生物质白腐菌改性与抗性变化的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能源危机日益严重,利用木质纤维素类生物质获取生物基产品成为研究热点。通过纤维素酶水解反应从生物质中得到发酵底物——糖类是获取生物基产品的物质基础,但是在天然木质纤维素中,纤维素的低可及度与结晶性、木质素与半纤维素的屏障效应、木质素对纤维素酶的非有效吸附、酶的吸附与解吸附、反应过程的非均相性等诸多因素导致生物质对纤维素酶水解具有很强的抗性,成为生物质有效利用的瓶颈。预处理是减弱抗性,有效释放酶水解底物,提高生物质利用效率的重要途径。诸多白腐菌对木质素具有强降解能力的特性为生物预处理技术发展开辟了新空间。因此,本论文以建立生物质白腐菌改性体系及明确其与抗性变化的内在联系及作用规律为主要内容进行研究。主要研究结果如下:
     以玉米秸秆、稻草、竹粉三种生物质为原料,研究了来自神农架自然保护区典型生境的33株担子菌对生物质改性的效果,结果发现不同生物学属性的担子菌对生物质的改性效果差异显著,不同担子菌菌株与生物质类型之间需要组配。适合玉米秸秆、稻草、竹粉三种生物质的菌株依次为菌株CD2、Pleurotus sp.4号、Coriolusversicolor。通过改变担子菌降解环境与条件可优化改性效果,与其它组合及对照相比,菌株CD2改性玉米秸秆效果显著,改性后玉米秸秆疏松、颜色变浅。纤维素酶酶解后糖化率高达62.0%,比未处理的玉米秸秆原料提高231.6%,由此建立了具有应用前景和研究价值的“CD2-玉米秸秆”固体发酵改性体系。对菌株CD2进行分子鉴定,确定其分类地位为:担子菌门、伞菌亚门、伞菌纲、多孔菌目(无褶菌目)、齿耳菌科、耙菌属Irpex lacteus。该菌株在PDA与玉米秸秆基质上最适生长温度不同,分别为30℃与28℃。
     在不同降解阶段,I.lacteus CD2通过对木质纤维素不同组分的选择性降解对玉米秸秆进行改性、腐朽。早期选择性降解半纤维素,中期选择性降解与修饰木质素,后期同步降解三种木质纤维素组分。改性与腐朽过程中木质纤维素超分子官能团发生变化的主要类型为醚键水解转化、脱甲基、开环降解等。对腐朽过程中木质素降解酶活性及胞外酶液铁还原能力研究表明:腐朽早、中期未分泌胞外木质素降解酶,但具有铁还原能力,后期胞外滤液具有较低的LiP酶活性。另外,该菌株具有胞壁漆酶。木质素选择性迅速降解时期无胞外木质素降解酶活性,表明I.lacteus CD2降解木质素具有非胞外木质素降解酶主导的特殊机制。
     为明确I.lacteus CD2改性玉米秸秆后酶解糖化率显著提高的基质特征,对不同处理后的玉米秸秆样品进行酶解反应过程动力学与酶解负荷动力学研究发现,基于Bailey模型提出的“转化率-酶负荷”公式能够很好地描述转化率随酶负荷的变化规律,拟合参数最大转化率P_1可用于表征生物质底物酶解转化的潜力。以生物质中不能被转化的能源底物的比例定义酶解抗性,依托P_1建立了生物质酶解抗性的定量评价方法。量化的酶解抗性与I.lacteus CD2预处理后玉米秸秆糖化率呈负相关,说明该定量指标能够科学、全面地表征生物质酶解的基质特征。
     进一步通过组分测定、XRD、N_2吸附法、ESEM等手段,从I.lacteus CD2改性过程中木质素修饰与含量变化、半纤维素含量变化等化学障碍解除,结晶度、比表面积、孔径分布、表面微观结构等物理屏障变化等多个角度,研究了I.lacteus CD2降低玉米秸秆酶解抗性的机制。结果表明:多种因素共同促使I.lacteus CD2降低酶解抗性,包括木质素修饰、降解,半纤维素含量降低,比表面积、孔隙度增加,菌丝对植物组织的穿透及细胞壁的腐蚀。其中,酸不溶性木质素含量、酸溶性木质素含量分别与酶解抗性具有一定程度负相关与正相关性,表明木质素降解程度对生物质酶解抗性降低起主要作用,结晶度变化对木质纤维素酶解抗性影响不大。该研究不仅揭示了白腐菌生物质改性与酶解抗性降低的内在联系,也为深入进行生物质白腐菌预处理应用研究提供了理论及技术支撑。
Due to the increasingly serious energy crisis and environment problem, the development of bio-based industrial products from lignocellulosic biomass is in great demand, for example, cellulosic ethanol. For production of chemicals from biomass, enzymatic hydrolysis of cellulose and hemicellulose to fermentable sugars is generally employed. However, the conversion efficiency of natural materials is usually very poor, low efficiency of sugar molecule releasing. Biomass recalcitrance, a general designation of substrate-related factors, is responsible for the efficiency of sugar molecule releasing. Many factors contributing to high recalcitrance of biomass mainly include structural heterogeneity and complexity of cell wall, precisely arranged crystalline cellulose, low accessibility of cellulose, lignification and the heterogeneous reaction of saccharification. Of these characteristics above, which are the most important still remains unclear. Pretreatment is one of the key points to enhance the efficiency of biomass utilization and relieve recalcitrance. Due to low energy-consuming and environment friendly, biological pretreatment has received extensive attention. White rot fungi, most belonging to basidiomycetes, are the most promising microorganisms for biological pretreatment due to their capacity of degrading lignin to water and carbon dioxide. Therefore, biomass degradation system by white rot fungi was firstly established, and then the relationship between recalcitrance change and biodegradation was investigated in this paper.
