木质素高值化材料的制备与应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石资源的日益短缺,在出现能源短缺问题的同时,以化石资源为基础的化学品的短缺问题也随之而来,利用植物生物质基材料补充石油基高分子材料变得日益重要。由于木质素中含碳量较高(一般在55%~66%之间),因此可作为碳纤维原料进行利用;而且木质素中含有各种羟基和醚键等基团,可以与高分子产生较强的分子间作用力,因而可以用于和树脂共混制备复合材料。本文首先以木质素为原料制备纳米碳纤维,对木质素基纳米碳纤维的制备工艺、结构性能进行系统研究;然后用木质素增强PVC制备木质素/PVC复合材料,考察不同比例掺杂对共混物的力学性能、热学性能的影响。最后对复合材料的热氧老化降解性能进行了研究。探索制备高值化的木质素/PVC复合材料的最佳工艺条件及配比,为木质素的高值化利用提供数据基础和理论指导。
     以玉米秸秆木质素为原料,以DMF为溶剂,以PAN为共混组分,采用静电纺丝技术制备木质素基纳米纤维,经研究发现,纯木质素溶液很难静电纺丝,木质素溶液浓度在40%以下时只能形成球状颗粒,直到木质素浓度达到50%时,可纺性增加,能够形成带珠粒的丝状纤维;木质素与可纺性高的PAN混纺,在木质素与PAN比例为1:4时能形成直径分布均匀、取向程度好、无串珠的连续纤维;静电纺丝最佳工艺参数为纺丝电压15-20kV、推速0.02mm/min、接收距离17cm、辊筒转速2000r/min,此工艺条件下得到的纤维取向程度好,直径分布均匀。
     以玉米秸秆木质素和PAN为原料,通过静电纺丝工艺在纺丝电压15kV,推速0.04mm/min,接收距离为12cm条件下制备木质素基纳米碳纤维。对制得纳米纤维先驱丝在200-300℃进行预氧化,在600-1000℃进行碳化处理制备木质素基纳米碳纤维,并对纳米碳纤维进行表征后发现,900℃碳化温度下得到的木质素基纳米碳纤维直径比较均匀,光洁度高,形貌较好,结构致密度最高,结构缺陷最少,热稳定性好。所有木质素基纳米碳纤维石墨化程度较低,呈乱层石墨结构。
     以普通PVC板材配方为基础,以竹碱木质素为原料,设计出木质素/PVC复合材料的配方并对不同木质素添加量的复合材料进行表征,研究发现,复合材料当中木质素和PVC分子之间没有化学键结合,两者之间以分子间作用力和偶极作用连接在一起;木质素添加入复合材料体系中,对复合材料的力学性能产生很大的影响。弹性模量在添加量为30phr时达到最大值,拉伸强度在木质素添加量20phr时最接近没有添加木质素的PVC板材的值,而最大断裂延伸率却是在木质素添加量为25phr时最高。复合材料体系还是呈现两相分布,木质素大部分是溶解在PVC基体当中。
     以木质素为原料,优化配方制备出的高强度木质素/PVC复合材料中,并对不同比例的木质素共混改性效果进行评价和表征,研究发现,添加木质素后,PVC的耐热温度普遍提高了50-70℃,提高了PVC的耐热性,木质素添加量为30phr时,其综合力学性能最佳,共混效果最好;通过配方优化,木质素提高了PVC的耐热性和机械性能,对于木质素在PVC当中的使用起到了推动作用。
     不同木质素/碳酸钙比例的PVC复合材料在热氧化炉中进行人工加速老化处理,热氧老化处理温度为100℃。实验考察了木质素添加量(木质素/碳酸钙比例)和热氧老化时间对复合材料老化降解性能的影响。研究发现,木质素能够抑制降解。木质素部分溶解在PVC当中,充当纳米碳酸钙和PVC之间的相容剂。适量的木质素/碳酸钙添加比例具有良好的协同效应,其增强效果可以长时间保持,两者比例为10/10时为最佳,其共混改性效果最理想。此配方中填料分散均匀,所得复合材料的初期热稳定性最高,耐热老化性能良好,综合力学性能指标优良。
With the growing shortage of fossil resources, the energy shortages occur, as well as theshortage of chemicals based on fossil resources has cropped up simultaneously. So the use ofbiomass-based materials as the supplement of petroleum-based polymer materials isbecoming increasingly important. Due to the higher carbon content of lignin (from55%to66%), it can be carried out as the raw material of carbon fiber. Meanwhile, lignin containsvarious hydroxyl group and ether bond, it can produce strong intermolecular forces wit h thepolymer, and thus can be used for preparation of composite materials with resin blends. In thispaper, lignin was used as a raw material for preparing carbon nanofibers firstly. Thepreparation technology, structures and properties of lignin-based carbon nanofibers aresystematically studied. Then the lignin was used as filler to enhance PVC. Different content oflignin reinforced PVC composite material were prepared to investigate blends mechanicalproperties, thermal properties and at last the study on thermal aging degradation performanceof lignin/PVC composite materials was carried out. The optimum technics and formula ofhigh-value lignin/PVC composite materials were explored. The study provides a solidfoundation of data and theoretical guidance for the high-value use of lignin in industry.
