TS-1整体式催化剂的制备及在环己酮氨肟化反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体式催化剂与传统颗粒状催化剂相比具有床层压降低、传质效率高、放大效应小等特点,不仅能提高催化效率和反应选择性,还有助于实现低能耗、零排放和安全操作的工艺过程。TS-1钛硅分子筛是具有MFI拓扑结构的一种催化新材料,在与H2O2组成的体系中表现出优异的温和与清洁催化氧化性能,引起了国内外研究者的广泛关注。但由于TS-1的原粉的粒径小,且生产成本高,当使用浆态床反应器时,催化剂的分离与回收难度大,不可避免地造成催化剂损失。本文运用水热合成技术在酸处理过的堇青石蜂窝陶瓷载体上制备了TS-1分子筛整体式催化剂,旨在解决分子筛的分离与回收问题。
     研究工作包括三部分:一是对整体式载体的表面处理;二是在载体表面生长TS-1分子筛;三是对整体式催化剂进行活性评价。
     载体堇青石表面预处理的结果表明,盐酸处理过的堇青石比硝酸处理的堇青石比表面积大2倍左右。比较TS-1催化剂的负载情况,盐酸处理过的堇青石载体更有利于分子筛晶体的生长。
     TS-1的水热合成中发现,当采用混合模板剂合成TS-1催化剂时,获得的催化剂晶体颗粒为微米级颗粒。当混合模板剂中四丁基氢氧化铵(TBAOH)和四乙基氢氧化铵(TEAOH)的比例发生变化时,会影响TS-1晶体的纯度。若产生TS-1和TS-2混和晶体,则XRD谱图的2θ=45.5°左右就会出现三个峰。通过对堇青石上的分子筛涂层进行FT-IR分析,发现1050 cm-1处的肩峰是由分子筛骨架外的Si-O键振动所引起的,而与分子筛的晶粒大小和晶体形状关系不大。
     TG-DTA的结果显示,催化剂焙烧去除模板剂的温度控制在550~800℃之间都是可行的。实践中,对TS-1粉末催化剂的焙烧均采用550℃的温度,而整体式催化剂的焙烧温度则选择为600℃。TS-1分子筛焙烧前后的XRD图表明焙烧对低角度衍射峰的影响较大,使部分衍射峰发生了重叠和裂分,但是对高角度的衍射峰几乎没有影响。根据相对结晶度的计算结果,焙烧后钛硅分子筛的结晶度变大,焙烧的方式能使分子筛晶体结构趋于完美,使其具有良好的稳定性。
     以四丙基氢氧化铵(TPAOH)为单一模板剂合成TS-1催化剂时,随着钛含量增加,分子筛的颗粒从圆柱形逐渐变为椭圆形;而适当增加模板剂的用量或水硅比,都会有利于分子筛晶体的成型。晶化温度是TS-1分子筛膜合成过程中的关键因素,当温度较低时堇青石上会出现分子筛未晶化或晶化不完全的情况,170℃的温度比较适合分子筛的晶化。为了改进整体式催化剂上密集的分子筛膜由于重力的影响呈现厚度分布不均匀的状况,采用水热合成和分步老化的方法,通过分子自组装行为,在堇青石载体上制备了树枝状的分子筛膜,膜内晶体颗粒均匀地保持在200nm左右,实现了分子筛膜在载体上的均匀连续分布,焙烧过程没有使该分子筛膜形态产生变化。
     催化剂评价在自行设计的固定床整体式催化剂反应器中进行。首先对TS-1催化剂作了酸活化,活化后的分子筛对环己酮的转化率有所降低,但是对环己酮肟的选择性增加。比较不同制备方法下分子筛的催化活性后发现,用混合模板剂制备的催化剂活性低于单一模板剂制备的催化剂,原因在于前者的分子筛粒径较大。将树枝状膜和密集膜的整体式催化剂与粉末催化剂进行了活性比较,虽然密集膜整体催化剂的活性低于粉末催化剂,但无需催化剂分离;而树枝状膜因利于反应物在整体催化剂上的扩散,进而提高了催化剂的利用率,其活性达到与粉末催化剂相当的水平。
Monolithic catalyst possesses distinguish advantages over traditional particle catalysts in small pressure-drop, low mass-transfer resistances, unremarkable scale-up effect and so on. Not only improving the efficiency and selectivity of catalytic reaction, it is also contributed to the achievement of low energy, zero emission and safe operation process.As an incoming catalyst with MFI topological structure, Titanium silicalite-1 molecular sieve (TS-1), has been drawn more attention of domestic and abroad researchers because of its excellent catalytic-oxidation performance in H2O2/TS-1 system with mild reaction conditions. Since using powder TS-1 in slurry reactor, it is difficult to separate such a small crystal from liquid, the unavoidable loss of expensive catalyst increases the operation cost. In this paper the TS-1 molecular sieve was synthesized on honeycomb-shaped cordierites pretreated by acid liquid with hydrothermal method, the aim was at solving the problem mentioned.
