor-Clerc M, Cambon H, Renzo F, et al. Microporosity and connections between pores in SBA-15 mesostnictmed silicas as limction of the temperahire of synthesis. New Journal of Chemistry, 2003, 27: 73-79
    [67] Zhao D, Feng J, Huo Q, et al. Triblock Copolymer Synthesis of Mesopororous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998, 279(23): 548-552
    [68] Schmidt-Winkel P, Lukens Jr W W, Zhao D, et al. Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. Journal of the American Chemistry Society, 1999, 121(1): 254-255
    [69] Han Y, Kim J M, Stucky G D. Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chemistry of Material, 2000, 12(8): 2068-2069
    [70] Leon R, Margolese D, Stucky G, et al. Nanocrystalline Ge filaments in the pores of a mesosilicate, Physical Review B, 1995, 52(4): 2285-2288
    [71] Kageyama K, Tamazawa J, Aida T. Extrusion Polymerization: Catalyzed Synthesis of Crystalline Linear Polyethylene Nanofibers Within a Mesoporous Silica. Science, 1999, 285: 2113-2115
    [72] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 1992, 114(27): 10834-10843
    [73] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communication, 2003, 2136-2137
    [74] Jermy B R, Cho Dal-Rae, Bineesh K V, et al. Direct synthesis of vanadium incorporated three-dimensional KIT-6: A systematic study in the oxidation of cyclohexane. Microporous and Mesoporous Materials, 2008, 115(3): 281-292
    [75] Liu Z C, Shen W H, Bu W B, et al. Low-temperature formation of nanocrystallineβ-SiC with high surface area and mesoporosity via reaction of mesoporous carbon and silicon powder. Microporous and Mesoporous Materials, 2005, 82(1-2): 137-145
    [1] Corma A, Domine M, Gaona J A, et al. Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41. Chemical Communication, 1998, 2211-2212
    [2] Cullity B D. Elements of X-Ray Diffraction. Addision-Wesley, London, 1978
    [3] Schanke D, Vada S, Blekkan E A, et al. Study of Pt-promoted cobalt CO hydrogenation catalysts. Journal of Catalysis, 1995, 156(1): 85-95
    [4] Reuel R C, Bartholomew C H. The stoichiometries of H2 and CO adsorptions on Cobalt: effects of support and preparation. Journal of Catalysis, 1984, 85(1): 63-77
    [5] Jacobs G, Li J L, Davis B H, et al. Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Applied Catalysis A: General, 2002, 233(1-2): 263-281
    [1] Dry M E. The Fischer-Tropsch process: 1950-2000. Catalysis Today, 2002, 71(3-4): 227-241
    [2] Anderson R B. Fischer-Tropsch Synthesis. New York: Academic Press, Inc, 1984
    [3] Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Synthesis of Mesopororous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998, 279(23): 548-552
    [4] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic Triblock and Star Diblock Copolymer and ligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 1998, 120(24): 6024-6036
    [5] Zhang L X, Shi J L, Yu J, et al. A New In-Situ Reduction Route for the Synthesis of Pt Nanocluster in the Channels of Mesoprous Silica SBA-15. Advanced Materlals, 2002, 14(20): 1150-1153
    [6] Shan Y, Gao L, Zheng Sh. A facile approach to load CdSe nanocrystallites intomesoporous SBA-15. Materials Chemistry and Physics, 2004, 88(1): 192-196
    [7] Sun J, Ma D, Zhang H, et al. Toward Monodispersed Silver Nanoparticles with Unusual Thermal Stability. Journal of the American Chemical Society, 2006, 128(49): 15756-15764
    [8] Tsang S C, Harris P J F, Green M L H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 1993, 362: 520-522
    [9] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372:159-162
    [10] Zhang J, Zou H, Qing Q, et al. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107(16): 3712-3718
    [11] Ovejero G, Sotelo J L, Romero M D, et al. Multiwalled Carbon Nanotubes for Liquid-Phase Oxidation. Functionalization, Characterization, and Catalytic Activity. Industrial Engineering Chemistry Research. 2006, 45(7): 2206-2212
    [12] Reynhardt J P K, Yang Y, Sayari A, et al. Periodic Mesoporous Silica-Supported Recyclable Rhodium-Complexed Dendrimer Catalysts. Chemistry of Materials, 2004, 16(21): 4095-4102
    [13] Yokoi T, Yoshitake H, Tatsumi T. Synthesis of Anionic-Surfactant-Templated Mesoporous Silica Using Organoalkoxysilane-Containing Amino Groups, Chemistry of Materials, 2003, 15(24): 4536-4538