     Lignin/polyacrylonitrile (PAN) nanofibers were prepared by electrospinning oflignin/PAN solutions in different blend concentrations. Fibers morphology was observedunder a scanning electron microscope (SEM) and effects of processing parameters includingelectrospinning voltage, flow rate, tip-to-collector distance, and rotational speed on themorphology of electrospun lignin/PAN fibers were studied. The beadless, uniform lignin/PANnanofibers with a diameter of200-300nm were obtained when the weight ratio of PAN tolignin is80%. It was also found that the electrospinning, and had important influences on theaverage fiber diameter and diameter distribution, whereas could significantly affect the degreeof fiber alignment. The prime technics parameters were as follows: voltage is15-20kV, flowrate is0.02mm/min, tip-to-collector distance is17cm and rotational speed is2000r/min.
     Then the precursor fibers were pre-oxidation at200-300℃and then carbonized at atemperature from600℃to1000℃respectively to prepare biomass based carbon nanofibers.The influences of carbonization temperature on prepared carbon nanofibers were investigatedby XRD, RAMAN, TGA, DSC and SEM. The results indicated that the carbon fiberscarbonized at900℃had highest thermal stability, good morphology and most compactstructure. Therefore,900℃is the optimal carbonization temperature for preparinglignin-based carbon nanofibers in this technique.
     Lignin/PVC composite materials were prepared and the effect of lignin incorporationwas investigated by means of mechanical properties, FTIR and scanning electron microscopy(SEM). The results showed when lignin was no more than25portions (mass), theperformance of lignin/PVC composite materials was ideal.
     Lignin/PVC composite plates with various ratios of lignin were prepared by blendingand molding process. The intermolecular bonding between lignin and PVC was determinedvia FTIR analysis and was correlated to mechanical properties. Lignin has been found todisperse in PVC resulting in the shift in IR frequency. The morphology of composites wascharacterized by SEM indicating good compatibility of lignin and PVC. The dispersion oflignin in PVC was uniform. Mechanical and thermal properties were comprehensively studied,showing that composites with lignin exhibit improvement in thermal stability and mechanicalstrength compared to PVC without lignin.
     Different lignin/calcium ratio of the PVC composite undergo artificial accelerated agingtreatment in thermal oxidation furnace, and thermal aging treatment temperature is100℃.
     Experimental study on the effects of the added amount of lignin (lignin/calciumcarbonate ratio) and thermal aging time aging to composite materials’ degradationperformances were carried out. It was found lignin can suppress the degradation of PVC.Lignin was partially dissolved in PVC which acted as a compatibilizer between calciumcarbonate and PVC. The right amount of lignin/CaCO3ratio has good synergy effects that itsmodification effect can be maintained longer. The best ratio of lignin/CaCO3was10/10,whose modification effect was ideal. The composite with this formulation has uniform fillerdispersion, good thermal stability at the beginning, good heat aging resistant properties andexcellent comprehensive mechanical properties.