     My research was focus on pretreatment of cordierite support, growth of TS-1 on cordierite and evaluation of catalytic activity in cyclohexanone ammoximation.
     First of all, the cordierite supports were pretreated by acid solution. The results showed that the specific surface area of support pretreated with hydrochloride acid was larger 2 times than that pretreated by nitric acid, and the former was superior in planting the TS-1 molecular sieve on cordierite. Then the mixed templates were used to synthesize TS-1 monolithic catalysts, crystal size of molecular sieves was larger in micron scale. The mole ratio of tetrabutylammonium hydroxide (TBAOH) to tetraethylammonium hydroxide (TEAOH) in mixed templates affected the purity of TS-1 crystal obviously. When mixed TS-1 and TS-2 crystals were formed, a triplet-peak would appear at 2θ=45.5°in XRD patterns. Based on the FT-IR analysis of molecular sieve film on the cordierite supports, a shoulder peak at 1050cm-1 should be the vibration of out framework Si-O, and not strong interrelated with the size and shape of TS-1 crystal.
     After investigating the calcination process of catalyst with TG-DTA, the temperature range, 550 ~ 800℃is suitable to removal of the templates. Actual calcination temperatures of TS-1 powder and monolithic catalyst were chosen as 550℃and 600℃respectively. Comparing the XRD patterns of TS-1 catalysts before and after calcination, the low angle diffraction peaks were evidently changed to partial overlap and split, however, almost no impact was observed in higher angle. According to the calculation TS-1 relative crystallinity became larger after calcination, which meant that the calcination could lead to perfect structure and good stability of crystal.
     When tetrapropylammonium hydroxide (TPAOH) was used as template, TS-1 crystal shape gradually changed from cylinder to ellipse with the increase of Ti content, and increase in the amount of template or H_2O/SiO_2 ratio would benefit the formation of TS-1 crystal. Crystallization temperature was a key factor for synthesis of TS-1 monolithic catalysts, proper one is 170℃, below it the precursor had not been completely crystallized on cordierite supports. The dense film of TS-1 catalysts on support was uneven because of the effects of gravity. When the TS-1 catalyst was crystallized step by step on a honeycomb cordierite surface by using hydrothermal method, a branch-like TS-1 film was formed evenly, which was self-assembly of crystalline rather than oriented grown of crystalline.
     A monolithic reactor self designed was used to test the catalytic performance of TS-1 monolithic catalysts in the cyclohexanone ammoximation reaction. After TS-1 catalyst was activated by acid, the cyclohexanone conversion decreased, but oxime selectivity increased. Comparing the activity of TS-1 catalysts synthesized by different templates, the TS-1 catalyst by single template had higher activity than that by mixed templates, which maybe caused by different particle size. Compared to TS-1 powder, the reuse of monolithic catalysts could be convenient although its activity was somewhat low. When the branch-like TS-1 film on supports, dense film on supports and TS-1 powder were used to catalyze cyclohexanone ammoximation reaction, the branch-like TS-1 film was easy to diffuse reactants, thus improve the utilization of monolithic catalyst, and finally made catalytic activity almost as the same as the TS-1 powder.
引文
[1] Kapteijn F., Nijhuis T. A., Heiszwolf J. J., Moulijn J. A., New non-traditional multiphase catalytic reactors based on monolithic structures, Catalysis Today, 2001, 66: 133~144
    [2] Vesna Toma?i? , Franjo Jovi?, State-of-the-art in the monolithic catalysts/reactors, Applied Catalysis A: General, 2006, 311: 112~121
    [3]邵潜,龙军,贺振富等,规整结构催化剂及反应器,化学工业出版社,2005年8月第一版