    [14] Innocenzi P, Brusatin G, Licoccia S, et al. Babonneau, Controlling the Thermal Polymerization Process of Hybrid Organic-Inorganic Films Synthesized from 3-Methacryloxypropyltrimethoxysilane and 3-Aminopropyltriethoxysilane, Chemistry of Materials, 2003, 15(25):4790-4797
    [17] Feller A, Claeys M, van Steen E. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts. Journal of Catalysis, 1999, 185(1):120-130
    [18] Li J L, Coville N J. The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer–Tropsch catalysts. Applied Catalysis, 1999, 181(1):201-208
    [19] Iglesia E, Soled S L, Baumgartner J E, et al. Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis. Journal of Catalysis, 1995, 153(1):108-122
    [1] Schulz H. Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis A: General, 1999, 186(1-2): 3-12
    [2] Dry M E. The Fischer-Tropsch process: 1950-2000. Catalysis Today, 2002, 71(3-4): 227-241
    [3] Panpranot J, Goodwin Jr J G, Sayari A. CO Hydrogenation on Ru-Promoted Co/MCM-41 Catalysts. Journal of Catalysis, 2002, 211(2): 530-539
    [4] Iglesia E, Soled S L, Fiato R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. Journal of Catalysis, 1992, 137(1): 212-224
    [5] Li J L, Zhan X D, Zhang Y Q, et al. Fischer-Tropsch synthesis: effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts. Applied Catalysis A: General, 2002, 228(1-2): 203-212
    [6] Rygh L E S, Nielsen C J. Infrared Study of CO Adsorbed on a Co/Re/γAl2O3-Based Fischer-Tropsch Catalyst. Journal of Catalysis, 2000, 194(2): 401-409
    [7] Kogelbauer A, Goodwin Jr J G, Oukaci R. Ruthenium Promotion of Co/Al2O3 Fischer-Tropsch Catalysts. Journal of Catalysis, 1996, 160(1): 125-133
    [8] Andreas F, Michael C, Steen E. Cobalt Cluster Effects in Zirconium Promoted Co/SiO2 Fischer-Tropsch Catalysts. Journal of Catalysis, 1999, 185(1): 120-130
    [9] Kim D J, Dunn B C, Cole P, et al. Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst. Chemical Communination, 2005, 1462-1464
    [10] Khodakov A Y, Griboval-Constant A, Bechara R, et al. Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas. Journal of Catalysis, 2002, 206(2): 230-241
    [11] Jacobs G, Das T K, Zhang Y Q, et al. Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Applied Catalysis A: General, 2002, 233(1-2): 263-281
    [12] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic Triblock and Star Diblock Copolymer and ligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 1998, 120(24): 6024-6036
    [13] Kubota Y, Ikeya H, Sugi Y, et al. Organic-inorganic hybrid catalysts based on ordered porous structures for Michael reaction. Journal of Molecular Catalysis A: Chemical, 2006, 249(1-2): 181-190
    [14] Zhang Y, Hanayama K, Tsubaki N. The surface modification effects of silica support by organic solvents for Fischer-Tropsch synthesis catalysts. Catalysis Communications, 2006, 7(5): 251-254
    [15] Martínez A, Prieto G. Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles. Journal of Catalysis, 2007, 245(2): 470-476
    [16] Zhang L X, Shi J L, Yu J, et al. A New In-Situ Reduction Route for the Synthesis of Pt Nanocluster in the Channels of Mesoprous Silica SBA-15. Advanced Materlals, 2002, 14(20): 1150-1153
    [17] Corma A, Domine M, Gaona JA, et al. Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41. Chemical Communication, 1998, 2211-2212
    [18] Xiong H F, Zhang Y H, Liew K Y, et al. Fischer-Tropsch synthesis: The role of pore size for Co/SBA-15 catalysts. Journal of Molecular Catalysis A: Chemical, 2008, 295(1-2): 68-76
    [19] Martínez A, López C, Márquez F, et al. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, 2003, 220(2): 486-499
    [20] Belambe A R, Oukaci R, Goodwin J G Jr. Effect of Pretreatment on the Activity of a Ru-Promoted Co/Al2O3Fischer-Tropsch Catalyst. Journal of Catalysis, 1997, 166(1): 8-15
    [21] Borg ?, Eri S, Blekkan E A, et al al.Fischer-Tropsch synthesis overγ-alumina-supported cobalt catalysts: Effect of support variables. Journal of Catalysis, 2007, 248(1): 89-100
    [1] Zennaro R, Tagliabue M, Bartholomew C H. Kinetics of Fischer-Tropsch synthesis on titania-supported cobalt. Catalysis Today, 2000, 58(4): 309-319
    [2] Fleisch T H, Sills R A, Briscoe M D. 2002--Emergence of the Gas-to-Liquids Industry: a Review of Global GTL Developments. Journal of Natural Gas Chemistry, 2002, 11(1): 1-14
    [3] Iglesia E, Soled S L, Fiato R A. Fischer-Tropsch synthesis on cobalt and Ruthenium. Metal dispersion and support effects on reaction rate and selectivity. Journal of Catalysis, 1992, 137(1): 212-224
