慈竹DDS置换蒸煮与清洁漂白的相关性及纸浆纤维特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材纤维资源短缺是长期以来制约我国造纸行业发展的瓶颈。竹材原料的纤维特性与木材最为接近,且在我国分布广泛,慈竹是最适宜用作造纸原料的竹种之一。DDS置换蒸煮(Digester Diagnosis System)的最大优点是节能、环保。因此,开发慈竹DDS置换蒸煮不仅可解决我国原料短缺的问题,而且符合造纸产业绿色、低碳、环保的发展趋势。本论文以慈竹为原料,采用DDS置换蒸煮和清洁漂白技术,对慈竹DDS置换蒸煮、添加助剂的无硫蒸煮系统的研究,揭示了慈竹的低污染制浆特性;结合慈竹氧脱木素以及无元素氯(ECF)漂白和全无氯(TCF)漂白的研究,构建了慈竹DDS置换蒸煮与纸浆清洁漂白的相关性,揭示了慈竹在制浆不同阶段纤维形态的差异及纤维表面特性的变化。丰富了慈竹清洁制浆的理论体系,并对其生产实际具有指导意义。
     研究了慈竹化学组成及存放时间对慈竹化学组分的影响。结果显示,慈竹皮和杆中的化学组成有一定差异,皮中灰分、苯-醇抽出物含量高于杆中的含量,用作造纸原料的慈竹脱青1~2个月为宜。研究了预处理工艺对慈竹纤维化学组分及后续蒸煮的影响。确定了氢氧化钠和硫化钠共同预浸渍的预处理技术,通过实验该预处理可以使原料中木素含量降低、综纤维素少量降解。经预处理的慈竹与未预处理的慈竹在相同蒸煮工艺条件下,前者蒸煮成浆的得率下降,但卡伯值降低更为显著,黏度有所降低,均能达到可漂浆的要求,可为蒸煮工艺的制定及生物质资源的利用提供参考。
     采用Design-Expert软件对慈竹DDS置换蒸煮进行了实验设计和结果评价、分析及优化。结果表明,热充段用碱量、硫化度、最高蒸煮温度和保温时间对卡伯值、细浆得率和白度影响明显;热充段用碱量对黏度的影响明显。在任一卡伯值下,纸浆的细浆得率、黏度和白度无法同时达到最优水平。基于Design-Expert的慈竹DDS置换蒸煮数学模型具有良好的预测和优化功能。在给定的工艺条件下,可以预测蒸煮的结果(卡伯值、细浆得率、黏度和白度);在达到要求的蒸煮指标时,可通过实验优化制定出最佳的蒸煮工艺条件(预浸渍段用碱量、温充段用碱量、热充段用碱量、硫化度、最高蒸煮温度和保温时间)。对比DDS置换蒸煮与传统硫酸盐法蒸煮,慈竹DDS置换蒸煮成浆卡伯值低、得率高,且用碱量低。
     研究了慈竹无硫普通蒸煮工艺,讨论了添加助剂的慈竹无硫蒸煮与成浆性能的关系,并对比绿氧和自制蒸煮助剂对慈竹无硫蒸煮的影响。当绿氧用量为0.06%,用碱量为18%、最高蒸煮温度为160和用碱量为19%、最高蒸煮温度为155时所得纸浆性能相当,卡伯值为22左右,细浆得率49%左右,黏度1200mL/g,白度31%ISO左右。蒸煮时分别添加E、H、I三种自制助剂的用量为0.06%时,成浆卡伯值、细浆得率、黏度以及白度都和添加绿氧时相当。
     通过正交实验分析得出,采用DDS无硫置换蒸煮工艺,当助剂添加量分别为预浸渍段0.02%,温充段0.02%,热充段0.03%时,成浆卡伯值为23.6,细浆得率达到50.1%,黏度为1237mL/g,成浆性能几乎与慈竹DDS硫酸盐法蒸煮的纸浆性能相当。通过FT-IR分析可知,不同的蒸煮方式脱木素程度不同,纸浆中残余木素的结构有一定差异;自制助剂和绿氧结构不同,并且均有别于蒽醌,自制助剂在性能上和蒽醌有本质区别,提高了水溶性,并具有优良的蒸煮效果,但其具体结构还有待进一步分析。
     在慈竹硫酸盐法DDS置换蒸煮过程中,热充段用碱量、最高蒸煮温度对纸浆己烯糖醛酸的含量的影响显著;温充段用碱量、硫化度和保温时间的影响较小;预浸渍段用碱量影响最小。己烯糖醛酸含量的高低和纸浆卡伯值、细浆得率及纸浆黏度均没有明显对应关系。较少的有效碱用量、较低的蒸煮温度和较短的保温时间提高纸浆中己烯糖醛酸的含量,但纸浆的细浆得率也较高。
     研究了慈竹DDS置换蒸煮与纸浆ECF漂白和TCF漂白的相关性。结果显示,采用高温氧脱木素技术,当未漂浆卡伯值在18~20之间,氧脱木素后浆料性能较优。要达到85%ISO以上的目标白度,当未漂浆卡伯值小于10时,ECF(D0EopD1)漂白后纸浆黏度和得率均最低;当未漂浆卡伯值在12到20之间时,ECF漂白的有效氯用量和反应时间随卡伯值提高而增大,漂后浆黏度和得率均逐渐增加,当未漂浆卡伯值大于20时,漂后浆黏度略有下降、得率小幅度增加。卡伯值不同的未漂浆经TCF(QP1P2)漂白均不能达到85%ISO以上的白度。当未漂浆卡伯值小于10时,TCF漂白后纸浆黏度和得率均最低,分别为580mL/g和37.51%,总H2O2用量为3%,总漂白时间为270min,白度达到83.6%ISO;当未漂浆卡伯值在12到19之间时,TCF漂白的H2O2用量随卡伯值提高而增大,总H2O2用量在3.5%~4.0%,漂后浆白度在81.3~77.8%ISO,漂后浆黏度和得率均逐渐增加,黏度在634~650mL/g之间,得率在40.04%~40.98%之间;当未漂浆卡伯值大于19时,漂后浆黏度在634~588mL/g之间,得率在42.53%~43.48%之间,此时总H2O2用量在4.5%~5.0%,总漂白时间为270min,纸浆白度在76.1%~71%ISO之间。研究结果显示,ECF漂白在浆料白度、得率、黏度具有明显优势;而TCF漂白对浆料白度提高有限,只能在氧脱木素后卡伯值低于5时使用。
     采用FQA分析对比了慈竹DDS未漂浆、漂白浆和磨浆后的纤维形态、细小纤维含量等变化,纤维重均长度先略有增加后不断下降,纤维卷曲指数、纸浆中细小纤维含量逐渐下降,纤维扭结指数先下降后有所增加。磨浆后纤维重均长度由1.035mm降低到0.810mm,卷曲指数、扭结指数均下降,细小纤维含量增加幅度较大,升高为21.59%,这也是竹浆纤维与针叶木和阔叶木磨浆后浆料性能相差较大的原因之一。采用XRD、SEM和AFM对比研究了慈竹DDS置换蒸煮成浆ECF漂白和TCF漂白后纤维的特性,揭示了慈竹纸浆在制浆、磨浆不同阶段纤维表面形态的差别及表面特性的变化。慈竹DDS置换蒸煮成浆经漂白、磨浆后纸浆纤维素结晶度提高。慈竹DDS置换蒸煮后纤维表面有木素沉积,凹凸起伏较大;氧脱木素后去除了沉积在纤维表面的木素,纤维表面出现了长缝状的凹陷区域,起伏幅度减小;ECF漂白后纤维表面S1层微细纤维结构出现错位,分层现象,纤维表面粗糙度增加,说明对纤维影响程度较大;TCF漂白后纤维表面变化不明显,S1层微细纤维结构没有出现错位,分层现象,表明TCF漂白较ECF漂白温和,对纤维影响程度较小;磨浆后纤维表面局部的损伤程度显著增加,与前面SEM分析结果相同,进一步说明纤维素的部分无定形区受到破坏,纸浆结晶度提高显著。
The shortage of wood fiber resources restricts the development of paperindustry in China for decades. Bamboo is widely distributed in China. The fibercharacteristics are similar to wood fibers, and the cost of bamboo pulp isrelatively lower than wood pulp, which can be potentially used as raw materialfor paper industry. Among the types of bamboo used as raw materials ofpapermaking, Neosinocalamus is one of the best candidates. The digesterdiagnosis system (DDS) is an energy-efficient and environmentally-friendlypulping method. Therefore, the development of DDS technology ofNeosinocalamus not only helps to alleviate the shortage of raw material in China,but also accords with the trend of green, environment-friendliness and lowcarbon in paper industry.