     To establish a high efficient degradation system, 33 strains of basidiomycetes, obtained from Shennongjia Nature Reserve in China, were employed to treat three kinds of biomass. After enzymatic hydrolysis of pretreated biomass, transformation rates and saccharification rates were used to evaluate the effect of different pretreatments. The result indicated that the effect of different degradation system varied a lot, with the suitable strains for pretreatment of corn stover, wheat straw and bamboo were strain CD2, Pleurotus sp. No.4 and Coriolus versicolor, respectively. The effect of biological pretreatment could be optimized by altering the cultivation conditions and medium for biodegradation by basidiomycetes. Strain CD2 showed the greatest superiority in promoting enzymatic hydrolysis, with the highest saccharification rate reaching 62.0%, which was 2.32 times of untreated corn stover. Therefore, the best biodegradation system of "strain CD2-corn stover", which was the most promising biopretreatment for cellulosic ethanol production, was chosen for further study. The strain CD2, identified as Irpex lacteus by ITS sequence analysis, is a white rot fungus. The optimum growth temperature was respectively 30℃and 28℃on PDA and corn stover medium. Corn stover pretreated with I. lacteus CD2 was brickie and turned white from its original color of brown.
     Corn stover was decayed by different mode with I. lacteus CD2 at varying durations. Hemicellulose and lignin was respectively selectively degraded at the initial and middle stage of biodegradation, with the content of acid soluble lignin being significantly enhanced. Cellulose, hemicellulose and lignin were simultaneously degraded at the last stage. During biodegradation and modification, ether hydrolysis, demethylation and cleavage of aromatic rings were the main changes on lignocellulose function groups. No extracellular ligninolytic enzymes were detected during 120 days of cultivation on corn stover medium except for low LiP activity after 25 days. In PDB medium, low level of mycelium-associated laccase, intracellular MnP and LiP could be detected. FeRA could be detected in the extracellular fermentation extracts all along the decay periods. The results suggested that lignin degradation by I. lacteus CD2 followed a special mechanism independent on extracellular ligninases.
     To find the key characteristics influencing saccharification rate, studies on kinetics of enzymatic hydrolysis under different enzyme loading for varying reaction time were carried out. The results indicated initial velocity could not represent the final efficient of enzymatic hydrolysis. Transformation rates of corn stover samples versus enzyme loading followed the same curve proposed by Bailey. Based on this, biomass recalcitrance to enzyme hydrolysis was quantified and calculated as the percentage of holocellulose not hydrolyzed to reducing sugars during enzymatic hydrolysis. The quantified recalcitrance was proved to be in negative correlation with saccharification rate, which illustrated that this parameter could scientifically estimate the general characteristic of biomass for enzymatic hydrolysis.
     To make certain the chemical and physical mechanism of the reduced recalcitrance by I. lacteus CD2, further research mainly focused on the changes of lignin, hemicellulose, crystallinity index, surface area, pore size distribution, and surface structure, which were developed by means of components' content determination, XRD analysis, nitrogen adsorption method and ESEM analysis. The results indicated that many factors contributed to the reduced recalcitrance to enzymatic hydrolysis, including lignin degradation and modification, hemicellulose degradation, increased surface area and porosity, mycelium penetration. Acid insoluble lignin and acid soluble lignin were respectively in positive and negative correlation with recalcitrance, which demonstrated that the reduced recalcitrance by I. lacteus CD2 was mainly determined by the extent of lignin degradation and modification. The crystallinity index of cellulose didn't significantly influence recalcitrance. This thesis not only proclaimed the inherent correlation between reduced recalcitrance and biomass quality altering by I. lacteus CD2, but also provided theoretical and technical foundation for biological pretreatment of biomass with white rot fungi.
引文
[1] 陈洪章.纤维素生物技术.北京:化学工业出版社,2005.
    [2] Betts WB, Dart RK, Ball AS, et al. Biosynthesis and structure of lignocellulose, in: Betts WB (ed.). Biodegradation: Natural and Synthetic Materials. Berlin, Germany: Springer-Verlag, 1991.139-155.
    [3] Barton FE. Chemistry of lignocellulose: methods of analysis and consequences of structure. Animal Feed Science and Technology, 1988, 21(2): 279-286.
    [4] Dhepe PL, Fukuoka A. Cellulose conversion under heterogeneous catalysis. Chem Sus Chem, 2008, 1(12): 969-975.
    [5] P(?)rez J, Mu(?)oz-Dorado J, de la Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 2002, 5(2): 53-63.
    [6] 刘仁庆.纤维素化学基础.北京:科学出版社,1985.
    [7] 高洁,汤烈贵.高分子科学丛书纤维素科学.北京:科学出版社,1996.
    [8] Madison WI. Wood handbook-Wood as an engineering material. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1999.
    [9] Saha BC. Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 2003, 30(5): 279-291.
    [10] Bercier A, Plantier-Royon R, Portella C. Convenient conversion of wheat hemicelluloses pentoses (D-xylose and L-arabinose) into a common intermediate. Carbohydrate Research, 2007, 342(16): 2450-2455.