    [4] Andrzej Cybulski, Jacob A Mouljn, Monoliths in heterogeneous catalysis, Catalysis Reviews -Science and Engineering, 1994, 36(2):179~270
    [5] Tronconi E, Groppi G, Boger T, Heibel A, Monolithic catalysts with‘high conductivity’honeycomb supports for gas/solid exothermic reactions: characterization of the heat-transfer properties, Chemical Engineering Science, 2004, 59 (22-23): 4941~4949
    [6] Cimino S., Landi G., Lisi L., Russo G., Rh–La (Mn,Co)O3 monolithic catalysts for the combustion of methane under fuel-rich conditions, Catalysis Today, 2006, 117 (4): 454~461
    [7] Michela V., Gianpiero G., Cinzia C., et al., the deposition ofγ-A1203 layers on ceramic and metallic supports for the preparation of structured catalysts, Catalysis Today, 2001,69: 307~314
    [8] Vergunst Th., Kapteijin F., Moulijn J. A., preparation of carbon-coated monolithic supports, Carbon, 2002, 40: 1891~1902
    [9]高平,崔芳,何春燕等,汽车尾气净化用钯催化剂的制备及活性考察,分子催化,2004,18(3):203~207
    [10] Barbara Kucharczyk, W odzimierz Tylus, effect of Pd or Ag additive on the activity and stability of monolithic LaCoO3 perovskites for catalytic combustion of methane, Catalysis Today, 2004, 90(1-2): 121~126
    [11] Avila P., Bahamonde A., Blanco J., et al., Gas-phase photo-assisted mineralizea -tion of volatile organic compounds by monolithic titania catalysts, Applied Catalysis B: Environmental, 1998, 17: 75~88
    [12]郭昌文,戴维林,曹勇,W-SBA-15的原位合成及其在环戊烯氧化反应中的催化性能研究,化学学报, 2003, 61(9): 1496~1499
    [13] Kim W.J., Kim T.J., Ahn W.S., Synthesis, characterization and catalytic properties of TS-1 monoliths, Catalysis Letters, 2003, 91(1-2): 123~127
    [14] Basaldella E.I., Kikot A., Quincoces C.E., Preparation of supported Cu-ZSM-5 zeolite films for DeNOx reaction, Materials Letters, 2001, 51: 289~294
    [15] Drzej C., Jacob A M., Chemical Industries (V71). Marcel Dekker Inc., 1998,15
    [16] Pio F., Daniele B., Lorenzo S., preparation and characterization of extruded monolithic ceramic catalysts, Catalysis Today, 1998, 41: 87~94
    [17] Shan Z., Kooten W. E. J. V., Oudshoorn O. L., Jansen J. C., et al., Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis, Microporous and Mesoporous Materials, 2000, 34: 81~91
    [18] Pedro A., Mario M., Eduardo E. Mi?o,Monolithic reactors for environmental applications A review on preparation technologies, Chemical Engineering Journal, 2005, 109: 11~36
    [19] Nijhuis T. A., Kreutzer M. T., Romijn A. C. J., Kapteijn F., Moulijn J. A.,Monolithic catalysts as efficient three-phase reactors, Chemical Engineering Science, 2001, 56: 823~829
    [20] Yin F. X., Ji S. F., Chen B. H., Zhou Z. L., et al., Catalytic combustion of methane over Ce1-xLaxO2-x/2/Al2O3/FeCrAl catalysts, Applied Catalysis A: General, 2006, 310: 164~173
    [21] Isupova L. A., Alikina G. M., Snegurenko O. I., Sadykov V. A, et al., Monolith honeycomb mixed oxide catalysts for methane oxidation, Applied Catalysis B: Environmental, 1999, 21 (3): 171~181
    [22] Zamaro J. M., Ulla M. A., Miro E. E,. Improvement in the catalytic performance of In-mordenite through preferential growth on metallic monoliths, Applied Catalysis A: General, 2006, 308: 161~171
    [23] Reszka K., Rakoczy J., Zurek Z., Czyzniewski A., et al., Catalytic properties of Al2O3 deposited by ion sputtering using DC and RF sources, Vacuum, 2005, 78 (2-4): 149~155
    [24] Jung K.T., Shul Y.G., A new method for the synthesis of TS-1 monolithic zeolite, Microporous and Mesoporous Materials, 1998, 21: 281~288
    [25] Lachman Irwin M, Monolithic catalyst systems, in alumina chemicals, Westerville: The America Ceramic Society Inc., 1990, 283~288
    [26] Keith C., Kenah P. B. D., A Catalyst for oxidation of auotomobile and industrial fumer, US 3441381
    [27]关乃佳,单学蕾,曹翔等, Cu-ZSM-5/堇青石整体式催化剂NO的吸附态及分解反应机理,催化学报, 2001, 22(3): 245~249
    [28]单学蕾,关乃佳,曹翔等,不同硅铝比的Cu-ZSM-5/堇青石催化剂的NO分解反应性能,催化学报, 2001, 22(3): 242~244
    [29]余立挺,张益群,马建新等,金属载体上原位合成ZSM-5分子筛,华东理工大学学报, 2003, 29(5): 500~503