     In this work, the technologies of DDS replacement cooking and cleanbleaching were applied in Neosinocalamus pulping. The cooking parameters ofDDS replacement cooking and non-sulfur cooking with chemical aids wereinvestigated systematically, which indicated Neosinocalamus had the feature oflow-pollution. The correlation between DDS displacement cooking and cleanbleaching of Neosinocalamus was established combining the results from oxygendelignification, ECF and TCF bleaching, which helps to enrich the theoreticalsystem of clean pulping of Neosinocalamus.
     The effect of the parts and the storage period of Neosinocalamus on thechemical composition were studied. Neosinocalamus skin showed the highercontent in ash, alcohol-benzene extract than pole. Based on the results, one totwo months can be spent in the change in colour for Neosinocalamus beforepulping. The effect of pretreatment on the chemical composition of fiber and cooking properties of Neosinocalamus was also investigated. It is found thatsodium hydroxide and sodium sulphide can be used for pretreatment ofNeosinocalamus before cooking, which can reduce the content of lignin andprevent the excessive degradation of holocellulose. As compared to cookingconditions without pretreatment, the yield and the viscosity of bamboo pulp withpretreatment was lower but the Kappa number was decreased more significantly.These all satisfied the requirements of the use of commercial bleached pulp.
     Design-Expert software was employed to design and optimize theexperiment of DDS displacement cooking. It was found that alkali charge,sulfidity, max temperature and heat preservation time could affect the yield ofscreened pulp and brightness significantly in the stage of hot filling. Additionally,a remarkable impact of alkali charge on viscosity was also observed. For a givenKappa number, the optimal results of yield of screened pulp, viscosity andbrightness of pulp could not be obtained simultaneously. The mathematic modelof DDS displacement cooking built by Design-Expert software showed a goodresult in prediction and optimization.
     For a given parameters of cooking, the model can be used to predict theresults, including Kappa number, yield of screened pulp, viscosity and brightness.The cooking conditions, including the alkali charge in Initial Cooking(IC),Initial Middle Cooking(IMC)and Final Middle Cooking(FMC)respectively,sulfidity, max temperature and heat preservation time can also be optimized.Compared to traditional kraft cooking, DDS displacement cooking ofNeosinocalamus had advantages of low Kappa number, high yield and low alkalicharge.
     The relationship between the conditions of non-sulfur cooking withchemical aids and pulp properties was analyzed and the comparison of greenoxygen and self-made cooking aids during non-sulfur cooking was alsodiscussed. When the usage of green oxygen was fixed at0.06%, the pulp properties from the cooking conditions of18%alkali and max temperature of160was similar to that of19%alkali and max temperature of155. Thecorresponding pulp properties were as follows: Kappa number of22, the yield ofscreened pulp of49%, the viscosity of1200mL/g and the brightness of30%ISO.The self-made cooking aids E, H, I can also achieved the pulp properties inKappa number, yield of screened pulp and brightness with the dosage of0.06%compared to green oxygen.