    [11] 陈洪雷,黄峰,杨桂花,等.草木半纤维素的研究进展.林产化学与工业,2008,28(1):119-126.
    [12] 李民栋.竹材化学组成和半纤维素结构的特性.中国造纸,1990,9(3):56-59.
    [13] Morrison TA, Jung HG, Buxton DR, et al. Cell-wall composition of maize internodes of varying maturity. Crop Science, 1998, 38: 455-460.
    [14] Monties B, Fukushima K. Occurrence, function and biosynthesis of lignins, in: Hofrichter M, Steinb(u|¨)chel A (eds.). Biopolymers, Vol 1--Lignin, Humic Substances and Coal. Helsinki, Finland: Wiley-VCH, 2001.1-64.
    [15] Malherbe S, Cloete TE. Lignocellulose biodegradation: Fundamentals and applications. Reviews in Environmental Science and Biotechnology, 2002, 1(2): 105-114.
    [16] 邬义明.植物纤维化学(第二版).中国轻工业出版社,1995.
    [17] Suhas, Carrott PJM, Ribeiro Carrott MML. Lignin-from natural adsorbent to activated carbon: A review. Bioresource Technology, 2007, 98(12): 2301-2312.
    [18] 吕晓静,杨军,王迪珍,等.木质素的高附加值应用新进展.化工进展,2001,20(5):10-14.
    [19] 蒋挺大.木质素(第二版).北京:化学工业出版社,2009.
    [20] 李坚.木材波谱学.北京:科学出版社,2003.
    [21] Shevchenko SM, Bailey GW. The mystery of the lignin-carbohydrate complex: a computational approach. Journal of Molecular Structure: THEOCHEM, 1996, 364(2-3): 197-208.
    [22] Saulnier L, Thibault JF. Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 1999, 79(3): 396-402.
    [23] Lawoko M, Hennksson G, Gellerstedt G. New method for quantitative preparation of lignin-carbohydrate complex from unbleached softwood kraft pulp: lignin-polysaccharide networks I. Holzforschung, 2003, 57(1): 69-74.
    [24] 刘晓娟,殷卫峰.国内外生物质能开发利用的研究进展.洁净煤技术,2008,14(4):7-9.
    [25] Wyman CE. What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 2007, 25(4): 153-157.
    [26] Weng JK, Li X, Bonawitz ND, et al. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Current Opinion in Biotechnology, 2008, 19(2): 166-172.
    [27] Wheals AE, Basso LC, Alves DM, et al. Fuel ethanol after 25 years. Trends in Biotechnology, 1999, 17(12): 482-487.
    [28] 罗鹏,刘忠.木质生物资源的水解.林产化学与工业,2006,26(2):99-104.
    [29] 马晓建,赵银峰,祝春进,等.以纤维素类物质为原料发酵生产燃料乙醇的研究进展.食品与发酵工业,2004,30(11):77-81.
    [30] Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 2004, 66(1): 10-26.
    [31] Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 2002, 83(1): 1-11.
    [32] Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 2008, 26(1): 89-105.
    [33] 田沈,徐鑫,孟繁燕,等.木质纤维素乙醇发酵研究进展.农业工程学报,2006,22(增刊1):221-224.
    [34] Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology Letters, 2008,30(9): 1515-1524.
    [35] 鲍晓明,沈煜.植物纤维原料全糖乙醇发酵菌株选育.生物产业技术,2008,(5):49-57.
    [36] Hahn-H(a|¨)gerdal B, Karhumaa K, Jeppsson M, et al. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Advances in Biochemical Engineering /Biotechnology, 2007, 108:147-177.
    [37] 张德强,黄镇亚,张志毅.木质纤维素生物量一步法(SSF)转化成乙醇的研究进展.北京林业大学学报,2001,23(6):52-55.
    [38] Bothast RJ, Nichols NN, Dien BS. Fermentations with new recombinant organisms. Biotechnology Progress, 1999, 15(5): 867-875.
    [39] Wyman CE, Dale BE, Elander RT, et al. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 2005, 96(18): 1959-1966.
    [40] Esteghlalian A, Srivastava V, Gilkes N. An overview of factors influencing the enzymatic hydrolysis of lignocellulosic feedstocks, in: Himmel ME, Baker JO, Saddler J-N (eds.). Glycosyl Hydrolases for Biomass Conversion. Washington, DC: American Chemical Society, 1999. 100-111.
    [41] Kadam KL, Chin CY, Brown LW. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. Journal of Industrial Microbiology & Biotechnology, 2008, 35(5):331-341.
    [42] Gregg D J, Saddler JN. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 1996, 51 (4): 375-383.
    [43] Philippidis GP, Smith TK. Limiting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol. Applied Biochemistry and Biotechnology, 1995, 51-52:117-124.
    [44] Mansfield SD, Mooney C, Saddler JN. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 1999,15(5): 804-816.
    [45] Wen Z, Liao W, Chen S. Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Applied Biochemistry and Biotechnology, 2005, 121-124: 93-104.
    [46] Eriksson T, Borjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 2002, 31(3):353-364.
    [47] Liu J, Yuan X, Zeng G, et al. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochemistry, 2006,41(11): 2347-2351.
    [48] Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 2004, 86(1): 88-95.
    [49] Lu Y, Yang B, Gregg D, et al. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Applied Biochemistry and Biotechnology, 2002, 98-100: 641-654.