引文
[1]夏新兴,刘书钗,任维羡.竹材及其磺化化机浆木质素结构与发色基团特性研究[J].中国造纸学报,1995,10:14–19.
    [2]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):42-55.
    [3] Gosselink R. J. A, Snijder M. H. B., Kranenbarg A., et al. Characterisation and applicationof NovaFiber lignin[J]. Industrial Crops and Products,2004,20:191-203.
    [4] Freudenberg K. Lignin: Its Constitution and Formation from p-Hydroxycinnamyl Alcohols:Lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formationand structure[J]. Science,1965,148:595-600.
    [5] Creighton R. H. J., Hibbert H. Studies on lignin and related compounds.LXXVI Alkalinenitrobenzene oxidation of Corn stalks[J]. Journal of the American Chemical Society,1944,66:37.
    [6]袁成强,刘玉,陈嘉川等.麦草碱木素结构特征的研究[J].造纸科学与技术,2008,27(2):20-25.
    [7]谌凡更.麦草碱木质素烷基化反应的研究[J].林产化学与工业,2001,21(2):39-44.
    [8] Sun R. C., Sun X. F., P. Fowler, et al. Structural and physic-chemical characterization oflignins solubilized during alkalin eperoxide treatment of barley straw[J]. European PolymerJournal,2002,38:1399-1407.
    [9] Argyropoulos D. S., Sun Y., Palus E. Isolation of residual kraft lignin in high yield andpurity[J]. Journal of Pulp and Paper Science:2002;28(2):50-54.
    [10] Wu S., Argyropoulos D. S. An improved method for isolating lignin in high yield andpurity[J]. Journal of Pulp and Paper Science,2003,29(7):235-240.
    [11] Van Beilen, J. B., Poirier Y. Production of renewable polymers from crop plants. ThePlant journal: for cell and molecular biology2008,54,684–701.
    [12] Schmidt J. A., Rye C. S., Gurnagul N. Lignin inhibits autoxidative degradation ofcellulose[J]. Polym.Degrad. Stab.,1995,49:291-297.
    [13] Gosselink R. J. A., Ab cherli A., Semke H., et al. Analytical protocols forcharacterisation of sulphur-free lignin[J]. Industrial Crops and Products,2004,19:271-281.
    [14]岳萱,乔卫红,申凯华,李宗石.曼尼希反应与木质素的改性[J].精细化工,2001,18(11):670-673.
    [15]郑雪琴,黄建辉,刘明华,等.碱木素磺化改性制备减水剂及其性能的研究[J].造纸科学与技术,2004,23(5):29~32.
    [16]蒋挺大.木质素[M].北京:化学工业出版社,2008:1-89.
    [17]杨龙寿,张锦云.木质素资源的开发利用[J].化工进展,1994,(1):47.
    [18]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2001:69.
    [19]杨东杰,邱学青,陈焕钦.木素磺酸盐系表面活性剂[J].化学通报,2001(7):416-420.
    [20] Xiao B., Sun X. F., Sun R. C. Chemical, structural, and thermal characterizations ofalkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and ricestraw[J]. Polym. Degrad. Stab.,2001,74:307-319.
    [21]金永灿,吴梦然,邰瓞生,等.兴安落叶松木质素化学结构特性的研究[J].纤维素科学与技术,1995,3(4):28-37.
    [22]秦特夫.杉木和―三北‖一号杨磨木木质素化学官能团特征的研究[J].林业科学,1999,35(3):69-75.
    [23]秦特夫.―I-214杨‖心材、边材木质素的红外光谱、质子和碳-13核磁共振波谱特征研究[J].林业科学研究,2001,14(4):375–382.
    [24]兰家声.有关中小型造纸厂废水治理技术的研究开发情况[J].环境科学,1993,14(增刊):10-17.
    [25] Lundquist K., Simomson R. Lignin reparation with very low carbohydrate content[J].Svensk Papperstidn,1975,78(11):390-392.
