双相介质中导波问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双相界质(流体饱和多孔介质)波动理论较传统的单相介质理论更接近工程实际。因此,它在地震学、地震工程学、土动力学、地球物理勘探、声学和动力基础等方面有着广泛而重要的应用。本文主要针对饱和流体多孔介质中的导波开展了以下几方面工作:
     一、首先回顾了双相介质理论的研究成果。然后介绍了波的分类和波传播特性中相速度、群速度、波速与波数、波的频谱图和频散图、波的衰减与能量密度等基本概念。
     二、在建立双相介质波动方程的同时,重新计算了《高频范围内流体饱和多孔介质的波传播》的原始文献中的算例。发现了新的计算结果与文献中的计算结果存在着较大偏差,分析了出现偏差的一些原因。
     三、对双相介质覆盖层中Love波进行了理论分析与计算,分析了在不同孔隙度情况下Love波的频散和衰减特性。结果表明love波的频散存在正负频散现象,而且在低频(地震波)范围内的Love波的频散和衰减对孔隙度的变化都不敏感,而在高频范围的二者对孔隙度的变化较敏感。最后还研究了覆盖层中Love波的振动强度、应力幅度、能留密度随着孔隙度以及覆盖层深度的变化规律。这些结论为实际应用提供了理论依据。
     四、对圆柱流体与双相介质界面上Stoneley波做了理论分析和计算,首先给出了Stoneley波产生的边界条件,然后利用给定的边界条件导出了圆柱外双相介质中横波波解与纵波波解以及Stoneley波的复波数频散方程。在低频域内对此频散方程进行了数值求解,得到随孔隙度的变化的频散曲线和衰减曲线及偏振特性曲线。结果表明:Stoneley波不仅具有强衰减特性,而且Stoneley波在低频域内存在轻微的负频散;在不同的频率区域内Stonley波的频散与衰减曲线受孔隙度的影响不同;Stoneley波的衰减系数与频率、孔隙度之间存在敏感的增函数关系。还研究了圆柱流体区域和双相介质区域内声压随离圆柱中心的距离增加的变化规律。
Fluid-saturated porous media fluctuation theory, the more traditional single-phase medium theory is closer to engineering practice. Therefore, it seismology, earthquake engineering, soil dynamics, geophysical exploration, acoustic and power base, has a wide-ranging and important applications. In this paper, for the fluid saturated porous media in guided wave has undertaken the following several aspects:
     Firstly, reviewed the theory of two-phase media research. Then introduced the classification of waves and wave propagation characteristics in the phase velocity, group velocity, wave velocity and wave number, wave dispersion spectrum diagrams and maps, wave attenuation and energy density of the underlying concepts.
     Secondly, wave equation in the establishment of two-phase media at the same time, re-calculation of the "high-frequency within the framework of fluid-saturated porous media, wave propagation," the original examples in the literature. Found a new calculation results in the calculation results with the literature there are large deviations analysis of some of the reasons for deviation.
     Thirdly, Overlay of the two-phase media in Love wave theoretical analysis and calculation, analysis of porosity in different situations Love wave dispersion and attenuation characteristics. The results show that there is dispersion of love waves in positive and negative dispersion phenomenon, but also in the low-frequency (seismic wave) within the scope of the Love wave dispersion and attenuation of the changes in porosity are not sensitive to, and in the high-frequency range of the two pairs of porosity more sensitive to changes. Finally study covering layer of Love wave vibration intensity, stress amplitude, can stay in the density as the porosity, as well as the changes of the depth of cover. These conclusions provide a theoretical basis for practical application.
     Fourthly,the cylindrical fluid interface with the two-phase media have done a theoretical analysis of Stoneley wave and calculation, first of all given Stoneley waves generated by boundary conditions, and then use the given boundary conditions are derived outside the two-phase medium, horizontal cylindrical wave solution and P-wave and the Stoneley wave solution of the complex wave number dispersion equation. In the low-frequency domain of this numerical dispersion equation is solved with the change in porosity of the dispersion curves and attenuation curves and polarization curves. The results showed that: Stoneley-wave attenuation characteristics is not only strong, but low-frequency Stoneley waves exist within a small negative dispersion; in different frequency regions Stonley wave dispersion and attenuation curves affected differently by the porosity; Stoneley wave attenuation coefficient and frequency, porosity exists between an increasing function of the sensitive relationship. Also studied the cylindrical fluid region and two-phase medium with the acoustic pressure within the region to increase the distance from the cylinder center was studied.