    [50] Foreman PK, Brown D, Dankmeyer L, et al. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. The Journal of Biological Chemistry, 2003, 278(34): 31988-31997.
    [51] Viikari L, Alapuranen M, Puranen T, et al. Thermostable enzymes in lignocellulose hydrolysis. Advances in Biochemical Engineering/Biotechnology, 2007, 108:121-145.
    [52] Zhou J, Wang YH, Chu J, et al. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14.Bioresource Technology, 2008, 99(15): 6826-6833.
    [53] Benko Z, Siika-aho M, Viikari L, et al. Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates. Enyzme and Microbial Technology, 2008, 43(2): 109-114.
    [54] Zhang YHP, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 2006, 24(5): 452-481.
    [55] Martins LF, Kolling D, Camassola M, et al.Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology, 2008, 99(5): 1417-1424.
    [56] Valjamae P, Sild V, Pettersson G, et al. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. European Journal of Biochemistry, 1998, 253(2): 469-475.
    [57] Ohgren K, Bura R, Saddler J, et al. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 2007,98(13): 2503-2510.
    [58] Tomme P, Warren RAJ, Miller RC, et al. Cellulose-binding domains: classification and properties, in: Saddler JN (ed.). Enzymatic Degradation of Insoluble Carbohydrates Symposium. San Diego, CA: American Chemical Society, 1995.145-163.
    [59] Dumas B, Bottin A, Gaulin E, et al. Cellulose-binding domains: cellulose associated-defensive sensing partners? Trends in Plant Science, 2008, 13(4): 160-164.
    [60] Linder M, Salovuori I, Ruohonen L, et al. Characterization of a double cellulose-binding domain: synergistic high affinity binding to crystalline cellulose. The Journal of Biological Chemistry, 1996, 271(35): 21268-21272.
    [61] Linder M, Teeri TT. The roles and function of cellulose-binding domains. Journal of Biotechnology, 1997, 57(1-3): 15-28.
    [62] Tormo J, Lamed R, Chirino AJ, et al. Crystal structure of a bacterial family-Ill cellulose-binding domain: a general mechanism for attachment to cellulose. The EMBO Journal, 1996, 15(21): 5739-5751.
    [63] Azevedo H, Bishop D, Cavaco-Paulo A, et al. Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi). Enzyme and Microbial Technology, 2000, 5(27): 325-329.
    [64] Jeoh T, Wilson DB, Walker LP. Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnololgy Progress, 2006, 22(1): 270-277.
    [65] Ingesson H, Zacchi G, Yang B, et al. The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. Journal of Biotechnology, 2001, 88(2): 177-182.
    [66] Fierobe HP, Bayer EA, Tardif C, et al. Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. The Journal of Biological Chemistry, 2002, 277(51): 49621-49630.
    [67] 刘淑艳.丝状真菌尖镰孢 Fusarium oxysporum L19嗜热内切葡聚糖酶的研究: [博士学位论文].山东济南:山东大学图书馆,2006.
    [68] Grethlein HE. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Biotechnology, 1985, 3(2): 155-160.
    [69] H(a|¨)ggkvist M, Li TQ,(O|¨)dberg L. Effects of drying and pressing on the pore structure in the cellulose fiber wall studied by ~1H and ~2H NMR relaxation. Cellulose, 1998, 5(1): 33-49.
    [70] 唐爱民,陈岗,范佩明,等.直接染料在造纸中的应用--染料吸附法测定纸浆纤维的表面积.染料工业,2000,37(6):24-29.
    [71] 董卫国,徐静,黄俊鹏.氮气吸附法表征棉纤维的孔结构.纺织学报,2007,28(6):5-7.
    [72] Mooney CA, Mansfield SD, Touhy MG, et al. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technology, 1998, 64(2): 113-119.
    [73] Jeoh T, Ishizawa CI, Davis MF, et al. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioengineering, 2007, 98(1): 112-122.
    [74] St(?)lbrand H, Mansfield SD, Saddler JN, et al. Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant Cellulomonas fimi β-1, 4-Glucanases. Applied and Environmental Microbiology, 1998, 64(7): 2374-2379.
    [75] Pan X, Xie D, Gilkes N, et al. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology, 2005, 121: 1069-1079.
    [76] Chandra RP, Bura R, Mabee WE, et al. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering /Biotechnology, 2007, 108: 67-93.
    [77] 吴微微,万金泉,马邕文.半纤维素含量对二次纤维孔隙结构及其成纸性能影响的研究.中华纸业,2008,29(16):24-27.
    [78] Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Advances in Biochemical Engineering/Biotechnology, 2007, 108: 41-65.
    [79] Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577.
    [80] Sheehan J, Himmel M. Enzymes, energy, and the environment: a strategic perspective on the U.S. department of energy's research and development activities for bioethanol. Biotechnology Progress, 1999, 15(5): 817-827.
    [81] Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews, 2005, 69(1): 124-54.
    [82] Zhang YHP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering,2004, 88(7): 797-824.
    [83] Carrillo F, Lis MJ, Colom X, et al. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: kinetic study. Process Biochemistry, 2005, 40(10):3360-3364.
    [84] Wang Y, Spratling BM, ZoBell DR, et al. Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. Journal of Animal Science, 2004,82: 198-208.