    [26]何伟,沙萍,邰瓞生.工业碱木素的纯化方法-甲酚-硫酸法[J].中国造纸,1991(3):33-37.
    [27] Sangita Bhattacharjee, Siddhartha Datta, Chiranjib Bhattacharjee. Performance studyduring ultrafiltration of Kraft black liquor using rotating disk membrane module [J]. J.Cleaner Prod.,2006,14:497-504.
    [28]曾育才,张学先,刘小玲.造纸黑液木质素及其综合利用[J].广东化工,2005,10:11-15.
    [29]穆环珍,杨问波,黄衍初.造纸黑液木质素利用研究进[J].环境污染治理技术与设备,2001,2(3):26-30.
    [30]林鹿,C. L. C. hen, J. S. Gratz,等.草类木质素的氨化反应—草类制浆黑液中木质素的纯化与结构分子[J].中国造纸学报,2001,16:96–100.
    [31]谌凡更.龙须草碱木质素特性的研究[J].纤维素科学与技术,1994,2(3-4):89-95.
    [32]李光日,付时雨,余惠生.芦苇硫酸盐浆残余木质素特性的研究[J].纤维素科学与技术,2000,8(3):28-33.
    [33]尹忠,杨林.碱木素的磺化及在泥浆中的应用[J].西南石油学院报,1996,18(2):91~94.
    [34]姜庆梅.麦草碱木素缩合改性制备减水剂的方法[J].现代化工,2001,29(1):328.
    [35]王海燕,倪宁晖,李忠正,等.麦草碱木素复合臭氧氧化改性及应用性能的研[J].中国造纸学报,2005,20(01):101-105.
    [36]邓国颂,邱学青,欧阳新平.麦草碱木素磺化工艺及其性能研究[J].中国造纸,2005,24(12):29-33.
    [37]梁文学,邱学青,杨东杰等.氧化磺化碱木素用作混凝土减水剂[J].中国造纸,2006,25(1):73-75.
    [38]邱学青,周明松,杨东杰,等.麦草碱木素高效水煤浆分散剂的应用性能[J].中国纸,2007,26(02):31-34.
    [39]李风起,朱书全.添加剂对煤/水界面性质的影响与效能研究[J].选煤技术,2001(1):22-24.
    [40] Yang D. J., Qiu X. Q., Zhou M. S., et al. Properties of sodium lignosulfonate asdispersant of coal water slurry[J]. Energy Conversion and Management,2007,48(9):2433-2438.
    [41] Kijima M., Hirukawa T., Hanawa F., et al. Thermal conversion of alkaline lignin and itsstructured derivatives to porous carbonized materials[J]. Bioresource technology,2011,102:6279–85.
    [42]田震,邱学青,王晓东.碱木质素性能及应用进展[J].精细化工,2001,18(2):63-67
    [43]陈学榕,江茂生,高雨,等.碱木素纸张增强剂合成及应用[J].福建农林大学学报(自然科学版),2006,35(03):101~106.
    [44]陈均志,唐宏科.碱木素作为纸板施胶增强剂的研究[J].造纸科学与技术,2003,22(01):37-38.
    [45] Effendi A., Gerhauser H., Bridgwater A. V. Production of renewable phenolic resins bythermochemical conversion of biomass: A review. Renewable and Sustainable EnergyReviews,2008,12,2092–2116.
    [46] Deng H., Lin L., Liu S. Catalysis of Cu-doped Co-based perovskite-type oxide in wetoxidation of lignin to produce aromatic aldehydes [J]. Energy Fuels,2010,24:4797-4802.
    [47] Zhang J., Deng H., Lin L. Wet aerobic oxidation of lignin into aromatic aldehydescatalysed by a perovskite-type oxide: LaFe1-xCuxO3(x=0,0.1,0.2)[J]. Molecules,2009,14:2747-2757.
    [48] Sales F. G., Maranh o L. C. A., Filho N. M. L., et al. Experimental evaluation andcontinuous catalytic process for fne aldehyde production from lignin [J]. Chem. Eng. Sci.,2007,62:5386-5391.