     The results of orthogonal experiment showed that when the usage ofcooking aids in IC, IMC and FMC was fixed at0.02%,0.02%,0.03%,respectively, the pulp properties was as follows: Kappa number of23.6, yield ofscreened pulp of50.1%, viscosity of1237mL/g. The pulp properties weresimilar to that of DDS kraft cooking. FT-IR results indicated the difference incooking method resulted in the variations in delignification and the structure ofresidual lignin. Unlike anthraquinone, the self-made cooking aids showed thegood solubility, which helps to improve the pulp properties. However, thechemical structure of self-made cooking aid needs to be analyzed further.
     During the DDS kraft cooking of Neosinocalamus, the akali charge and themax temperature of cooking had a significant effect on the content of HexA.There was no obvious correlation between the content of HexA and Kappanumber, yield of screened pulp and viscosity of pulp. It is found that low alkalicharge and cooking temperature, and short cooking time can improve the contentof HexA and the yield of screened pulp.
     The correlation between DDS displacement cooking of Neosinocalamusand ECF and TCF bleaching was investigated. It showed that the good pulpproperties can be obtained by oxygen delignification with high temperature whenthe Kappa number of unbleached pulp was18-20. The viscosity and yield of pulpwas lowest when adopting the bleaching sequence of D0EopD1with the Kappanumber below10. The chlorine demand, reaction time, viscosity and yield of bleached pulp with ECF sequence were increased as Kappa number increasedwhen the Kappa number of unbleached pulp was12-20. The viscosity ofbleached pulp decreased but a small increase of the corresponding pulp yield canbe observed when the Kappa number of unbleached pulp was more than20. Thebrightness of bleached pulp with TCF bleaching sequence (QP1P2) can notachieve85%. The viscosity and yield of bleached pulp with low Kappa number(less than10) of unbleached pulp were580mL/g and37.51%, respectively whenTCF bleaching sequence (QP1P2) was adopted. The bleaching conditions ofabove results were3%H2O2and reaction time of270min, the correspondingbrightness of pulp was83.6%ISO. The demand of H2O2with TCF bleachingincreased with increasing Kappa number from12to19. The brightness ofbleached pulp was in the range of81.3%~77.8%ISO with the dosage of H2O2were3.5%~4.0%, the corresponding viscosity and yield of bleached pulp werealso increased, which can be up to650mL/g and40.98, respectively. When theKappa number of unbleached pulp was more than19, the viscosity of bleachedpulp was in the range of634~588mL/g, and the yield was in the range of42.53%~43.48%. These results can be obtained when the usage of H2O2was4.5%~5.0%and the reaction time of270min, the corresponding brightness was76.1%~71%ISO. These results indicated ECF bleaching had advantages in pulpbrightness, yield and viscosity while the limited improvement in brightness canbe obtained by using TCF bleaching which can be adopted with Kappa numberof less5after oxygen delignification stage.
     The fiber morphology and fines content of unbleached pulp, bleached pulpand refined pulp of Neosinocalamus were compared by FQA analysis. Theresults showed that the weighted length, crimp index and fines content decreasedwith stages while the kink index of fiber was decreased firstly and then increasedafter bleaching. The weighted length of fiber decreased from1.035mm to0.810mm after refining. The crimp index and kink index decreased while fines content of fiber can be up to21.59%after refining, which is the major differencein bamboo fiber and wood fiber. XRD, SEM and AFM were used to investigatethe change in fiber properties of DDS pulp, ECF bleached pulp and TCFbleached pulp of Neosinocalamus. It is found that the crystallinity of fiber wasincreased with stages. The uneven lignin deposition can be observed on thesurface of fiber from DDS cooked pulp. Oxygen delignification removed thelignin deposited on the surface of fiber, resulting in the smoothed fiber surface.Dislocation and delamination can be observed in the structure of microfiber inS1layer after ECF bleaching. Meanwhile, the increase of the roughness of fibersurface verified fiber was damaged during bleaching. In contrast to EFCbleaching, the structure of microfiber in S1layer was not changed obviouslyafter TCF bleaching, indicating the bleaching condition of TCF bleaching ismilder. The increased degree of the damage of fiber further verified theamorphous region of fiber was damaged, resulting in the increase in crystallinityof pulp, which was accordance with SEM results.
引文
[1]关颖.造纸纤维原料来源的发展趋势[J].国际造纸,2010(1):62-68.
    [2]郭永新.“力争上游”之原料--中国造纸原料的现状和未来[J].中华纸业,2010(19):14-17.
    [3]胡宗渊.我国造纸纤维原料问题探讨[J].纸和造纸,2006,25(B06):1-3.
    [4]伍安国,曾辉,苏庆平.生物技术在造纸工业中的应用研究进展[J].西南造纸,2005,34(2):15-19.
    [5]王承亮,苏振华,冯文英.生物技术在制浆造纸工业中的应用[J].湖北造纸,2010(2):9-12.
    [6]常永杰.我国造纸纤维原料的现状及发展对策[J].湖北造纸,2013(3):40-42.
    [7]郭起荣,徐振国,冯云,等.中国竹类研究60年:期刊论文[J].竹子研究汇刊,2013,4:002.
    [8]戴家璋.中国造纸技术简史[M].中国轻工业出版社,1994.
    [9]王连科.造纸原料的历史发展和未来趋势[J].黑龙江造纸,2009,37(3):65-65.
    [10] Ma J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]. Soil Science and Plant Nutrition,2004,50(1):11-18.
    [11]徐有明,郝培应,刘清平.竹材性质及其资源开发利用的研究进展[J].东北林业大学学报,2003,31(5):71-77.
    [12]崔敏,殷亚方,姜笑梅,等.竹材制浆造纸技术研究与应用现状[J].竹子研究汇刊,2010,29(1):1-5.
    [13]李佩燚,张美云,赵琳,等.预处理工艺对慈竹性能影响的研究[J].中国造纸,2012(3):5-10.
    [14]黄光祥,岳金权.竹原料预处理蒸煮技术的可行性[J].黑龙江造纸,2008,36(2):16-17.