    [85] Zhang W, Okubayashi S, Bechtold T. Fibrillation tendency of cellulosic fibers-Part 4. Effects of alkali pretreatment of various cellulosic fibers. Carbohydrate Polymers, 2005, 61(4): 427-433.
    [86] Urn BH, Karim M, Henk L. Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Applied Biochemistry and Biotechnology, 2003,105-108: 115-125.
    [87] Lee JW. Biological conversion of lignocellulosic biomass to ethanol. Journal ofBiotechnology, 1997,56(1): 1-24.
    [88] Keller FA, Hamilton JE, Nguyen QA. Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Applied Biochemistry and Biotechnology, 2003, 105-108: 27-41.
    [89] Hatakka Al. Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Applied Microbiology and Biotechnology, 1983, 18(6): 350-357.
    [90] Zhang X, Yu H, Huang H, et al. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. International Biodeterioration & Biodegradation, 2007, 60(3): 159-164.
    [91] Zhang X, Xu C, Wang H. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. Journal of Bioscience and Bioengineering, 2007, 104(2): 149-151.
    [92] 徐春燕,马富英,王锦锦,等.生物处理竹子对纤维素酶糖化的影响.林业科学,2008,44(10):168-172.
    [93] 柯静,徐春燕,杨娜,等.NaOH/H_2O_2预处理促进玉米秸秆酶解产糖工艺条件的研究.可再生能源,2008,26(2):46-49.
    [94] 徐春燕,章毅君,余洪波,等.Pleurotus ostreatus BP连续开放预处理玉米秸秆的研究.食品与发酵工业,2008,34(5):6-9.
    [95] Balan V, Sousa LDC, Chundawat SPS, et al. Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. Journal of Industrial Microbiology & Biotechnology, 2008, 35(5): 293-301.
    [96] Lee JW, Gwak KS, Park JY, et al. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. The Journal of Microbiology, 2007, 45:485-491.
    [97] Lee JW, Kim HY, Koo BW, et al. Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. Journal of Bioscience and Bioengineering, 2008, 106 (2): 162-167.
    [98] Itoh H, Wada M, Honda Y, et al. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. Journal of Biotechnology, 2003, 103(3): 273-280.
    [99] Taniguchi M, Suzuki H, Watanabe D, et al. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 2005, 100: 637-643.
    [100] Hwang SS, Lee SJ, Kim HK, et al. Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. Journal of Microbiology and Biotechnology, 2008, 18(11): 1819-1825.
    [101] Kurakake M, Ide N, Komaki T. Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Current Microbiology, 2007, 54(6): 424-428.
    [102] Vargas-Garc(?)a MC, Su(?)ez-Estrella F, L(?)pez MJ, et al. In vitro studies on lignocellulose degradation by microbial strains isolated from composting processes. International Biodeterioration & Biodegradation, 2007, 59(4): 322-328.
    [103] Cara C, Ruiz E, Ballesteros I, et al. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 2006, 41 (2): 423-429.
    [104] Zhang LH, Li D, Wang L J, et al. Effect of steam explosion on biodegradation of lignin in wheat straw. Bioresource Technology, 2008, 99(17): 8512-8515.
    [105] Fernandez-Bolanos J, Felizon B, Heredia A, et al. Steam-explosion of olive stones:hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose.Bioresource Technology, 2001, 79(1): 53-61.
    [106] Ewanick SM, Bura R, Saddler JN. Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol.Biotechnology and Bioengineering, 2007, 98(4): 737-746.
    [107] Balan V, Sousa LDC, Chundawat SPS, et al. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra).Biotechnology Progress, 2009, 25(2): 365-375.
    [108] Zhu S, Wu Y, Yu Z, et al. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technology, 2006, 97(15): 1964-1968.
    [109] Zhu S, Wu Y, Yu Z, et al. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 2005, 40(9): 3082-3086.
    [110] Zhu S, Wu Y, Yu Z, et al. Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochemistry, 2006, 41(4): 869-873.
    [111] Zhu S, Wu Y, Yu Z, et al. Comparison of three microwave chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosystems Engineering, 2006,93(3): 279-283.
    [112] Zhu S, Wu Y, Yu Z, et al. Simultaneous Saccharification and Fermentation of Microwave-Alkali Pre-treated Rice Straw to Ethanol. Biosystems Engineering, 2005, 92(2): 229-235.
    [113] Yu J, Zhang J, He J, et al. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 2009, 100(2): 903-908.
    [114] Takacs E, Wojnarovits L, Foldvarya Cs, et al. Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiation Physics and Chemistry, 2000,57(3-6): 399-403.
    [115] Pan X, Arato C, Gilkes N, et al. Biorefining of softwoods using ethanol organosolve pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 2005, 90(4): 473-481.
    [116] Elisashvili V, Kachlishvili E, Penninckx M. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology, 2008, 35(11): 1531-1538.
    [117] Leonowicz A, Cho NS, Luterek J, et al. Fungal laccase: properties and activity on lignin. Joural of Basic Microbiology, 2001, 41(3-4): 185-227.
    [118] Kumaran S, Sastry CA, Vikineswary S. Laccase, cellulase and xylanase activities during growth of Pleurotus sajor-caju on sago hampas. World Journal of Microbiology and Biotechnology, 1997, 13 (1): 43-49.
    [119] Leonowicz A, Matuszewska A, Luterek J, et al. Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 1999, 27(2-3): 175-185.
    [120] Youn HD, Hah YC, Kang SO. Role of laccase in lignin degradation by white-rotfungi. FEMS Microbiology Letters, 1995, 132(3): 183-188.