    [49] Sales F. G., Abreu C. A. M., J. Pereira A. F. R., et al. Catalytic wet-air oxidation oflignin in a three-phase reactor with aromatic aldehyde production [J]. Brazilian J. Chem. Eng.,2004,21:211-218.
    [50] Pinto P. C. R., Silva E. A. B., Rodrigues A. E. Comparative study of solid-phaseextraction and liquid-liquid extraction for the reliable quantification of high value addedcompounds from oxidation processes of wood-derived lignin [J]. Ind. Eng. Chem. Res.,2010,49:12311-12318.
    [51] Voitl T., Rohr P. R. von. Demonstration of a process for the conversion of kraft lignininto vanillin and methyl vanillate by acidic oxidation in aqueous methanol [J]. Ind. Eng.Chem. Res.,2010,49:520-525
    [52] Xiang Q., Lee Y. Y. Production of oxychemicals from precipitated ha rdwood lignin [J].Appl. Biochem. Biotechnol.,2001,91/93:1-9/71-80.
    [53] Shen D. K., Gu S., Luo K. H., et al. The pyrolytic degradation of wood-derived ligninfrom pulping process [J]. Bioresour. Technol.,2010,101:6136-6146.
    [54] Masaru W., Takaftlmi S., Hiroshi1. Chemical reactions of C l compounds in near-critiealand supereritieal water [J]. Chemical Review,2004,104:5803-5821.
    [55] Brodin I., Sj holm E., Gellerstedt G. Kraft lignin as feedstock for chemical products: Theeffects of membrane filtration. Holzforschung2009,63,290–297..
    [56] Zakzeski J., BruijnincxP. C., Jongerius A. L., et al. The catalytic valorization of lignin forthe production of renewable chemicals. Chemical reviews2010,110,3552–99.
    [57] Kindsigo M., Kallas J. Degradation of lignins by wet oxidation: Model watersolutions [J]. Proc. Estonian Acad. Sci. Chem.,2006,55:132-144
    [58]马隆龙.生物质能利用技术的研究及发展[J].化学工业,2007,25(8):9-14.
    [59] GosselinkR. J., De Jong E., Guran B., et al. Co-ordination network forlignin—standardisation, production and applications adapted to market requirements(EUROLIGNIN)[J]. Industrial Crops and Products2004,20,121–129.
    [60]钱伯章,朱建芳.碳纤维发展现状及市场分析[J].合成纤维,2007(7):10—14
    [61]赵稼祥.世界碳纤维的需求[J].高科技纤维与应用,2005,30(2):7--10.
    [62]张鹏.碳纤维的应用及市场[J].新材料产业,2001(7):27--29.
    [63]吴长路.木质基碳纤维[J].玻璃钢/复合材料,2002(6):43--44.
    [64]春胜利,黄榴红,李勇锋.碳纤维及其在复合材料方面的应用[J].玻璃钢,2005(2):5--14.
    [65]沈曾民.新型碳纤维[M].北京:化学工业出版社,2003.
    [66] OTANI S, FUKUOKA Y, IGARASHI B, et al. Method for producing carbonized ligninfiber:US3.461.082[P].1969-08-12.
    [67]王茂章,贺福.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984.
    [68]白石信夫.木材のプラスチツケ化[J].木材学会誌,1986,32(10):755--762.
    [69] Gellerstedt G., Sj holm E., Brodin I. The Wood-Based Biorefinery: A Source of CarbonFiber?[J].The Open Agriculture Journal2010,3:119–124.
    [70] Baker F.S., Griffith W.L., Compere A.L. Low-cost carbon fibers from renewableresources[J]. Automotive light weight materials, FY2005Process Report,2005,187-196.
    [71] Brunow G. Oxidative coupling of phenols and the biosynthesis of lignin[J]. In Lignin andLignan Biosynthesis, American Chemical Society,Washington, DC,1998,131-147.
    [72] Eckert R.C., Abdullah Z. Carbon fibers from kraft softwood lignin[J]. United StatesPatent US0318043A1,25Dec.2008.