    [15]徐有明,郝培应,刘清平.竹材性质及其资源开发利用的研究进展[J].东北林业大学学报,2003,31(5):71-77.
    [16] Karthikeyan A. Influence of age on fibre and chemical characteristics of plantation cropof[J]. East African Agricultural and Forestry Journal,2008,68:3-4.
    [17] Jahan M S, Sabina R, Tasmin B, et al. Effect of harvesting age on the chemical andmorphological properties of dhaincha (Sesbania aculeata) and its pulpability andbleachability[J]. BioResources,2009,4(2):471-481.
    [18]马乃训,张文燕,陈光财.关于加快发展我国竹材制浆造纸的一些看法[J].林业科技开发,2004,18(1):9-11.
    [19]胡尚连,蒋瑶,陈其兵,等.四川2种丛生竹理化特性及纤维形态研究[J].植物研究,2010,6:016.
    [20]李煊星.湖南主要竹资源纤维形态的比较研究[D][D].长沙:湖南农业大学,2006.
    [21]熊建华,程昊,王双飞.几种竹子原料的化学组成与纤维形态及其CMP制浆性能的研究[J].造纸科学与技术,2010(1):1-5.
    [22]徐有明,江泽慧,陆才瑞,等.湖北主要引种竹纤维特征和基本密度分析[J].林业科技开发,2013,27(6):44-47.
    [23]苏文会,顾小平,马灵飞.大木竹纤维形态与组织比量的研究[J].林业科学研究,2005,18(3):250-254.
    [24]苏文会,范少辉,余林,等.3种丛生竹化学成分与纤维形态研究[J].中国造纸学报,2011,26(2):1-5.
    [25]刘磊,廖红霞,苏海涛,等.毛竹等6种竹材的天然耐久性试验[J].广东林业科技,2005,21(2):6-13.
    [26]曾繁茂.绿竹密度与年龄结构对产笋量及新竹生长的影响[J].安徽农学通报,2009,15(17):184-184.
    [27]齐锦秋,胡瑶,谢九龙,等.年生慈竹竹秆不同部位的解剖特征[J].西北农林科技大学学报:自然科学版,2014,42(2):187-192.
    [28] Jin G, Takahashi S, Nakagawa Izumi A, et al. Chemical characteristics and kraft pulpingresponse of Phyllostachys pubescens stems: Comparison with kenaf bast, Japanesesoftwood and fast-growing hardwood[J]. Journal of the Japan Wood Research Society,2008,54(2):33-38.
    [29]刘秀琼,汪治林.15种竹材及其制浆造纸性能[J].纸和造纸,2013,32(1):33-36.
    [30] Kamruzzaman M, Saha S K, Bose A K, et al. EFFECTS OF AGE AND HEIGHT ONPHYSICAL AND MECHANICAL PROPERTIES OF BAMBOO[J]. Journal ofTropical Forest Science,2008,20(3):211-217.
    [31] Correal D, Francisco J, Arbeláez C. Influence of age and height position on ColombianGuadua angustifolia bamboo mechanical properties[J]. Maderas. Ciencia y tecnología,2010,12(2):105-113.
    [32] Yu H Q, Jiang Z H, Hse C Y, et al. SELECTED PHYSICAL AND MECHANICALPROPERTIES OF MOSO BAMBOO (PHYLLOSTACHYS PUBESCENS)[J]. Journalof Tropical Forest Science,2008,20(4):258-263.
    [33]苏文会,顾小平,马灵飞,等.大木竹竹材力学性质的研究[J].林业科学研究,2006,19(5):621-624.
    [34]杨喜,刘杏娥,杨淑敏,等.5种丛生竹材物理力学性质的比较[J].东北林业大学学报,2013,41(10):91-93.
    [35]李晖,朱一辛,杨志斌,等.我国竹材微观构造及竹纤维应用研究综述[J].林业科技开发,2013,27(3):1-5.
    [36]段春香.料慈竹种子特性及育苗技术系统研究[D].西南林学院,2008.
    [37]时圣涛,江庆生,姜艳丽. DDS间歇置换蒸煮的特色[J].中国造纸,2011,30(9):44-49.
    [38]黄俊梅,汤伟,许保华,等.置换蒸煮系统(DDS)的发展及应用[J].化工自动化及仪表,2010,37(008):1-6.
    [39]李佩燚,张美云,夏新兴,等.慈竹模拟置换蒸煮工艺研究[J].中国造纸,2012(6):5-9.
    [40]时圣涛,卢学艺. DDS置换蒸煮技术在中国的应用[J].中華紙業,2010,31(4):82-85.
    [41]汪骏.非木材纤维制浆清洁生产技术方案备料与蒸煮工段[J].中华纸业,2013(24).
    [42] Bianchini C A, Azad M K. Batch displacement cooking&retrofit solution for existingIndian pulp mills[J]. IPPTA,2007,19(1):57.
    [43] Hartler N. Extended delignification in kraft cooking-a new concept [water pollutionelimination[J]. Svensk papper stidning,1978,81.
    [44] Teder A, Olm L. Extended delignification by combination of modified kraft pulping andoxygen bleaching [J]. PAPERI JA PUU-PAPER AND TIMBER,1981,63(4A):315.
    [45] Sixta H, Schild G. A new generation kraft process[J]. Lenzinger Berichte,2009,87(1):26-37.
    [46] Liu Z, Ni Y, Fatehi P, et al. Isolation and cationization of hemicelluloses frompre-hydrolysis liquor of kraft-based dissolving pulp production process[J]. Biomass andBioenergy,2011,35(5):1789-1796.
    [47]时圣涛,吴学栋. DDS蒸煮反应的相关理论[J].中国造纸,2012,31(5):63-69.
    [48]陈彬.竹材制浆技术发展现状[J].中国造纸,2010,29(12):62-65.
    [49] Rodriguez A, Jimenez L, Ferrer J L. Use of oxygen in the delignification and bleaching ofpulps[J]. Appita Journal: Journal of the Technical Association of the Australian and NewZealand Pulp and Paper Industry,2007,60(1):17-22.