    [121] Ferraz A, C(?)rdova AM, Machuca A. Wood biodegradation and enzyme productionby Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzyme and Microbial Technology, 2003, 31(1): 59-65.
    [122] Have Rt, Teunissen PJM. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 2001, 101(11): 3397-3414.
    [123] Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology, 2007, 44(2): 77-87.
    [124] Tanaka H, Itakura S, Enoki A. Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. Journal of Biotechnology, 1999, 75(1): 57-70.
    [125] Hirai H, Onitsuka A, Kondo R, et al. Iron-binding compounds produced by white-rot fungus Phanerochaete sordida YK-624. Journal of Wood Science, 2001, 47(5): 374-377.
    [126] 段新源,王蔚,卢雪梅,等.多种小分子物质在木素降解中的作用研究进展.中国生物工程杂志,2003,23(1):51-56.
    [127] Henriksson G, Johansson G, Pettersson G. A critical review of cellobiose dehydrogenases. Journal of Biotechnology, 2000, 78(2): 93-113.
    [128] Ludwig R, Salamon A, Varga J, et al. Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa. Applied Microbiology and Biotechnology, 2004, 64(2): 213-222.
    [129] Hai PQ, Nozaki K, Amano Y, et al. Purification and characterization of cellobiose dehydrogenase from Irpex lacteus and its adsorption on cellulose. Journal of Applied Glycoscience, 2000, 47(3-4): 311-318.
    [130] Hai PQ, Nozaki K, Amano Y, et al. Synergistic effects of cellobiose dehydrogenase, cellulases and β-glucosidase from Irpex lacteus in the degradation of various types of cellulose. Journal of Applied Glycoscience, 2002, 49(1): 9-17.
    [131] Ludwig R, Haltrich D. Optimisation of cellobiose dehydrogenase production by the fungus Sclerotium (Athelia) rolfsii. Applied Microbiology and Biotechnology, 2003, 61(1): 32-39.
    [132] 方靖,高培基.纤维二糖脱氢酶的纤维素降解中的作用研究.微生物学通报,2000,27(1):15-18.
    [133] 方靖,曲音波,高培基.纤维二糖脱氢酶生成羟自由基和还原各种自由基的研究.中国生物化学与分子生物学报,1999,15(3):448-452.
    [134] Coll PM, Fern(?)ndez-Abalos JM, Villanueva JR, et al. Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Applied and Environmental Microbiology, 1993, 59(8): 2607-2613.
    [135] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31 (3): 426-428.
    [136] Goering HK, Van Soest PJ. Forage fiber analysis USDA-ARS agriculture handbook. Washington DC: Government Printing Office, 1971.
    [137] Sluiter A, Hames B, Ruiz R, et al, Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Technical report: biomass analysis technology team laboratory analytical procedure. Version 2006.
    [138] Cai YJ, Chapman SJ, Buswell JA, et al. Production and distribution of endoglucanase, cellobiohydrolase, and beta-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Applied and Environmental Microbiology, 1999, 65(2): 553-559.
    [139] Machuca A, Ferraz A. Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme and Microbial Technology, 2001, 29(6-7): 386-391.
    [140] Khalil AI. Production and characterization of cellulolytic and xylanolytic enzymes from the ligninolytic white-rot fungus Phanerochaete chrysosporium grown on sugarcane bagasse. World Journal of Microbiology and Biotechnology, 2002, 18(8): 753-759.
    [141] Wilkins MR, Widmer WW, Grohmann K, et al. Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technology, 2007, 98(8): 1596-1601.
    [142] Woodward J, Lima M, Lee NE. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochemical Journal, 1988, 255(3): 895-899.
    [143] 钱友安,曾宪森,徐雪玲.灰树花栽培的五个技术关键.食用菌,2003,30(5):279-291.
    [144] Jorgensen H, Olsson L. Production of cellulases by Penicillium brasilianum IBT 20888-Effect of substrate on hydrolytic performance. Enzyme and Microbial Technology, 2006, 38(3-4): 381-390.
    [145] Hakalaa TK, Maijala P, Konn J, et al. Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enzyme and Microbial Technology, 2004, 34(3-4): 255-263.
    [146] Otjen L, Blanchette RA, Effland M, et al. Assessment of 30 white-rot basidiomycetes for selective lignin degradation. Holzforschung, 1987, 41: 343-349.
    [147] Job D. Assessment of selected decay basidiomycetes for selective biodefibrillation of Picea abies wood. Mycological Progress, 2002, 1(2): 123-129.
    [148] Bower S, Wickramasinghe R, Nagle NJ, et al. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bioresource Technology, 2008, 99(15): 7354-7362.
    [149] Leisolal MSA, Ulmer DC, Fiechter A. Factors affecting lignin degradation in lignocellulose by Phanerochaete chrysosporium. Archives of Microbiology, 1984, 137(2): 171-175.
    [150] Faison BD, Kirk TK. Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Applied and Environmental Microbiology, 1985, 49(2): 299-304.
    [151] 徐春燕,罗侃,张伯彬,等.碳源对白腐菌降解竹基质的影响.北京林业大学学报,2008,30(1):96-100.
    [152] 徐春燕,王宏勋,周建兵,等.诱导物和金属离子对竹子白腐菌降解影响的研究.生物技术,2005,15(6):69-71.