    [30] Cybulski A., Moulijn J.A., Structure catalysts and reactors, New York: Marcel Dekker, 1998
    [31] Schneider R., Kiessling D., Cordierite monolithic supported perovskite-type -catalysts for the total oxidation of chlorinated, Applied Catalysis B, 2000, 28(3): 187~195
    [32] Anchez B., Cardona A. I., Romero M., et al, Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts, Catalysis Today, 1999, 54(3): 369~377
    [33] Cardona A. I., Candal R., Sanchez B., et al., TiO2 on magnesium silicate monolith:effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons, Energy, 2004, 29(6): 845~852
    [34]华金铭,郑起,林性怡等,整体式高温水煤气变换催化剂的初步研制,工业催化, 2003, 11(3): 16~20
    [35] Deugd R. M., Kapteijn F., Moulijn J. A., Using monolithic catalysts for highly selective Fischer-Tropsch synthesis, Catalysis Today, 2003, 79-80(4): 495~501
    [36] Edvinsson A. R., Nystromm M., Siverstrom M., et al, Development of a monolithic-based process for H2O2 production : from idea to large-scale implementation, Catalysis Today, 2001, 69(3): 247~252
    [37] Nijhuisa T. A., Kretzer M. T., Romijn A. C. J., et al., Monolithic catalysts as efficient three-phase reactors, Chemical Engineering Science, 2001, 56(3): 823~829
    [38] Van S. A. M., Kuipers J. A. M., van Swoaij W. P R., A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst, Catalysis Today, 2001, 66(4): 427~436
    [39] Edwin G., Arjan B., Freek K., et al, Carbon coated monolithic catalysts in selective oxidation of cyclohexanone, Catalysis Today, 2001, 69(3): 283~290
    [40] Groppi G., Enrico T., Simulation of structure catalytic reactor with enhanced thermal conductivity for selective oxidation reaction, Catalysis Today, 2001, 69(1): 63~73
    [41]徐如人,庞文琴,于吉红等,分子筛与多孔材料化学,北京:科学出版社,2004,1~3
    [42] Bars J. Le., Dakka J., Sheldon R. A., Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves, Applied Catalysis A: General, 1996, 136: 69~80
    [43] Taramasso M., Perego G., Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, US Patent 4410501, 1983
    [44]沈本贤,肖卫国,赵基刚等,薄片状结构钛硅分子筛丙烯直接环氧化催化剂及制备方法,CN 1911516A
    [45]李永祥,吴巍,闵恩泽等,一种环己酮氨肟化方法,CN 1432560A
    [46] Kokotailo G. T., S. L. Lawton, D. H. Olson, W. M. Meier, Structure of synthetic zeolite ZSM-5, Nature, 1978, 272: 437~438.
    [47] Olson D. H., Kokotailo G. T., Lawton S. L., Meier W. M., Crystal structure and structure-related properties of ZSM-5, Journal of Physical Chemistry, 1981, 85: 2238~2243
    [48] Notari B.,Titanium silicalite: a new selective oxidation catalyst,Studies in Surface Science and Catalysis, 1990: 343~352
    [49] Notari B,Titanium silicalites,Catalysis Today, 1993, 18(2): 163~172
    [50] Boccuti M. R.,Rao K. M.,Zecchina A., et al, Spectroscopic characterization of silicalite and titanium-silicalite, Studies in surface science and catalysis, 1989, 48: 133~139
    [51] Zecchina A., Bordiga S., Lamberti C., et al., Structural characterization of Ti centres in Ti-silicalite and reaction mechanism in cyclohexanone ammoximation, Catalysis Today, 1996, 32: 97~106
    [52] Gleeson D., Sankar G., Catlow C. R. A., et al., The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts, Physical Chemistry Chemical Physics, 2000, 2(20): 4812~4817
    [53] Reddy J.S., Kumar R., Ratnasamy P., Titanium silicalite-2: synthesis, character -ization and catalytic properties, Applied Catalysis, 1990, 58 (1) : L1~L4
    [54] Reddy J. S., Sivasanker S., Ratnasamy P., Hydroxylation of phenol over ts-2, a titanium silicate molecular sieve, Journal of Molecular Catalysis, 1992, 71(3): 373~381
    [55]熊春荣,高焕新,陈庆龄等, TS-2钛硅分子筛合成原料和方法的改进,催化学报, 1999, 20 (4): 423~428
    [56] Van Der Pol A. J. H. P., van Hooff J. H. C., Parameters affecting the synthesis of titanium silicalite 1, Applied Catalysts A: General, 1992, 92(1): 93~111
    [57] Michiel T. K., Peng D., Johan J. E. A., Mass transfer characteristics of three-phase monolith reactor, Chemical Engineering Science, 2001, 56(21): 6015~6023