    [50] Gümü kaya E, Pe man E, Kirci H, et al. Influence of plum gum and sodium perborateaddition on spruce kraft pulp properties during oxygen delignification[J]. Wood Scienceand Technology,2011,45(3):573-582.
    [51] Sahu S K, Pradhan S K, Panigrahi J C, et al. Additives for increased lignin removalefficiency in oxygen delignification[J]. IPPTA,2008,20(2):71.
    [52] Freire C S R, Silvestre A J D, Neto C P. Carbohydrate-derived chlorinated compounds inECF bleaching of hardwood pulps: Formation, degradation, and contribution to AOX in ableached kraft pulp mill[J]. Environmental science&technology,2003,37(4):811-814.
    [53]李海华,闫维凤,王红民,等.无元素氯漂白技术在制浆造纸工程中的应用[J].纸和造纸,2014,33(2):1-3.
    [54]杨斌,张美云,徐永建,等. ECF和TCF漂白发展现状与研究进展[J].黑龙江造纸,2012,40(3):24-27.
    [55]胡剑民,沈葵忠,房桂干,等.竹材化学浆ECF/TCF漂白技术[J].中华纸业,2010(12):12-15.
    [56] Vu Man Thi Hong, Alén Raimo, Pakkanen Hannu. The possibilities to reduce chlorinedioxide consumption in the ECF bleaching of bamboo kraft pulp[C].2004TAPPI FallTechnical Conference: Engineering and Pulping, Proceedings,2004:441-455.
    [57]梁辰,詹怀宇,覃程荣,等.磺化化学机械浆纤维表面的SEM-EDS分析[J].造纸科学与技术,2012,31(6):110-114.
    [58] Fardim P, Holmbom B. Origin and surface distribution of an-ionic groups in differentpapermaking fibres [J]. Colloids and Sur-faces A-Physicochemical and EngineeringAspects,2005,252(2-3):237-242.
    [59] Heli Kangas K, Espoo F, Anna Suurnakki V. Modification of the surface chemistry ofTMP with enzymes [J]. Nordic Pulp and Paper Research Journal,2007,22(4):415-423.
    [60]雷晓春,赵宇. AFM和XPS结合在化学浆和机械浆纤维表面分析中的应用[J].中国造纸学报,2009(2):110-114.
    [61] Henriksson, Gatenhalm P. Surface properties of CTMP fibers modified with xylans [J].Cellulose,2002,9(1):55-64.
    [62] Fardim P, Durán N. Influences of surface chemical composition on the mechanicalproperties of pulp as investigated by SEM, XPS and multivariate data analysis[J]. Journalof the Brazilian Chemical Society,2005,16(2):163-170.
    [63] Popescu C M, Tibirna C M, Raschip I E, et al. Bulk and surface characterization ofunbleached and bleached softwood kraft pulp fibres [J]. Cellulose Chemistry andTechnology,2008,42(9-10):525-547.
    [64] Ruel K, Chabannes M, Boudet A M, et al. Reassessment of qualitative changes inlignification of transgenic tobacco plants and their impact on cell wall assembly[J].Phytochemistry,2001,57(6):875-882.
    [65] Fardim P, Gu stafsson J, Schou ltz S V, et a.l Extractives on F iber Surfaces Investigated by XPS, ToF-S IM S and AFM [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2005,255(1/3):91.
    [66] Simola J, Malkavaara P, Alen R, et al. Scanning probe microscopy of pine and birchkraft pulp fibres[J]. Polymer,2000,41(6):2121-2126.
    [67] Simola-Gustafsson J, Hortling B, Peltonen J. Scanning probe microscopy and enhanceddata analysis on lignin and elemental-chlorine-free or oxygen-delignified pine kraftpulp[J]. Colloid and Polymer Science,2001,279(3):221-231.
    [68] Gustafsson J, Ciovica L, Peltonen J. The ultrastructure of spruce kraft pulps studied byatomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)[J].Polymer,2003,44(3):661-670.
    [69] Li K, Lei X, Lu L, et al. Surface characterization and surface modification of mechanicalpulp fibres[J]. Pulp Paper Canada,2010,111(1):28-33.
    [70] Maciel A M, WILKINS C P. AFM ultrastructural studies of chemical softwood tracheidsand secondary fines generated by various refining treatments[J]. Paper technology,2002,43(6):25-33.
    [71] BESSONOFF M, NIEMI H, NGUYEN T, et al. The effects of DCS from TMP on paperand fibre surface[J]. Paperi ja puu,2000,82(8):531-538.
    [72] Niemi H, Paulapuro H, MAHLBERG R. Review: application of scanning probemicroscopy to wood, fibre and paper research[J]. Paperi ja puu,2002,84(6):389-406.
    [73] Chhabra N, Spelt J, Yip CM, et al. An Investigat ion of Pulp Fibre Surfaces by AtomicForce Microscopy[J]. Journal of Pulp and Paper Science,2005,31(1):52.
    [74] Fardim P, Gust afsson J, Von Schoultz S, et al. Ext ract ives on Fiber Surfaces Investigated by XPS, ToF-SIMS andAFM[J]. Colloids and Surfaces A-Physicochemical andEngineering Aspects,2005,255(1-3):91.
    [75] Kangas H, Kleen M. Surface Chemical and Morphological Propert ies of MechanicalPulp Fines[J]. Nordic Pulp&Paper Research Journal,2004,19(2):191.
    [76] Koljonen K, Osterberg M, Kleen M, et al. Precipit ation of Lignin and Ext ract ives onKraft PulpL: Effect on Surface Chemistry, Surf ace Morpho-logy and Paper Strength[J].Cellulose,2004,11(2):209.
    [77] Kol jonen K, Osterberg M, Johansson L S, et al. Surface Chemistry and Morphology ofDifferent Mechanical Pulps Determined ESCA and AFM[J]. Colloids and SurfaceA-Physicochemical and Engineering,2003,288(1-3):143.