    [4] Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General, 1997, 161(1-2): 59-78
    [5] Panpranot J, Goodwing Jr J G, Sayari A, Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catalysis Today, 2002, 77(3): 269-284
    [6] Li H L, Wang S G, Ling F X, et at. Studies on MCM-48 supported cobalt catalyst for Fischer–Tropsch synthesis. Journal of Molecular Catalysis A: Chemical, 2006, 244(1-2): 33-40
    [7] Wang Y, Noguchi M, Takahashi Y, et al. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts. Catalysis Today, 2001,68(1-3): 3-9
    [8] Yin D H, Li W H, Yang W S, et al. Mesoporous HMS Molecular Sieves Supported Cobalt Catalysts for Fischer-Tropsch Synthesis. Microporous and Mesoporous Materials, 2001, 47(1): 15-24
    [9] Concepción P, López C, Martínez A, et al. Characterization and catalyticproperties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer–Tropsch synthesis reaction. Journal of Catalysis, 2004, 228(2): 321-332
    [10] Griboval-Constant A, Khodakov A Y, Bechara R, et al. Support Mesoporosity: a Tool for Better Control of Catalytic Behavior of Cobalt Supported Fischer Tropsch Catalysts. Studies in Surface Science and Catalysis, 2002, 144: 609-616
    [11] Khodakov A Y, Bechara R, Griboval-Constant A. Structure and catalytic performance of cobalt Fischer Tropsch catalysts supported by periodic mesoporous silicas. Studies in Surface Science and Catalysis, 2002, 142: 1133-1140.
    [12] Martínez A, López C, Márquez F, et al. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, 2003, 220(2): 486-499
    [13] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communication, 2003, 2136-2137
    [14] Kim Tae-Wan, Kleitz F, Paul B, et al. MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer-Butanol-Water System. Journal of the American Chemical Society, 2005, 127: 7601-7610
    [15] Jermy B R, Cho Dal-Rae, Bineesh K V, et al. Direct synthesis of vanadium incorporated three-dimensional KIT-6: A systematic study in the oxidation of cyclohexane. Microporous and Mesoporous Materials, 2008, 115(1-3): 281-292
    [16] Vinu A, Anandan S, Anand C, et al. Fabrication of partially graphitic three-dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Microporous and Mesoporous Materials, 2008, 109(1-3): 398-404
    [17] Soni K, Rana B S, Sinha A K, et al. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Applied Catalysis B: Environmen, (2009), doi:10.1016/j.apcatb.2009.02.010
    [18] Tsoncheva T, Ivanova L, Rosenholm J, et al. Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Applied CatalysisB: Environmen, (2009), doi:10.1016/j.apcatb.2008.12.015
    [19] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 1997, 97(6): 2373-2420
    [20] Kawi S, Shen S C. Effects of structural and non-structural Al species on the stability of MCM-41 materials in boiling water. Materials Letters, 2000, 42(1-2): 108-112
    [21] Stors?ter S, Totdal B, Walmsley J C, et al. Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts. Journal of Catalysis, 2005, 236(1): 139-152
    [22] Li P, Liu J, Nag N, et al. In situ synthesis and characterization of Ru promoted Co/Al2O3 Fischer-Tropsch catalysts. Applied Catalysis A: General, 2006, 307(2): 212-221
    [23] Wang W J, Chen Y W. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts. Applied Catalysis A: General, 1991, 77(2): 223-233
    [24] Riva R, Miessner H, Vitali R, et al. Metal-support interaction in Co/SiO2 and Co/TiO2. Applied Catalysis A: General, 2000, 196(1): 111-123
    [25] Rameswaran M, Bartholomew C H. Effects of preparation, dispersion, and extent of reduction on activity/selectivity properties of iron/alumina CO hydrogenation catalysts. Journal of Catalysis, 1988, 117(1): 218-236
    [26] Sen B, Falconer J L. Detection of activated adsorption sites and a CO---H surface complex on Ru/Al2O3.Journal of Catalysis, 1988, 113(2): 444-452
    [27] Lee J H, Lee D K, Ihm S K. Independent effect of particle size and reduction extent on CO hydrogenation over alumina-supported cobalt catalyst. Journal of Catalysis, 1988, 113(2): 544-548
    [28] Xiong H F, Zhang Y H, Liew K Y, et al. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer–Tropsch synthesis, Journal of Molecular Catalysis A: Chemical. 2005, 231(1-2): 145-151
    [29] Khodakov A Y, Griboval-Constant A, Bechara R, et al. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas, Journal of Catalysis, 2002, 206(2): 230-241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700