    [58] Kraushaar B., van Hoof J.H.C.A., A new method for the preparation of titanium silicalite(TS-1), Catalysis Letters, 1988, 1: 81~84
    [59] Bellussi G.., Fattore V., Isomorphous substitution in zeolites: a route for the preparation of novel catalysts, Studies in Surface Science and Catalysis, 1991, 69: 79~92
    [60]庞文琴,左丽文,裘式纶,气-固相置换法合成杂原子硅铝盐分子筛及性能研究,高等学校化学学报, 1988, 1(9): 4~8
    [61]陈国辉,夏清华,高滋,气固相类质同晶取代合成含钛沸石,催学报化, 1995, 16(6): 502~503
    [62]郭新闻,王桂茹,王祥生, Ti-Si Pentasil型杂原子分子筛的气固相同晶取代法制备及其羟基化性能I.母体Na+含量的影响,催化学报, 1994, 15(3): 309~313
    [63]郭新闻,王桂茹,王祥生, Ti-Si Pentasil型杂原子分子筛的气固相同晶取代法制备及其羟基化性能II.制备条件及母体对钛进入骨架的影响,催化学报, 1995, 16(4): 420~424
    [64]李明丰,郭新闻,于桂燕等,以de-ZSM-5为母体的钛硅沸石Ti-SiZSM-5合成,石油化工, 1998, 27(5): 319~323
    [65] Camblor M. A., Corna A., Matinez A., et al., Selective oxidation of organic compounds over the large beta-Ti zeolite, Studies in Surface Science and Catalysis, 1993, 78: 393~397
    [66] Zhang F. Z., Guo X. W., Wang X. S., et al., Preparation of titanium-containing mordenits by gas-solid reaction, Chinese Journal of Molecular Catalysis, 1999, 13(6): 461~463
    [67]李灿,高度隔离过渡金属催化剂及其催化烯烃环氧化反应,催化学报, 2001, 22(5): 479~483
    [68] Yang Q. H., Wang S. L., Lu J. Q., et al., Epoxidation of styrene on Si/Ti/SiO2 catalysts prepared by chemical grafting, Applied Catalysis A, 2000, 194-195: 507~514
    [69] Arafat A., Jansen J.C., Ebaid A.R., et al, Microwave preparation of zeolite Y and ZSM-5, Zeolites, 1993, 13(3): 162~165
    [70]赵杉林,张扬建,孙桂大等,钛硅沸石分子筛Ti-MCM-41的微波合成与表征,催化学报, 2000, 20(1): 93~95
    [71]孔令艳,李钢,王祥生,王云,TS-1/过氧化氢催化体系中有机硫化物的选择氧化,催化学报,2004,25(10):775~778
    [72]高焕新,卢文奎,陈庆龄,钛硅分子筛TS-1催化氯丙烯环氧化反应动力学研究,催化学报,2002, 23(1): 3~8
    [73]尹双凤,张法智,徐柏庆,钛硅分子筛催化气相环己酮肟贝克曼重排反应,催化学报,2002,23(4): 321-324
    [74] Takashi T., Nizamidin J., Ammoximation of cyclic ketones on TS-1 and amorphous SiO2-TiO2, Journal of Catalysis, 1996, 161: 570~576
    [75]马书启,李钢,王祥生等,钛硅分子筛催化1-丁烯环氧化研究,燃料化学学报,2005,33(4):509~512
    [76]李永祥,吴巍,闵恩泽等,一种环己酮氨肟化方法,CN, CN 1432560A
    [77] Prasad R., Seema V., Ammoxidation of cyclohexanone over Al2O3 supported titanium silicates, Journal of Chemical Technology and Biotechnology, 1997, 68(3): 310~314
    [78] Armor J. N.,Carlson E. J.,Process for ammoximation of cyclohexanone,US,US4281194, 1980
    [79] Eizo Y., Takeo K., Takashi M., et al., Verfahren zur herstellung von cyclo- hexanonoxim, DE, DE 1245371, 1966
    [80] Roffia P., Padovan M., eofanti G., et al., Catalytic process for the manufacture of oximes, US, US4794198, 1987
    [81] Petrini G., Cesana A., De Alberti G., et al., Deactivation phenomena on Ti-silicalite, Studies in Surface Science and Catalysis, 1991, 69: 761~767
    [82] Roffia P., Padovan M., Leofanti G., et al., Catalytic process for the manufacture of oximes, EP0267362, 1987
    [83] Tonti S., Roffia P., Gervasutti V., Multistep process for the liquid phase ammoximation of carbonyl compounds, EP0496385, 1992
    [84]王丽琴,王祥生,郭新闻等,合成TS-1分子筛的结晶动力学及催化性能研究,催化学报,2003,24(2):132~136
    [85]蔡俊修,陈笃慧,万惠霖,控制大气污染用的蜂窝陶瓷材料,硅酸盐学报, 1994 , 22 (5) : 458~462
    [86]陈立富,戴鹏,含氧化铋添加剂堇青石的制备,硅酸盐学报, 1994, 22 (5) : 497~501
    [87]沈美庆,王军,翁端等,堇青石蜂窝陶瓷载体涂层与热稳定性研究(Ⅰ)涂层的制备研究,中国稀土学报, 2003, 21: 30~34
    [88] Wang X. D., Zhang B. Q., Liu X. F., et al., Synthesis of b-oriented TS-1 films on chitosan-modified a-Al2O3 substrates, Advanced Materials, 2006, 18: 3261~3265
    [89] Lubomira T., Valentin V., Johan S., Silicalite-1 containing microspheres prepared using shape-directing macro-templates, Microporous and Mesoporous Materials, 2000, (35–36): 621~629
    [90]徐晓虹,尤德强,吴建锋等,累托石和滑石合成堇青石工艺的研究,硅酸盐学报, 2004, 32 (4): 481~484
    [91] Putnis A. Order modulated structures and the thermodynamics of cordierite reactions, Nature, 1980 , 287(9): 128~131
    [92] Bernd G., Ekhard S., and Rew P., Structural states of Mg cordieriteⅢ: infrared spectroscopy and the nature of the hexagonal2 modulated transition, Physics and Chemistry of Minerals, 1989, 16: 365~373.