引文
[1]Navier,C."Memoire sur les de l'Equillibre et du Mouvement des Corps Solides Elastiques," Mem.de l"Acad. Royale des Sci.,Tome.1821, 7:375-456P
    [2]Love,A.E.H., A treatise on the mathematical theory of Elasticity,Dover,1944: 99-200P
    [3]L.Rayleigh, Theory of Sound, Dover, New York,1894:644P
    [4]H.Kolsky, Stress Waves in Solids, Dover, New York,1963:256P
    [5]Miklowitz J. Elastic Wave Propagation.ASME Applied Mechnaics Review,1960,13:865-878P
    [6]Miklowitz.J. Scattering of Plane Elastic Compressional Pusle by a Cylindrical Cavity. Proc.11th Int Cong of Appl Mech,Munich,1964:469-491P
    [7]Miklowitz J the theory of Elastic Waves and Wave Guides. Norht-holland, Amsterdam,1978:10-200P
    [8]T.D.Achenbach, Wave Propagation in Elastic Solids, North-Hooland, Amsterdam,1973:241P
    [9]C.C.Mow, Y.H.Pao, The Diffraction of Elastic Waves and Dynamic Stress Concetrations, The Rand Co,1971:168P
    [10]Eringen A. C.,Suhubi E.S., Elastodynamic. Vol 2Linear theory.Academic Press, New York,1975:123-435P
    [11]K.F.Graff, Wave Motion in Elastic Solids, Ohio University Press, Columbus, OH 1975:21-165P
    [12]Hudson J,A., The and Propagation of Elastic Waves. Cambridge Univ. Press, 1980:210-300P
    [13]Adnanh.Nayfeh, Wave Propagation in Layered Anisotropic Media, North-Holland,1995:33-152P
    [14]J.Bilinggham, A.C.King, Wave Motion, Cambridge University Press, 2000:78-213P
    [15]Satyanad Kichenassamy, Nonlinear Waves Equations, M.Dekker, New York, 1996:12-99P
    [16]郭自强.固体中的波.北京:地震出版社,1982
    [17]冯德益.地震波理论与应用.北京:地震出版社,1988
    [18]王礼立.应力波基础.北京:国防工业出版社,1985
    [19]杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988
    [20]黎在良,刘殿魁著.固体中的波.北京:科学出版社,1995:202-233页
    [21]钟伟芳,聂国华著.弹性波散射理论.武汉:华中理工大学出版社,1997:11-133页
    [22]C.Zwikker and C.W. Kosten.Sound absorbing materials,New York, Elsevier Pub. C.,1949:1-174P
    [23]Gassmann,F., Elastic Waves Through a Packing of Spheres" issued in Geophysics, Vol.16, pp.673-685P and 18,269P (1953)
    [24]Biot, M.A. Theory of propagation of elastic waves in a fluid saturated, porous solid. Low-frequency range, J. Acoust. Soc. Am.1956a,28:168-178P
    [25]Biot, M.A. Theory of propagation of elastic waves in a fluid saturated, porous solid.Ⅱ. Higher frequency range, J.Acoust. Soc.Am.1956b, 28(2):179-191P
    [26]Biot, M.A.Theory of deformation of a porous viscoelastic solids. J.Applied Physics,1956,27(5):459-467P
    [27]Biot,M.A. Mechanics of Deformation and Acoustic propagation in porous media. J.Applied Physics,1962,33(4):1482-1498P
    [28]Biot, M.A. Generalized Theory of Acoustic Propagation in Porous Dissipative Media. J. Acoust. Soc. Am.,1962,34:1254-1264P
