微泡增强HIFU消融生物学效应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分兔VX2肝肿瘤模型的建立及超声成像技术在建模过程中的作用
     目的:比较传统开腹瘤块种植法与超声引导下经皮穿刺种植法在兔VX2肝肿瘤模型建立中的应用,并探讨超声成像技术在肿瘤种植及后续观察评价中的作用。
     方法: VX2肿瘤组织取自荷瘤种兔腿部VX2肿瘤。50只健康新西兰大白兔随机分为I组和II组,每组25只。I组动物接受传统开腹种植法,将VX2瘤块直接植入肝脏。II组动物接受超声引导下经皮穿刺法,将瘤块植入肝脏。种植后7 d、14 d、21 d、28 d,分别对每组5只动物进行二维灰阶超声成像,彩色多普勒血流成像(Color Doppler flow imaging,CDFI),造影增强脉冲反相谐波超声(Contrast enhanced pluse inversion harmonic ultrasonography, CE PIH US)及造影增强彩色多普勒超声(Contrast enhanced color Doppler ultrasonography, CE CD US)观察。而后处死动物,取出肝脏,进行大体病理学观察,苏木精-伊红(Hematoxylin-eosin,HE)染色、尼克酰胺腺嘌呤二核苷酸-黄递酶(Nicotinamide adenine dinucleotide phosphate-diaphorase,NADPH-d)染色和琥珀酸脱氢酶(Succinic Dehydrogenase,SDH)染色。
     结果:种植后28 d的观察期内,I组存活荷瘤动物21只,II组22只。I组种植过程所用时间为21.5±4.1 min (mean±SD),II组种植过程所用时间为16.9±3.4 min (P < 0.05)。采用二维灰阶超声成像测量肿瘤大小,从7 d至28 d,I组肿瘤体积从0.28±0.14 cm3增长至16.49±5.50 cm3, II组肿瘤体积从0.31±0.19 cm3增长至19.79±4.70 cm3,两组间未见显著统计学差异(P > 0.05)。CDFI,CE PIH US及CE CD US示,14 d前大部分肿瘤内部具有丰富血流分布,14 d后血流主要分布在肿瘤边缘部分,而肿瘤内部血供较少,出现坏死组织,并通过HE染色,NADPH-d和SDH染色得以证实。
     结论:超声引导下经皮穿刺法建立兔VX2肝肿瘤模型,与传统开腹瘤块种植法相比,种植时间缩短,操作相对简便,且具有相似的成瘤率和肿瘤体积生长变化。二维灰阶超声成像,CDFI,CE PIH US及CE CD US能够在建立肿瘤模型过程中和后续评价肿瘤生长及血供特征方面发挥积极的作用。
     第二部分微泡增强HIFU消融正常兔肝脏的实验研究
     实验一微泡增强HIFU消融正常兔肝脏的组织学及超微结构改变
     目的:初步探讨微泡型超声造影剂SonoVue增强高强度聚焦超声(High intensity focused ultrasound,HIFU)消融正常兔肝的组织学及超微结构变化。
     方法:45只健康新西兰大白兔分为I、II、III组,每组15只。I组接受单纯HIFU辐照。II组接受HIFU辐照前,经耳缘静脉注射2 mL 0.9 %生理盐水。III组接受HIFU辐照前,经耳缘静脉以团注法注射0.2 mL超声造影剂SonoVue,并随后迅速推注2 mL 0.9 %生理盐水。采用单点辐照模式,辐照时间2 s,辐照强度600 W。辐照后立即处死动物,将肝脏取出体外,大体病理学测量消融区体积。取消融区、过渡区(距消融区边缘3 mm以内)及周围区(距消融区边缘3 mm以外)组织,HE染色,光镜下计算消融区每1000μm2面积中的空化泡个数。透射电镜观察细胞超微结构变化,计算消融区细胞核膜破坏率(破坏的细胞核膜个数/总的细胞核数目)。
     结果:III组兔肝凝固坏死体积(2.41±0.44 cm3,mean±SD)大于I组(0.83±0.16 cm3)及II组(0.80±0.13 cm3)凝固坏死体积(P < 0.05)。HE染色示消融区与未消融区域分界明显,三组消融区均未见大片凝固坏死。III组可见部分细胞膜及胞核破坏并较多空化泡分布(P < 0.05)。电镜下三组消融区细胞内均未见完整细胞器,呈现不可逆凝固坏死,I组及II组消融区细胞膜性结构较III组完整, III组消融区细胞核膜破坏率高于另两组(P < 0.05)。三组中,过渡区均见轻度细胞水样变性,周围区未见明显损伤。结论:微泡型超声造影剂能够稳定增加HIFU消融区体积并更进一步破坏组织细胞结构,从而增强HIFU消融作用。