    [153] Ma FY, Luo XC. PCR-based restriction analysis of internal transcribed spacers of nuclear ribosomal DNA in the genus Pleurotus. Mycosystema, 2002, 21 (3): 356-362.
    [154] DuBois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28 (3): 350-356.
    [155] Hakala TK, Lundell T, Galkin S, et al. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme and Microbial Technology, 2005, 36(4): 461-468.
    [156] Steffen KT, Hofrichter M, Hatakka A. Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Applied Microbiology and Biotechnology, 2000, 54(6): 819-825.
    [157] Archibald FS. A new assay for lignin-type peroxidases employing the dye Azure B. Applied and Environmental Microbiology, 1992, 58(9): 3110-3116.
    [158] Aguiar A, De Souza-Cruz PB, Ferraz A. Oxalic acid, Fe~(3+)-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme and.Microbial Technology, 2006, 38(7): 873-878.
    [159] Pandey KK, Pitman AJ. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation, 2003, 52(3): 151-160.
    [160] 卯晓岚.中国经济真菌.北京:科学出版社,1998.
    [161] 隆言泉,石淑兰,胡惠仁,等.荻与芦苇在蒸煮过程中酸溶木素含量变化规律的研究.中国造纸,1985,4(2):3-8.
    [162] McDonald IRC, Campbell WG. Acid-soluble lignin. Nature, 1952, 169(4288): 33.
    [163] Guerra A, Ferraz A. Molecular weight distribution and structural characteristics of polymers obtained from acid soluble lignin treated by oxidative enzymes. Enzyme and Microbial Technology, 2001, 28(4-5): 308-313.
    [164] Matsushita Y, Kakehi A, Miyawaki S, et al. Formation and chemical structures of acid-soluble lignin Ⅱ: reaction of aromatic nuclei model compounds with xylan in the presence of a counterpart for condensation, and behavior of lignin model compounds with guaiacyl and syringyl nuclei in 72% sulfuric acid. Journal of Food Science, 2004, 50(2): 136-141.
    [165] 杜甫佑,张晓昱,王宏勋,等.白腐菌降解木质纤维素顺序规律的研究.纤维素科学与技术,2005,13(1):17-25.
    [166] 杜甫佑,张晓昱,王宏勋.木质纤维素的定量测定及降解规律的初步研究.生物技术,2004,14(5):46-48.
    [167] 吴景贵,姜岩.玉米秸秆腐解过程的红外光谱研究.土壤学报,1999,36(1):91-100.
    [168] Novotn(?) (?), Svobodov(?) K, Kasinath A, et al. Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. International Biodetedoration & Biodegradation, 2004, 54(2-3): 215-223.
    [169] Svobodov(?) K, Majcherczyk A, Novotn(?) (?), et al. Implication of myceIium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Bioresource Technology, 2008, 99(3): 463-471.
    [170] Ferraz A, Parra C, Freer J, et al. Occurrence of iron-reducing compounds in biodelignified "palo podrido" wood samples. International Biodeterioration & Biodegradation, 2001, 47(4): 203-208.
    [171] Agosin E, Blanchette RA, Silva H, et al. Characterization of palo podrido, a natural process of delignification in wood. Applied and Environmental Microbiology, 1990, 56(1): 65-74.
    [172] Val(?)skov(?) V, Baldrian P. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Research in Microbiology, 2006,157(2): 119-24.
    [173] Shin KS. The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent. The Journal of Microbiology, 2004,42(1): 37-41.
    [174] Kasinath A, Novotn(?) (?), Svobodov(?) K, et al. Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme and Microbial Technology, 2003, 32(1): 167-173.
    [175] Svobodov(?) K, Senholdt M, Novotn(?) (?), et al. Mechanism of Reactive Orange 16 degradation with the white rot fungus Irpex lacteus. Process Biochemistry, 2007, 42(9): 1279-1284.
    [176] Kim HY, Song HG. Simultaneous utilization of two different pathways in degradation of 2, 4, 6-trinitrotoluene by white rot fungus Irpex lacteus. The Journal of Microbiology, 2000, 38(4): 250-254.
    [177] Kim HY, Song HG. Transformation and mineralization of 2, 4, 6-trinitrotoluene by the white rot fungus Irpex lacteus. Applied Microbiology and Biotechnology, 2003, 61(2): 150-156.
    [178] Baborov(?) P, M(o|¨)der M, Baldrian P, et al. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Research in Microbiology, 2006, 157(3): 248-253.
    [179] Novotny C, Erbanova P, Cajthaml T, et al. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Applied Microbiology and Biotechnology, 2000, 54(6): 850-853.
    [180] Capelari M, Zadrazil F. Lignin degradation and in vitro digestibility of wheat-straw treated with Brazilian tropical species of white-rot fungi. Folia Microbiologica (Praha), 1997, 42(5): 481-487.
    [181] Shin KS, Kim YH, Lim JS. Purification and characterization of manganese peroxidase of the white-rot fungus Irpex lacteus. The Journal of Microbiology, 2005, 43(6): 503-509.
    [182] Rothschild N, Novotny C, Sasek V, et al. Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase.Enzyme and Microbial Technology, 2002, 31(5): 627-633.
    [183] Lovely DR. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological reviews, 1991, 55(2): 259-287.
    [184] Aguiar A, Ferraz A. Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. International Biodeterioration & Biodegradation, 2008, 61(2): 182-188.