    [78] Gustafsson J, Ciovica L, Peltonen J. The Ultrastructure of Spruce Kraft Pulps Studies byAtomic Force Microscopy (AFM) and X-ray Photoelect ron Spectroscopy (XPS)[J].Polymer,2003,44(3):661.
    [79] Snell R, Groom L H, Rials T G. Charact erizing the Surface Roughness ofThermomechanical Pulp Fibers with Atomic Force Microscopy[J]. Holzforschung,2001,55(5):511.
    [80] Laureano-Perez L, Teymouri F, Alizadeh H, et al. Understanding factors that limitenzymatic hydrolysis of biomass[J]. Applied Biochemistry and Biotechnology,2005,124(1-3):1081-1099.
    [81] Van Heiningen A. Converting a kraft pulp mill into an integrated forest biorefinery[J].Pulp and Paper Canada,2006,107(6):38-43.
    [82] Sung-Hoon Yoon, Adriaan Van Heiningen. Kraft pulping and papermaking properties ofhot-water pre-extracted loblolly pine in an integrated forest products biorefinery[J]. TappiJournal,2008(7):22-27.
    [83] Amidon Thomas E, Francis Raymond, Scott Gary M, et al. New product and processesfrom an integrate forest biorefinery [P]. WO/2006/016118,2006-11-16.
    [84] Mabee W E, John N. The potential Commercial Impact[C]. Proceedings of PAPTAC92ndAnnual Meeting, Feb.2006, Montreal Canada:185-192.
    [85] Mosier N, Wyman C, Dale B et al. Features of promising technologies for pretreatment oflignocelluloses biomass[J]. Bioresource Technology,2005,96:673-686.
    [86]王凤娟,黄峰,杨桂花,等.半纤维素对浆纸质量的影响[J].造纸科学与技术,2010(1):27-32.
    [87] Waleed. Wafa Al-dajani, Ulrike W. Tschirner. Pre-extraction of hemicelluloses andsubsequent kraft pulping Part I: alkaline extraction[J].Tappi Journal,2008,(6):3-8.
    [88] Outi A. Hyokyvirta, Tom E. Gustafsson. Evaluation of a molybednum sulfide referenceelectrode in hot alkaline solutions[J].Tappi Journal,2010,(7):35-41.
    [89] Lundqvist. J., Jacobs, A., Palm. M., et al. Characterization of galactoglucomannanextracted from spruce (Picea abies) by heat-fractionation at different conditions[J].Carbohyd Polym,2002,51(2):203-211.
    [90] Palm M, Zacchi G. Extraction of hemicellulosic oligosaccharides from spruce usingmicrowave oven or steam treatment[J]. Biomacromolecules,2003,4(3):617-623.
    [91] Ragauskas A J, Nagy M, Kim D H, et al. From wood to fuels: integrating biofuels andpulp production[J]. Industrial biotechnology,2006,2(1):55-65.
    [92] Van Heiningen A. Converting a kraft pulp mill into an integrated forest biorefinery[J].Pulp and Paper Canada,2006,107(6):38-43.
    [93] Molin. U., Teder. A. Importance of cellulose/hemicelluloseratio for pulp strength[J].Nordic Pulp Paper Res.J,2002,17(1):14-19,28.
    [94] Moss. P. A., Pere. J. Microscopical study on the effects of partial removal of xylan on theswelling properties of birch kraft pulp fibres[J]. Nordic Pulp Paper Res.J,2006,21(1):8-12.
    [95] Kronholm J, Hartonen K, Riekkola M L. Analytical extractions with water at elevatedtemperatures and pressures[J].Trends in Analytical Chemistry,2007,26(5):396-412.
    [96] Teo C C, Tan S N,Yong J W H, et al. Pressurized hot water extraction (PHWE)[J].Journal of Chromatography A,2010,1217(6):2484-2493.
    [97] Ho C H L, Cacace J E, Mazza G. Extraction of lignans, proteins and carbohydrates fromflaxseed meal with pressurized low polarity water[J]. LWT-Food Science and Technology,2007,40(9):1637-1647.
    [98] Mittal A. Kinetics of hemicellulose extraction during autohydrolysis of sugar maplewood[M]. STATE UNIVERSITY OF NEW YORK COL. OF ENVIRONMENTALSCIENCE&FORESTRY,2007.
    [99] Liu S, Zhang Z, Scott G M. The biorefinery: Sustainably renewable route to commoditychemicals, energy, and materials: Selected papers from the Second InternationalBiorefinery Conference (IBC2009) Syracuse, New York—October6–9,2009[J].Biotechnology advances,2010,28(5):541-542.
    [100] M Rubio, J F Tortosa, J Quesada, et al. Fractionation of lignocelluloses: Solubilizationof corn stalk hemicelluloses by autohydrolysis in aqueous medium[J]. Biomass andBioenergy,1998,15(6):483-491.
    [101] G Garrote, H Dominguez, J C Parajo. Autohydrolysis of corn cob: study ofnon-isothermal operation for xyloo ligo saccharide production[J]. Journal of FoodEngineering,2001,52:211-218.
    [102] Wyman C E, Dale B E, Elander R T, et al. Coordinated development of leading biomasspretreatment technologies[J]. Bioresource technology,2005,96(18):1959-1966.
    [103]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2007.
    [104]辉朝茂,郝吉明,杨宇明,等.关于中国竹浆产业和纸浆竹林基地建设的探讨[J].中国造纸学报,2003,18(1):152-156.
    [105] Zhao Y, Wang Y, Zhu J Y, et al. Enhanced enzymatic hydrolysis of spruce by alkalinepretreatment at low temperature[J]. Biotechnology and bioengineering,2008,99(6):1320-1328.
    [106]张美云,徐永建,蒲文娟.非木材纤维自催化乙醇制浆的研究进展[J].中华纸业,2007,28(6):77-79.
    [107]张学金,陈克利.植物纤维原料制浆预处理技术进展[J].江苏造纸,2007(1):21-24.