    [29]J.Gsertsma, D.C. Smit. Some aspects of elastic wave propagation in Fluid-saturated porous solids.Geophysics,1961,27(2):169-18P
    [30]Walsh,J.B. The effect of crack on compressibility of rock[J]. J.Geophys. 1965,70:381-389P
    [31]Walsh,J.B. Seismic wave attenuation in rock due to friction[J]. J.Geophys.Res,1966,71:2591-2599P
    [32]White,J.E.and Senghush,R.L.shear waves from explosive sources[J]. J.Geophys,1968,33:302-310P
    [33]Levy T. Propagation of waves in a fluid-saturated porous elastic solid,1979, 17:1005-1014P
    [34]Zienkiewicz OC, Shiomi T. Dynamic behaviour of saturated porous media the generalized Biot formulation and its numerical solution,1984,8:71-96P
    [35]Plona T.J, Experimental study of the two bulk compressional modes in water-saturated porous structure. Ultrasnic Symposium, IEEE, New York,1980:868-887P
    [36]Liu Z, Bluhm J,de Boer R. Inhomogeneous plane waves, mechanical energy flux, and energy dissipation in a two-phase poromedium,1998,78(9): 617-625P
    [37]Yan Bo, Liu Zhanfang, Zhang Xiangwei. Finite element analysis of wave propagation in fluid-saturated porous media.,1999,20(12):1331-1341P
    [38]Mak AF. The apparent viscoelastic behaviour of articular cartilage-the contribution from the intrinsic matrix viscoelasticity and interstitial fluid flows. J,1986,108:123-130P
    [39]Gardner, G.H.F, M.R.J. Wyllie and D.M. Droschak, Effects of pressure and fluid saturation on the attenuation of elastic waves in sands, J. Petrol. Tech., 1964,16:189-198P
    [40]Gardner, G.H.F. and M.H. Harris, Velocity and attenuation of elastic waves in sands, SPWLA Ninth Annual Logging Symposium,1968:1-18P
    [41]Gregory, A.R.,Fluid saturation effects on dynamic elastic properties of sedimentary rocks, Geophysics,1976,41:895-921P
    [42]Savag Deresiewicz H.The effect of boundaries on wave propagation in a liquid—filled porous solid:Love waves in a porous layer.Bull Seismol.Soc. Am.1961:51-59P
    [43]Deresiewicz H,. The effect of boundaries on wave propagation in a liquid-filled porous solid VI Love waves in a double surface layer[J].Seismo.Soc.Am.1964,54:17-423P
    [44]Deresiewicz H.The effect of boundaries on wave propagation in a liquid—filled porous solid:IX Love e, J.C. and H.S Hasegawa, Evidence for a linear attenuation mechanism, Geophysics,1967,22:1004-1014P
    [45]Toksoz,M.N.,C.H. Cheng,A.Timur,Velocities of seismic waves in porous Rocks, Geophysics,1976,41,4:621-645P
    [46]Toksoz,M.N.,D.H. Johnston,and A.Timu,Attenuation of seismic waves in dry and saturated rocks:I. Laboratory measurements, Geophysics,1979,44: 681-690P
    [47]Korringa J.On the Biot—Gassmann equations for the elastic module of porous rocks(Critical comment on a paper by J.G.Beryman)[J].J Acoust Soc. Am.1981,70:752-753P