    [185] Kapich AN, Jensen K A, Hammel KE. Peroxyl radicals are potential agents of lignin biodegradation. FEBS Letters, 1999, 461(1-2): 115-119.
    [186] Kapich AN, Steffen KT, Hofrichter M, et al. Involvement of lipid peroxidation in the degradation of a non-phenolic lignin model compound by manganese peroxidase of the litter-decomposing fungus Stropharia coronilla. Biochemical and Biophysical Research Communications, 2005, 330(2): 371-377.
    [187] Kapich A, Hofrichter M, Vares T, et al. Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and ~14C-labeled lignins. Biochemical and Biophysical Research Communications, 1999, 259(1): 212-219.
    [188] Tanaka H, Fuse G, Enoki A. An extracellular H_2O_2-producing and H_2O_2-reducing glycopeptide preparation from the ligin-degrading white-rot fungus, Irpex lacteus. Mokuzai Gakkaishi, 1991, 37: 986-988.
    [189] Schlosser D, Grey R, Fritsche W. Patterns of ligninolytic enzymes in Trametes versicolor: Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Applied Microbiology and Biotechnology, 1997, 47(4): 412-418.
    [190] Kamada F, Abe S, Hiratsuka N, et al. Mineralization of aromatic compounds by brown-rot basidiomycetes-mechanisms involved in initial attack on the aromatic ring. Microbiology, 2002, 148 (6): 1939-1946.
    [191] Contreras D, Rodriguez J, Freer J, et al. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation. Journal of Biological Inorganic Chemistry, 2007, 12(7): 1055-1061.
    [192] Zhang S, Wolfgang DE, Wilson DB. Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnology and Bioengineering, 1999,66(1): 35-41.
    [193] Ohmine K, Ooshima H, Harano Y. Kinetic study on enzymatic hydrolysis of cellulose by cellulose from Trichoderma viride. Biotechnology and Bioengineering, 1983, 25(8): 2041-2053.
    [194] Desai SG, Converse AO. Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnology and Bioengineering, 1997, 56(6): 650-655.
    [195] Huang AA. Kinetic studies on insoluble cellulose-cellulase system. Biotechnology and Bioengineering, 1975, 17(10): 1421-1433.
    [196] Yang B, Willies DM, Wyman CE. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnology and Bioengineering, 2006, 94(6):1122-1128.
    [197] Movagarnejad K, Sohrabi M, Kaghazcni T, et al. A model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid-liquid systems. Biochemical Engineering Journal, 2000,4(3): 197-206.
    [198] Brown RF, Holtzapple MT. A comparison of the Michaelis-Menten and HCH-1 models. Biotechnology and Bioengineering, 1990, 36(11): 1151-1154.
    [199] Gan Q, Allen SJ, Taylor G Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochemistry, 2003, 38(7): 1003-1018.
    [200] Okazaki M, Moo-Yong M. Kinetics of enzymatic hydrolysis of cellulose: analytical description of a mechanistic model. Biotechnology and Bioengineering, 1978, 20(5):637-663.
    [201] Bailey CJ. Enzyme kinetics of cellulose hydrolysis. Biochemical Journal, 1989, 262: 1001.
    [202] Himmel ME, Ding SY, Johnson DK, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 2007, 315(5813): 804-807.
    [203] Yoon JJ, Kim YK. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. The Journal of Microbiology, 2005, 43(6):487-492.
    [204] Segal L, Creely J J, Martin AE, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 1959, 29(10):786-794.
    [205] Cara C, Ruiz E, Oliva JM, et al. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 2008, 99(6): 1869-1876.
    [206] 周瑞敏,向群.辐照纤维素材料结晶行为的研究.核技术,1997,20(12):748-752.
    [207] 宋向阳,王捷,徐勇,等.木质纤维原料制备纤维素酶的反应历程.林产化学与工业,1998,18(4):75-78.
    [208] 陈敏忠,王传槐,叶汉玲,等.不同云芝菌株腐朽杨木过程的扫描电镜研究.纤维素科学与技术,1995,3(1):28-36.
    [209] Zeng M, Mosier NS, Huang CP, et al. Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis.Biotechnology and Bioengineering, 2007, 97(2): 265-78.
    [210] Behera BK, Arora M, Sharma DK. Scanning electron microscopic (SEM) studies on structural architecture of lignocellulosic materials of Calotropis procera during its processing for saccharification. Bioresource Technology, 1996, 58(3): 241-245.
    [211] 中华人民共和国药典.北京:化学工业出版社,2000.
    [212] Stone JE, Scallan AM, Donefer E, et al. Digestibility as a simple function of molecule of similar size to a cellulase enzyme, in: Gould RF (ed.). Advances in Chemistry Series 95 (Cellulases and their Application). Washington, DC: American Chemical Society, 1969. 219-241.
    [213] Divine C, Sinning I, Stahlberg J, et al. Crystallization and preliminary X-ray studies on the core proteins of Cellobiohydolase I and Endoglucanase I from Trichoderma reesei. The Journal of Biological Chemistry, 1993,234(3): 905-907.
    [214] Divine C, Stahlberg J, Reinikainen T, et al. The three dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 1994, 265(5171): 524-528.
    [215] Esterbauer H, Hayn M, Abuja PM, et al. Structure of cellulolytic enzymes,in: Leathan GF, Himmel ME (eds.). American Chemical Society Symposium Series 460 (Enzymes in Biomass Conversion). Washington, DC: American Chemical Society, 1991.301-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700