    [108]迟聪聪,张曾,于建仁,等.桉木半纤维素预提取工艺的初步研究[J].中国造纸学报,2008,23(3):6-10.
    [109]王景全,赵红,胡湛波,等.甘蔗渣高沸醇预处理过程中木质素和碳水化合物的溶出规律[J].中国造纸,2011,30(5):21-25.
    [110]王钱钱,詹怀宇,周生飞,等.蒸煮条件对硫酸盐法竹浆性能的影响[J].中国造纸,2010(8):75-76.
    [111]金永灿,李忠正.硫化钠预处理制浆残余木质素的化学结构特性[J].纤维素科学与技术,2000,8(4):44-52.
    [112]雷以超,刘世界,吴渊,等.蔗渣的热水抽提和碱法制浆[J].中国造纸,2009,28(7):73-75.
    [113]丁仕火,张铭锋,王武雄,等. DDSTM置换蒸煮系统RDH间歇蒸煮技术新进展[J].中国造纸,2005,24(6):62-63.
    [114]徐萃声.竹子原料与制浆造纸[J].造纸科学与技术,2006,25(4):1-6.
    [115]陈志文.大型竹浆厂除硅工艺的应用探讨[J].西南造纸,2005,34(1):16-19.
    [116] Kamthai S. Alkaline sulfite pulping and ECF bleaching of sweet bamboo (Dendr DCalamus asper Backer)[D]. M. S. Thesis, Kasetsart University,2003.
    [117]金立忠,林松竹,展鹏. Busperse蒸煮助剂用于硬木化学浆的生产[J].纸和造纸,2009,28(12):36-38.
    [118]吉兴香,陈嘉川,杨桂花,等.蒸煮助剂在化学制浆中的应用与发展趋势[J].纸和造纸,2005(6):25-28.
    [119]李佩燚,张美云,吴盼,等.双元助剂强化慈竹蒸煮[J].纸和造纸,2012,31(6):1-4.
    [120]文艾,覃程荣.蒽醌类蒸煮助剂在硫酸盐蒸煮中的应用现状[J].广西轻工业,2007,99(2):1-4.
    [121]张杰刘,秋娟.蒸煮助剂对稻麦草亚硫酸钾蒸煮的作用[J].中华纸业,2009,30(6):52-54.
    [122]李佩燚,张美云,董浩,等.新型蒽醌类蒸煮助剂的制备及应用[J].纸和造纸,2013,32(5):35-38.
    [123]李佩燚,张美云,董浩,等.蒸煮助剂的制备及其在竹材制浆中的应用[J].造纸科学与技术,2013,32(4):49-52.
    [124] Kiaei, Majid, Mahdavi, Saeed, Kialashaki, Ali, et al. Chemical composition andmorphological properties of canola plant and its potential application in pulp and paperindustry[J]. Cellulose Chemistry and Technology,2014,48(1-2):105-110.
    [125] Salehi, Kamyar, Kordsachia, Othar, Patt, Rudolf, et al. Comparison of MEA/AQ, sodaand soda/AQ pulping of wheat and rye straw[J]. Industrial Crops and Products,2014,52(1):603-610.
    [126] Gao, Hong Xia, Zhang, Jing. Study on DTPMPA as cooking additive in bamboo pulping[J]. Advanced Materials Research,2013,781-784(III):2601-2604.
    [127] Sharma, Arvind Kumar, Sharma, Anurag, Panth, M.G. Application of digester cookingadditives in pulping[J]. IPPTA: Quarterly Journal of Indian Pulp and Paper TechnicalAssociation,2004,16(3):91-93.
    [128] H kansdotter, Lina, Olm, Leelo. Soda-AQ pulping of softwood, the influence of cookingparameters on fiber properties and bleachability[J]. Paperi ja Puu/Paper and Timber,2002,84(1):43-49.
    [129]覃程荣,詹怀宇,王双飞,等.硫酸盐竹浆ECF和TCF漂白过程中木素结构的变化[J].中国造纸学报,2009,23(4):19-25.
    [130] Jahan M.S., Chowdhury D.A.N., Isiam M.K. Characterization of lignin isolated fromsome nonwood available in Bangladesh[J]. Bioresource Technology,2007,98(2):465-469.
    [131] Hage R.E., Brosse N., Chrusciel L., et al. Characterization of milled wood lignin andethanol organosolv lignin from miscanthus[J]. Polymer Degradation and Stability,2009,94(10):1632-1638.
    [132]詹怀宇,蒲云桥,岳保珍,等.湿地松深度脱木素硫酸盐法蒸煮过程中木素结构的变化(I)-纸浆中残余木素结构的变化[J].造纸科学与技术,2001(1):8-15.
    [133]袁成强,陈嘉川.麦草烧碱-蒽醌法制浆及TCF漂白过程中木素结构变化的研究[D].2008:41-68.
    [134] Bucher J,Teleman A,Harjunpaa V,etal.Effect of cooking and bleaching on the structureof xylan in conventional pine kraft pulp[J].Tappi J.,1995,78(11):125-130.
    [135] BUCHERT J, TENKANEN M, EK M,etal. Effects of pulping and bleaching on pulpcarbohydrates and technical properties. In: Proceedings of international pulp bleachingconference, Book1,Washington D C,1996:39-42.
    [136]张学铭,张运展.己烯糖醛酸在纸浆中的存在及其影响[J].中国造纸,2005,24(4):45-49.
    [137] Jing zhi-hua, Van lierop B, Berry R. Hexenuronic acid groups in pulping and bleachingchemistry[J].Tappi J,2000,83(1):67.
    [138] Vuorinen T., Buchert J., Telemen A, et al.Selective hydroly-sis of hexenuronic acidgroups and its application in ECF and TCF bleaching of kraft pulps.In:Proceedings ofinter-national pulp bleaching conference,Book1,Washington D.C.,1996,43-51.