    [93] Albert N. S., George W. G., Robert W. M., Michellene P. P., et al., the preparation of high-surface-area cordierite monolith by acid treatment, Applied Catalysis A: General, 1999, 182: 137~146
    [94]李钢,郭新闻,王祥生,水热法合成的钛硅分子筛催化性能研究,石油学报,1999,15 (5): 73~76
    [95] Li G., Guo X.W., Wang X.S., Zhao Q., et al., Synthesis of titanium silicalites in different template systems and their catalytic performance, Applied Catalysis A: General, 1999, 185: 11~18
    [96] Guan N. J., Han Y. S., Monolithic TS-1/cordierite catalyst synthesized by in-situ method, Chemistry Letters, 2000: 1084~1085
    [97] Prakash A. M. and Kevan L., Reducibility and adsorbate interactions of Ti in titanosilicate molecular sieve TS-1, Journal of Catalysis, 1998, 178: 586~597.
    [98] Sudhakar Reddy J. and Kumar R., Synthesis, characterization, and catalytic properties of a Titanium Silicalite TS-2 with MEL structure, Journal of catalysis, 1991, 130: 440~446
    [99]熊春荣,高焕新,陈庆龄等, TS-2钛硅分子筛合成原料和方法的改进,催化学报, 1999, 20(4): 423~428
    [100] Tuel A., Ben Taarit Y., and Naccache C., Characterization of TS-1 synthesized using mixtures of tetrabutyl ammonium hydroxides, Zeolites, 1993,13: 454~460
    [101] Dal P. L., Fornasari G., Monti T., TS-1catalytic mechanism in cyclohexanone oxime production, Catalysis Communication, 2002, 3: 369~375
    [102] Van der Pol A. J. H. P. and van Hooff J. H. C., Parameters affecting the synthesis of titanium silicalite-1, Applied Catalysis A: General, 1992, 92: 93~111
    [103] Thangaraj A., Eapen M. J., Sivasanker S., and Ratnasamy P., Studies on the synthesis of titanium silicalite TS-1, Zeolites, 1992,12: 943~950
    [104] Phonthammachai N., Krissanasaeranee M., Gulari E., Jamieson A. M. et al., Crystallization and catalytic activity of high titanium loaded TS-1 zeolite, Materials Chemistry and Physics, 2006, 97: 458~467
    [105] Wang Q. F., Wang L., Chen J. X., Wu Y. L., et al., Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene, Journal of Molecular Catalysis A: Chemical, 2007, 273 : 73~80
    [106] Henry P. F., Weller M. T., and Wilson C. C., Structural investigation of TS-1: determination of the true nonrandom titanium framework substitution and silicon vacancy distribution from powder neutron diffraction studies using isotopes, Journal of Physical Chemistry B, 2001, 105(31): 7452~7458.
    [107]程时标,金泽明,吴巍等, TS-1分子筛晶化过程的研究,催化学报, 1999, 20(2): 134~138
    [108]卜亿峰,MFI分子筛催化环己酮肟气相Beckmann重排反应的研究,[博士学位论文],天津:天津大学,2005
    [109]杨南如,无机非金属材料测试方法,武汉:武汉工业大学出版社,1994
    [110] Novak T. N., Gregor M., Iztok A., Venceslav K., et al., Framework cobalt and manganese in MeAPO-31(Me=Co, Mn) molecular sieves, Microporous and Mesoporous Materials, 2002, 55: 203~216.
    [111] Giuseppe B., Angela C., Mario G. C., et al., Reactions of titanium silicalite with protic molecules and hydrogen peroxide, Journal of Catalysis, 1992, 133: 220~230
    [112] Gontier S. and Tuel A., Synthesis of titanium silicalite-1 using amorphous SiO2 as silicon source, Zeolites, 1996, 16:184~195
    [113] Uguina M.A., Serrano D.P., Ovejero G.., Van.Grieken R., et al., Preparation of TS-1 by wetness imoregnation of amorphous SiO2-TiO2 solids: influence of the synthesis variable, Applied Catalysis A: General, 1995, 124: 391~408
    [114] Gleeson D., Sankar G., Catlow C. R. A., et al., The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts, Physical Chemistry Chemical Physics, 2000, 2(20):4812~4817
    [115]于晓东,卢冠忠,曹钢, TS-1分子筛的表面酸性,石油学报, 2003,19(1):28~33
    [116] Colin S. C., James O. F., Some observations on the preparation and properties of colloidal silicalites Part II: Preparation, characterisation and properties of colloidal silicalite-1, TS-1, silicalite-2 and TS-2, Microporous and Mesoporous Materials, 2004, 72 : 67~80
    [117] Thangaraj A., Kumar R., Mirajkar S.P., et al., synthesis and characterization of titanium-rich zeolites with MFI structure, Journal of Catalysis, 1991, 130:1~8
    [118] Thangaraj A, Sivasanker S. ,Ratnasamy P., Studied on the synthesis of titanium silicalite, Zeolites, 1992, 12(9): 943~950
    [119] Tuel A Ben Taarit Y., Influence of the nature of silicon and titanium alkoxides on the incorporation of titanium in TS-1, Applied Caltalysis A:General, 1994, 110(1): 137~151
    [120]余锡宾,吴虹,正硅酸乙酯的水解、缩合过程研究,无机材料学报,1996,11(4):703~707
    [121]杜新民,高航,Ti(OBu)4的水解聚合过程研究,特种玻璃,1990,7(3): 35~39
    [122] Louisa T. Y. A., Joseph L. H. C., Carlos T., et al., Preparation of supported Si-1, TS-1 and VS-1 membranes, Journal of Membrane Science, 2001, 183: 261~291