    [73] Griffith W.L., Compere A.L., Leitten C.F. Improving the fundamental properties oflignin-based carbon fiber for transportation applications[J]. International SAMPE TechnicalConference Series,2004,49:2246-2254.
    [74] Kubo S.,Kadla J. F. Lignin-based carbon fiber: Effect of synthetic polymer blending onfiber properties[J]. Journal of Polymers and the Environment,2005,13(2):97-105.
    [75] Uraki Y.,Nakatani A., Kubo S., et al. Preparation of activated carbon fibers with largespecific surface area from softwood acetic acid lignin[J]. Journal of Wood Science,2001,47(6):465-469.
    [76] Kubo S., Kadla J.F. Lignin-based carbon fibers: effect of synthetic polymer blending onfiber properties[J]. Polymer Environ.2005,13(2):97-105.
    [77] Sudo K., Shimizu K., Nakashima N., et al. A newmodification method of exploded ligninfor the preparation of acarbon fiber precurso[rJ]. Journal of Applied Polymer Science,1993,48(8):1485-1491.
    [78] Lora J.H., Glasser W.G. Recent industrial application of lignin: a sustainable alternativeto nonrenewable materials [J]. Poly.&Environ.2002,10(2):39-48.
    [79] Kadla J. F.,Kubo S.,Venditti R. A.,et al. Lignin-based carbon fiber for composite fiberapplictions[J]. Carbon,2002,40(15):2913-2920.
    [80] Kubo S., Uraki Y., Sano Y. Catalytic graphitization of hardwood acetic acid lignin withnickel acetate[J]. Journal of Wood Science,2003,49(2):188-192.
    [81] Sudo K.,Shimizu K. A new carbon fiber from lignin[J].Journal of Applied PolymerScience,1992,44(1):127-134.
    [82] Megelski S., Stephens J. S., et al. Micro and nanostructured surface morphology onelectrospun polymer fibers[J]. Macromolecules,2002,35(22):8456-8466.
    [83] Mit-uppatham C., Nithitanakul M., Supaphol P. Ultrafme electrospun polyarnide-6fibers:Effect of solution conditions on morphology and average fiber diameter[J].Macromolecular Chemistry and Physics,2004,205(17):2327-2338.
    [85] Koskj A., Yim K., Shivkumar S. Effect of molecular weight on fibrous PVA produced byelectrospinning[J]. Materials Letters,2004,58(3-4):493-497.
    [86]杨清彪,王策,洪友良等.聚丙烯腈纳米纤维的再细化[J].高等学校化学学报,2004,25(3):589-591.
    [87] Qin X. H., Wan Y. Q., et al. Effect of LiCl on electrospinning of PAN polymer solution:theoretical analysis and experimental verification[J]. Polymer,2004,45(18):6409-6413.
    [88] Kim B., Park H., et al. Poly (acrylic acid) nanofibers by electrospinning[J]. MaterialsLetters,2005,59(7):829-832.
    [89] Aili M., Chengqian L., Wuqing D. and Jie C. Study on Biomass Based NanofibersPreparation by Electrospinning[J]. Journal of Nanoscience and Nanotechnology,2014,14:7204–7210.
    [90] Shin Y. M., Hohman M. M., et a1. Experimental characterization of eleetrospinning: theelectrically forced jet and instabilities[J]. Polymer,2001,42(25):9955-9967
    [91] Zhong X. H., Kim K. S., et al. Structure and process relationship of electrospunbioabsorbable nanofiber membranes[J]. Polymer,2002,43(16):4403-4412.
    [92] Jarusuwannapoom T., Hongroijanawiwat W., et al. Effect of solvents onElectrospinnability of polystyrene solution and morphological appearance of resultingelectrospun polystyrene solution and morphological appearane of resultingelectrospun polystyrene fibers[J]. European Polymer Journal,2005,41(3):409-421.
    [93] Mo X. M., Xu C. Y., et a1. Electrospun P (LLA-CL) nanofiber: a biomimeticextracellular matrix for smooth muscle cell andb endothelia1cell proliferation[J].Biomaterials,2004,25(10):1883-1890.