    [139] Buchert, J., Laine, J, et al.Charaterization of Uronic acids during Kraft and Superbatchpulping.7th ISWPC, Beijing,1993,M3-1-M3-3.
    [140]黄斌,邱玉桂,左晓军,等.,碱法苇浆中己烯糖醛酸及其他碳水化合物发色基团的研究[J].中国造纸学报,2001,16(1):12.
    [141] Gustavsson, Catrin, Ragnar, Martin. HexA content and the effect of HexA content aftercooking on the bleaching chemical requirement[J]. O Papel (Brazil),2007,68(6):64-85.
    [142]李佩燚,张美云,夏新兴,等.慈竹置换蒸煮对己烯糖醛酸含量的影响[J].中华纸业,2012,33(10):65-70.
    [143] Valls, Cristina., Roncero, M. Antioxidant property of TCF pulp with a high hexenuronicacid (HexA) content [J]. Holzforschung,2013,67(3):257-263.
    [144] Valls, Cristina., Vidal, Teresa., Roncero, M. Blanca. Enzymatic strategies to improveremoval of hexenuronic acids and lignin from cellulosic fibers[J]. Holzforschung,2014,68(2):229-237.
    [145] Martino, Daniela Correia., Colodette, Jorge Luiz, Silva., Teresa Cristina Fonseca, et al.Factors affecting bleachability of Eucalypt pulp[J]. BioResources,2013,8(1):1186-1198.
    [146] Sevastyanova, Olena., Forsstr m, Annbritt., Wackerberg, Eva., et al. Bleaching ofeucalyptus kraft pulps with chlorine dioxide: Factors affecting the efficiency of thefinal D stage[J]. International Pulp Bleaching Conference2011,2011,376-403.
    [147] Silva, Vanessa L., Lino, Alessandro G., Ribeiro, Robisnéa A, et al. Factors affectingbrightness reversion of hardwood kraft pulps[J]. BioResources,2011,6(4):4801-4814.
    [148] Silva, Vanessa L., Lino, Alessandro G., Ribeiro, Robisnéa A, et al. Factors affectingbrightness reversion of hardwood kraft pulps[J]. BioResources,2011,6(4):4801-4814.
    [149] Maltha, Célia R. A., Barbosa, Luiz C. A., Azevedo, Marco A. B, et al. Behavior ofeucalyptus kraft pulp extractives components across ECF bleaching and their impact onbrightness reversion[J]. Journal of Wood Chemistry and Technology,2011,31(2):103-120.
    [150]李海龙.木聚糖酶处理对纸浆中己烯糖醛酸含量的影响[J].华南理工大学学报,2008,36(7):42-46.
    [151]郭三川,唐怀宇,付时雨.蒸煮条件对桉木硫酸盐浆中己烯糖醛酸含量的影响[J],中国造纸学报,2007,22(4):61-64.
    [152]李强,孙军,许利.纸浆中己烯糖醛酸的产生及其影响与消除方法[J].黑龙江造纸,2010(1):25-28.
    [153] Allison R W,Tinonen O,M egroutherK G,et al Hexenuronic acid in kraft pulps fromradiate pine [J].Appita Joumal,1999,52(6):448-453.
    [154] Chai XS,Yoon SH,Zhu JY,etal. The fate of hexenuronic acid groups during alkalinepulping of loblolly pine[J]. Journal of Pulp and Paper Seienee,2001,27(12):407.
    [155] Latibari, Ahmad Jahan.,Hossein, Mohammad Ali., Hosseinpour, Reza.,etal. Elementalchlorine free bleaching of wheat straw chemimechanical pulp[J]. Cellulose Chemistryand Technology,2014,48(1-2):119-125.
    [156] Hart, Peter W.,Santos, Ricardo B. Kraft ECF pulp bleaching: A review of thedevelopment and use of techno-economic models to optimize cost, performance, andjustify capital expenditures [J]. Tappi Journal,2013,12(10):19-29.
    [157] Brogdon, Brian N. Elemental chlorine-free bleaching of North American hardwood kraftpulps: Evaluation of oxidant-reinforced extraction variables on overall bleachingoptimization [J]. Tappi Journal,2013,12(10):33-41.
    [158] Sankaralingam, P., Chinnaraj, S., Subrahmanyam, S.V. Pulping and light-ECF bleachingof bagasse mixed with Banana pseudo stem and its impact on environment [J]. IPPTA,2013,25(2):127-130.
    [159] Runge, Troy., Houtman, Carl., Negri, Alberto., etal. Timber bamboo pulp [J]. TappiJournal,2013,12(2):9-15.
    [160] Rathi, B.H., Kekre Pradeep, V. Journey of best practices adopted towards excellence inSuper Batch cooking&ECF Fiber line at WCPM [J]. IPPTA,2013,25(1):91-100.
    [161]王习文,詹怀宇,李兵云.深度脱木素技术[J].中国造纸学报,2005,20(1):197-201.
    [162] Gierer J., Reitberger Y., Yang E, et al. Formation and involvement of radicals in oxygendelignification studied by the autoxidation of lignin and carbohydrate model compounds[J]. Journal of wood chemistry and technology,2001,21(4):313.
    [163] Reitberger T., Gierer J., Yang E, et al. Involvement of oxygen-derived free radicals inchemical and biochemical degradation of lignin[C]. Acssymposium series,2001,785:255.
    [164]付时雨, Lucia A,柴欣生,等.氢醌化合物对针叶木硫酸盐纸浆氧脱木素的影响[J].中国造纸学报,2004,19(2):32.
    [165]王丹枫.纤维形态参数及测量[J].中国造纸,2001,20(1):36-39.
    [166] Gordon Rob rtson, James O lson, Philp A llen, et a.l Measurement of f iber length,Coarsenss, and shape with the f iber quality analyzer[J]. Tapp l Tournal,1999,82(10):93-98.
    [167]夏庆根,陈港,李元元.信息技术在现代造纸工业中的应用[J].造纸科学与技术2002,21(2):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700