    [123]李钢,钛硅分子筛合成过程及其催化氧化性能研究,[博士学位论文],大连:大连理工大学,2003
    [124]林民,舒兴田,汪燮卿,钛硅分子筛晶化过程XRD和FT-IR的研究,石油炼制与化工,2003,34(10): 38~43
    [125] Gontier S., Tuel A., Synthesis of TS-1 using amorphous SiO2 as silicon source, Zeolites, 1996, 16(2-3): 184~195
    [126] Wang L Q., Wang X. S., Guo X. W., et a1., Quick synthesis of titanium silicate-1,催化学报, 2001, 22(6): 513~514
    [127] Serrano D. P., Ugnina M. A., Sanz R., et a1., Proceedings of the 12th International Zeolite Conference, vol III, Materials Research Society, 1999: 1917~1920
    [128] Jin H. L., Jiang N. Z., Park Sang-Eon, Nanoarchitectured synthesis of TS-1 depending on microwave power, Journal of Physics and Chemistry of Solids, 2007. Corrected Proof
    [129]赵杉林,张扬建,孙桂大,钛硅ZSM-5沸石分子筛的微波辐射法合成与表征,合成化学,1999,7(3):295~298
    [130] Choi K. M., Burri D. R., Han S. C., Park S. E., Microwave synthesis and characterization of stacked Al/TS-1, Solid State Phenom, 2007, 119: 167~174
    [131] Kraushar B.,Van t Hoff J. H. C., A new method for the preparation of titanium silicate-1, Catalysis Letters, 1988,1(1): 88~94
    [132] Wang Z. B., Yan Y. S., Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization, Microporous and Mesoporous Materials, 2000, 48: 229~238
    [133] Kim F., Kwan S., Akana J., et al., Langmuir-Blodgett Nanorod Assembly, Journal of the American Chemical Society, 2001, 123(18): 4360~4361
    [134] Hou Y. L., Kondoh H., Masatsugu S., et al., Inorganic nanocrystal self-assembly via the inclusion interaction of cyclodextrins: toward 3D spherical magnetite, Journal of Physical Chemistry B, 2005, 109(11): 4845~4852
    [135]金钦汉,黄卡玛,戴树珊,微波化学,北京:科学出版社,1999,169~180
    [136] Hwang Y. K., Chang J. S., Park S. E., Kim D. S., et al., Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications, Angewandte Chemie International Edition, 2005, 44: 556~560
    [137] Lee Y. J., Lee J. S., Park Y. S., Yoon K. B., Synthesis of large monolithic zeolite foams with variable macropore architectures, Advanced Materials, 2001, 13: 1259~1263
    [138] Zhong Z. X., Xing W. H., Liu X., Jin W. Q., et al., Fouling and regeneration of ceramic membranes used in recovering titanium silicalite-1 catalysts, Journal of Membrane Science, 2007, 301: 67~75.
    [139] Wang L., Zhou Y., Mi Z. T., Epoxidation of allyl chloride and hydrogen peroxide over titanium silicalite-1 film on SiO2 pellet support, Journal of Chemical Technology and Biotechnology, 2007, 82: 414~420
    [140] Dong J. H., Lin Y. S., Michael Z. C. H., Peascoe R. A., et al., Template -removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes, Microporous and Mesoporous Materials, 2000, 34:241~253. [ 1 41] Phonthammachai N., Krissanasaeranee M., Gulari E., Jamieson A. M., Wongkasemjit S., Crystallization and catalytic activity of high titanium loaded TS-1 zeolite, Materials Chemistry and Physics, 2006, 97: 458~467
    [142] Basaldella E. I., Kikot A., Bengoa J. F., Tara J. C., ZSM-5 zeolite films on cordierite modules: Effect of dilution on the synthesis medium, Materials Letters, 2002, 52: 350~354
    [143] Alfaro S., Rodríguez C., Valenzuela M.A., Bosch P. , Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template, Materials Letters, 2007, 61: 4655~4658
    [144] Paolo R., Mario P., Giuseppe L., Maria A. M., Catalytic process for the manufacture of oximes, US 4794198, 1988
    [145] Dean J. A.,Handbook of organic chemistry,New York:McGraw-Hill Book Company, 1987
    [146] Robert C. R., John M. P., Thomas K. S., The properities of gases and liquids,New York:McGraw-Hill Book Company,2001
    [147]化学工程师手册编辑委员会,化学工程师手册,北京:机械工业出版社,2002
    [148]王福安,蒋登高,化工数据导引,北京:化学工业出版社,1995
    [149] Clerici M. G., The role of the solvent in TS-1 chemistry: active or passive ? An early study revisited, Topics in Catalysis, 2001, 15(2-4): 257~263
    [150] Bonino F., Damin A., Ricchiardi G., et al., Ti-peroxo species in the TS-1/H2O2/H2O system, Journal of Physical Chemistry B, 2004, 108: 3573~3583
    [151] Li G., Wang X., Guo X., et al., Titanium species in titanium silicalite TS-1 prepared by hydrothermal method, Materials Chemistry and Physics, 2001, 71: 195~201
    [152] Thangaraj A.,Sivasanker S.,Ratnasamy P.,Catalytic properties of crystalline titanium silicalites III: Ammoximation of cyclohexanone,Journal of Catalysis,1991,131: 394~400
    [153] Prasad M. R., Kamalakar G., Kulkarni S. J., et al., An improved process for the synthesis of titanium-rich titanium silicates (TS-1) under microwave irradiation,Catalysis Communications, 2002, 3(9): 399~404.