    [94] Thanh Binh N. T., Luong N. D., Kim D. O., et al. Synthesis of Lignin-BasedThermoplastic Copolyester Using Kraft Lignin as a Macromonomer[J]. Composite Interfaces,2009,16:923–935.
    [95] Li Y., Ragauskas A. J. Kraft Lignin-Based Rigid Polyurethane Foam[J]. Journal of WoodChemistry and Technology,2012,32:210–224.
    [96] Hatakeyama H., Hatakeyama T. Lignin Structure, Properties, and Applications[J].Advances in Polymer Science,2010,232:1–63.
    [97] Kim Y. S.; Kadla J. F. Preparation of a thermoresponsive lignin-based biomaterialthrough atom transfer radical polymerization[J]. Biomacromolecules,2010,11:981–988.
    [98] Stanzione III J. F., Sadler J. M., La Scala J. J., et al. Vanillin-based resin for use incomposite applications[J]. Green Chemistry,2012,14:2346-2350.
    [99] Guigo N., Mija A., Vincent L., Sbirrazzuoli N. Eco-friendly composite resins based onrenewable biomass resources: Polyfurfuryl alcohol/lignin thermosets[J]. European PolymerJournal,2010,46:1016–1023.
    [100] Ionov L. Actively-moving materials based on stimuli-responsive polymers[J]. Journal ofMaterials Chemistry,2010,20:3382-3386.
    [101] Klinger D., Landfester K. Stimuli-Responsive Microgels for the Loading and Release ofFunctional Compounds: Fundamental Concepts and Applications[J]. Polymer,2012, Article in,1–23.
    [102] Stuart M. C., Huck W. T. S., Genzer J., et al. Emerging applications ofstimuli-responsive polymer materials[J]. Nature materials,2010,9:101–113.
    [103] Chen S., Hu J., Yuen C., et al. Novel moisture-sensitive shape memory polyurethanescontaining pyridine moieties[J]. Polymer,2009,50:4424–4428.
    [104] Leng J., Lv H., Liu Y., et al. Synergic effect of carbon black and short carbon fiber onshape memory polymer actuation by electricity[J]. Journal of Applied Physics,2008,104:1049-1117.
    [105] Mohr R., Kratz K., Weigel T., et al. Initiation of shape-memory effect by inductiveheating of magnetic nanoparticles in thermoplastic polymers[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2006,103:3540–3545.
    [106] Huang W. M., Yang B., An L., et al. Water-driven programmable polyurethane shapememory polymer: Demonstration and mechanism[J]. Applied Physics Letters,2005,86:114105.
    [107] Huang W. M., Yang B., Zhao Y., et al. Thermo-moisture responsive polyurethaneshape-memory polymer and composites: a review[J]. Journal of Materials Chemistry,2010,20:3367–3381.
    [108] Mendez J., Annamalai P. K., Eichhorn S. J., et al. Bioinspired Mechanically AdaptivePolymer Nanocomposites with Water-Activated Shape-Memory Effect[J]. Macromolecules,2011,44:6827–6835.
    [109] Yang B., Min Huang W., Li C., et al. Effects of moisture on the glass transitiontemperature of polyurethane shape memory polymer filled with nano-carbon powder[J].European Polymer Journal,2005,41:1123–1128.
    [110] Zhu Y., Hu J., Luo H., et al. Rapidly switchable water-sensitive shape-memorycellulose/elastomer nano-composites. Soft Matter,2012,8:2509–2517.
    [112] Lendlein A., Langer R. Biodegradable, elastic shape-memory polymers for potentialbiomedical applications[J]. Science (New York, N.Y.),2002,296:1673–1676.
    [113] Kunzelman J., Chung T., Mather P. T., et al. Shape memory polymers with built-inthreshold temperature sensors[J]. Journal of Materials Chemistry,2008,18:1082-1086.
    [114] Lu H., Gou J., Leng J., et al. Magnetically aligned carbon nanotube in nanopaperenabled shape-memory nanocomposite for high speed electrical actuation[J]. Applied PhysicsLetters,2011,98:174105.