    [48]门福录.波在饱水孔隙弹性介质中的传播.地球物理学报.1965,14(2):45-53页
    [49]门福录.波在饱水孔隙粘弹性介质中的传播.科学通报.1996,3:151-156页
    [50]门福录.波在饱和流体孔隙介质中的传播问题.地球物理学报.1981,24(1):65-76页
    [51]唐应吾.弹性波在饱和沉积物中的传播.地球物理学报.1975,18(14):269-273页
    [52]唐应吾.地震波在湿颗粒介质中的传播.地球物理学报.1982,25(4):314-323页
    [53]陈龙珠,吴世明,曾国熙.弹性波在饱和土层中的传.力学学报.1987,19(3):276-282页
    [54]陈龙珠.饱和土中弹性波的传播速度及其应用.浙江大学博士学位论 文.1987:101页
    [55]王立忠,吴世明.波在饱和土中传播的若干问题.岩土工程学报.1995,18(6):96-102页
    [56]扬峻,吴世明,蔡袁强.饱和土中弹性渡的传播特性.振动工程学报.1996,9(2):128-137页
    [57]王克协,董庆德.渗透性地层油水井中声场的理论分析与计算.石油学报.1986,7(1):59-68页
    [58]张碧星,王克协.各向异性双相介质中多极源声波测井理论研究.地球物理学报.2000,43(5):707-708页
    [59]王克协,郭立,董庆德.全波列声测井中Airy相的激发与利用.吉林大学自然科学学报.1992物理(特刊):555-562页
    [60]董庆德,王克协,罗朝盛等.钻井中首波的共振与衰减.地球物理学报.1991,34(2):228-238页
    [61]Zhang Bixing,Dong Hefeng,Wang Kexie.Muhipole sources in a fluid—illed borehole SUlTounded by a transversely isotropic elastic solid[J].Acoust Soc Am.1994,96:2546-2555P
    [62]Zhang Bixing,Wang Kexie, Dong Qingde.Acoustic multipole logging in transversely isotropic two-phase medium.Acoust.Soc.Am.1995,97: 3462-3472P
    [63]胡恒山,马俊,王克协.井孔声场计算中的黎曼叶选择.吉林大学自然科学学报.1999(4):66-70页
    [64]伍先运,李幼铭,王克协.含孔隙层多层地震波场的矩阵算法及数值计算.石油地球物理勘探.1993,28(6):694-702页
    [65]王克协,J.E.White,伍先运.Biot介质中P波与井孔的耦合.地球物理学报.1996,39(1):103-113页
    [66]J.E.怀特(美).地下声波—地震波的应用.北京:石油工业出版 社,1987:115-129页
    [67]罗朝盛,王克协,董庆德.孔隙地层探井中首波的共振与衰减的数值研究.计算物理.1998,15(5):629-634页
    [68]巴音贺希格,马俊,张维,王克协.无限Biot双相介质中水平流体层声波场的分波与全波数值模拟分析.地球物理学报.2002,45(增):274-287页
    [69]张碧星.各向异性介质地层流体井孔中多极源声测井理论与数值研究.吉林大学博士学位论文.1994:123页
    [70]魏修成.双相各向异性介质中的地震波场研究.石油大学博士学位论文.1995:25-45页
    [71]张应波.Biot理论应用于地震勘探的探索[J].石油物探.1994,33(4):29-38页
    [72]刘维国,包洪洋,董晓丽.双相介质中的密度反演.哈尔滨工业大学学报.1994,26(6):1-5页
    [73]刘维国,全大勇.双相介质中孔隙反演的一种方法.哈尔滨工业大学学报.1998,30(4):1-3页
    [74]徐文俊,王跃.流体饱和多孔介质(双相介质)物性参数的反演.石油地球物理勘探.1995,30(5):602-608页
    [75]席道瑛,刘爱文,刘卫.低频条件下饱和流体砂岩的衰减研究.地震学报.1995,17(4):477-481页
    [76]席道瑛,张斌,易良坤,李娟.双相介质中的应力波的衰减规律.岩石力学与工程学报.1998,17(4):429-433页
    [77]杨顶辉,张中杰等.双相各向异性研究问题与应用.地球物理学进展.2000,15(2):7-21页
    [78]杨顶辉.双相各向异性介质中弹性波方程的有限元解法及波场模拟.地球物理学报.2002,45(4):575-583页
    [79]赵凤文.双相介质半空间中瑞利波的研究.哈尔滨船舶工程学院学 报.1991,12(2):254-257页
    [80]赵凤文,张树全,叶中玉.双相介质与流体平面分层时的Stoneley波.哈尔滨船舶工程学院学报.1992,13(3):329-340页
    [81]汪越胜,章梓茂.横观各向同性液体饱和多孔介质中平面波的传播.力学学报.1996,29(3):257-268页
    [82]汪越胜,章梓茂等.饱和土中层中Love波的传播特性.振动工程学报.1998,11(2):177-183页
    [83]Stoneley,R. Elastic Waves at the surfce of separation of two solids,Por.Roy.Soc.London,1924,106:416-428P
    [84]J.L.罗斯.固体中的超声波.北京科学出版社,2004:4-19页
    [85]Sharma M D,Gogna.Propagation of Love waves in an initi'atly stressed medium consisting of a slow etastielayerlying over a liquid-saturated porous solid half space.J.Acoust.Soc.Am.1991,89:2584-2588P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700