    [154] Dal Pozzo L., Fornasari G., Monti T., TS-1, catalytic mechanism in cyclohexanone oxime production, Catalysis Communications, 2002, 3: 369~375
    [155] Zecchina A., Bordiga S., Lamberti C., et al., Structural characterization of Ti centres in Ti-silicalite and reaction mechanism in cyclohexanone ammoximation,Catalysis Today, 1996, 32: 97~106.
    [156]张向京,钛硅分子筛TS-1催化环己酮氨肟化过程分析,[博士学位论文],天津:天津大学,2006
    [157] Reddy J. S., Sivasanker S., Ratnasamy P., Ammoximation of cyclohexanone over a titanium silicate molecular sieve, TS-2, Journal of Molecular Catalysis, 1991, 69(3): 383~392.
    [158] Zecchina A., Spoto G., Bordiga S., Geobaldo F., Petrini G., Leofanti G., Padovan M., Mantegazza M. and Roffia P., New frontiers in catalysis, Akadémiai Kiadó, Budapest 1993, 719~728
    [159] Cesana A., Mantegazza M. A., Pastori M., A study of the organic by-products in the cyclohexanone ammoximation, Journal of Molecular Catalysis A: Chemical, 1997, 117: 367~373
    [160]李平,卢冠忠,罗勇等,TS分子筛的催化氧化性能研究,化学学报,2000,58(2):204~208
    [161]郭新闻,刘民,王祥生等,预处理方法对钛硅沸石催化性能的影响,催化学报,2001,22(4):370~372
    [162]于晓东,卢冠忠,曹钢,TS-1分子筛催化氧化性能的研究Ⅲ焙烧温度、预处理剂与溶剂对苯羟基化的影响,石油化工,2002,31(9):708~711
    [163] Thangaraj A., Sivasanker S., Ratnasamy P., Catalytic properties of crystalline titanium silicalites III Ammoximation of cyclohexanone, Journal of Catalysis, 1991,131 (2) : 394~400
    [164]易国斌,郭建维,王乐夫等,晶粒大小对钛硅分子筛TS-1催化氧化活性的影响,材料科学与工程学报,2005,23(3):373~376
    [165] Van der Pol A.J.H.P., Verduyn A. J. and van Hoof J. H. C., Why are some titanium silicalite-1 samples active and others not? Applied Catalysis A: General, 1992, 92: 113~130
    [166] Kim W. J., Kim T. J., Ahn W. S., et al., Synthesis, characterization and catalytic properties of TS-1 monoliths, Catalysis Letters, 2003, 91(1-2): 123~127
    [167]陈晓晖,蔡丽蓉,魏可镁,钛硅分子筛膜的合成及其催化性能的研究,化工进展, 2004, 23(11): 1222~1226
    [168] Li L. D., Chen J. X., Zhang S. J., et al., Selective catalytic reduction of nitrogen oxides from exhaust of lean burn engine over in situ synthesized monolithic Cu–TS-1/cordierite, Catalysis Today, 2004, 90: 207~213
    [169] Hoek I., Nijhuis T. A., Stankiewicz A.I., Moulijn J.A., Performance of the monolithic stirrer reactor: applicability in multi-phase processes, Chemical Engineering Science, 2004, 59: 4975 ~4981
    [170] De Lathouder K.M., Marques FlóT., Kapteijn F., Moulijn J.A., A novel structured bioreactor: development of a monolithic stirrer reactor with immobilized lipase, Catalysis Today, 2005, 105: 443~447
    [171] Rolf K., Edvinsson A., Marco J. J. Houterman, et al., Novel monolithic stirred reactor, Reactors, Kinetics, and Catalysis, 1998, 44(11): 2459~2464
    [172]宗丽,刘莹,辛峰,整体式堇青石载体上TS-1的原位合成,无机材料学报,2007,22 (6): 1227~1232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700