    [115] Liu C., Qin H., Mather P. T. Review of progress in shape-memory polymers[J]. Journalof Materials Chemistry,2007,17:1543-1547.
    [116] Leng J., Lan X., Liu Y., et al. Shape-memory polymers and their composites: Stimulusmethods and applications[J]. Progress in Materials Science,2011,56:1077–1135.
    [117] Ratna D., Karger-Kocsis J. Recent advances in shape memory polymers and composites:a review[J]. Journal of Materials Science,2008,43:254–269.
    [118] Pandini S., Passera S., Messori M., et al. Two-way reversible shape memory behaviourofcrosslinked poly(ε-caprolactone)[J]. Polymer,2012,53:1915–1924.
    [119] Jeong H.M., Ahn B.K., Kim B. K. Miscibility and shape memory e€ect ofthermoplastic polyurethane blends with phenoxy resin[J]. European Polymer Journal,2001,37:2245–2252.
    [120] Zhang H., Wang H., Zhong W., et al. A novel type of shape memory polymer blend andthe shape memory mechanism[J]. Polymer,2009,50:1596–1601.
    [121] Kurahashi E., Sugimoto H., Nakanishi E., et al. Shape memory properties ofpolyurethane/poly(oxyethylene) blends[J]. Soft Matter,2012,8:496–503.
    [122] Jeong H. M., Song, J.H., Lee S. Y., et al. Miscibility and shape memory property of poly(vinyl chloride)/thermoplastic polyurethane blends[J]. Journal of Materials Science,2001,36:5457–5463.
    [123] Luo X., Mather P. T. Triple-Shape Polymeric Composites (TSPCs)[J]. AdvancedFunctional Materials,2010,20:2649–2656.
    [124] D’hollander S., VanAssche G., Van Mele B.,et al. Novelsynthetic strategytoward shapememory polyurethanes with a well-defined switching temperature[J]. Polymer,2009,50:4447–4454.
    [125] Bellin I., Kelch S., Langer R., Lendlein. Polymeric triple-shape materials[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103:18043–7.
    [126] Ware T., Hearon K., Lonnecker A., et al. Triple-Shape Memory Polymers Based onSelf-Complementary Hydrogen Bonding[J]. Macromolecules,2012,45:1062–1069.
    [127] Ahn S., Kasi R. M. Exploiting Microphase-Separated Morphologies of Side-ChainLiquid Crystalline Polymer Networks for Triple Shape Memory Properties[J]. AdvancedFunctional Materials,2011,21:4543–4549.
    [128] Hayashi J., Kazehaya A., Muroyama K., Watkinson A. P. Preparation of activatedcarbon from lignin by chemical activation[J]. Carbon,2000,38:1873–1878.
    [129] Aoki D., Teramoto Y., Nishio Y. SH-containing cellulose acetate derivatives: preparationand characterization as a shape memory-recovery material[J]. Biomacromolecules,2007,8:3749–57.
    [130] Skrzeszewska P. J., Jong L. N., De Wolf F., et al. Shape-memory effects in biopolymernetworks with collagen-like transient nodes[J]. Biomacromolecules,2011,12:2285–92.
    [131] Huang C., Soenen S. J., Rejman J., et al. Stimuli-responsive electrospun fibers and theirapplications[J]. Chemical Society reviews,2011,40:2417–34.
    [132] Kubo S., Yoshida T., Kadla J. F. Surface Porosity of Lignin/PP Blend Carbon Fibers[J].Journal of Wood Chemistry and Technology,2007,27:257–271.
    [133] Kadla J.F., Kubo S., Venditti R.A.,et al. Lignin-based carbon fibers for composite fiberapplications[J]. Carbon,2002,40:2913–2920.
    [134]Yueyuan Y., Yu Z., Juan F., et al. Noveo method for production of phenolics bycombining lignin extraction with lignin depolymerization in aqueous ethanol[J].Industrial&Engineering Chemisty Research,2012,51(1):103-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700