     实验二微泡增强HIFU消融正常兔肝脏后的连续性组织病理学、细胞凋亡和增殖变化
     目的:探讨微泡型超声造影剂SonoVue增强HIFU消融正常兔肝脏后一段时间内细胞组织结构、细胞凋亡和增殖细胞核抗原(Proliferative cellular nuclear antigen,PCNA)表达的连续性变化。
     方法:50只健康新西兰大白兔分为I、II组,每组25只。I组接受HIFU辐照前,经耳缘静脉注射2 mL 0.9 %生理盐水。II组接受HIFU辐照前,经耳缘静脉以团注法注射0.2 mL超声造影剂SonoVue,并随后迅速推注2 mL 0.9 %生理盐水。HIFU消融靶区设定为长度1 cm线状区域,辐照时间4.8 s,辐照强度600 W。两组在辐照后0 d、1 d、3 d、7 d、14 d分别处死5只动物。取消融区、过渡区(距消融区边缘3 mm以内)及周围区(距消融区边缘3 mm以外)组织,进行大体病理学观察,HE染色光镜观察和透射电镜观察。脱氧核苷酸末端转移酶介导的生物素化脱氧三磷酸尿苷末端缺口标记法(Terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end labeling,TUNEL)检测细胞凋亡,免疫组织化学方法检测细胞PCNA表达。
     结果:辐照后0 d、1 d、3 d、7 d、14 d,II组消融区体积(0.39±0.11 cm3,0.42±0.14 cm3,0.36±0.10 cm3,0.45±0.14 cm3,0.43±0.11 cm3,mean±SD)明显大于I组(0.15±0.06 cm3,0.16±0.07 cm3,0.16±0.04 cm3,0.17±0.07 cm3,0.16±0.07cm3)(P < 0.05)。HE染色示,辐照后3 d、7 d、14 d ,II组过渡区纤维包裹带宽度大于I组(P < 0.05)。辐照后1 d、3 d、7 d、14 d,两组过渡区出现凋亡细胞和PCNA阳性细胞。II组过渡区凋亡指数较I组增高(P < 0.05),两组均在3 d达到峰值。II组过渡区PCNA阳性细胞指数较I组增高(P < 0.05),两组均在7 d达到峰值。透射电镜示辐照后两组消融区细胞坏死,过渡区可见纤维包裹带,II组消融区细胞结构较I组破坏严重。
     结论:与单纯HIFU相比,微泡型超声造影剂增强了HIFU消融体积及消融后凝固坏死区机化包裹,对不同时间段过渡区细胞凋亡和增殖能力有不同程度促进趋势,为进一步提高HIFU疗效提供了实验依据。
     第三部分微泡增强HIFU消融兔VX2肝肿瘤的实验研究
     实验一微泡增强HIFU消融兔VX2肝肿瘤的超声影像学研究
     目的:采用常规二维灰阶超声成像、CDFI、能量多普勒成像(Power Doppler imaging,PDI)、CE CD US及CE PIH US,探讨微泡型超声造影剂增强HIFU消融兔VX2肝肿瘤的作用。
     方法:50只健康新西兰大白兔接受超声引导下经皮穿刺种植法建立兔VX2肝肿瘤模型。VX2肝肿瘤种植14 d后,所存活荷瘤动物分为两组。采用HIFU消融系统计算机化控制程序将每个肿瘤“消融体”分割为多个“消融面”。II组接受每个“消融面”的辐照前,经耳缘静脉注射0.2 mL SonoVue,并随后迅速推注2 mL 0.9 %生理盐水。I组接受每个“消融面”的辐照前注射2 mL 0.9 %生理盐水作为对照。辐照前及辐照后1 h,进行常规二维灰阶超声成像,CDFI、PDI、CE CD US及CE PIH US观察。
     结果:种植后14 d,共存活46只动物,每组23只,均接受HIFU辐照。HIFU辐照后,常规二维灰阶超声成像示消融区弥漫性高强回声光点分布,CE PIH US示消融区内超声造影剂灌注缺失。二维灰阶超声成像示II组消融区体积(2.23±0.83 cm3,mean±SD)较I组消融区体积(1.22±0.55 cm3)明显扩大(P < 0.05)。CE PIH US也显示II组消融区体积(2.96±0.99 cm3)较I组消融区体积(1.41±0.47 cm3)明显扩大(P < 0.05)。CDFI和PDI示I组消融区边缘部分存在残留血流分布,但是II组消融区内未发现残留血流。CE CD US和CE PIH US均显示II组消融区边缘部分残留血流分布较I组明显减少(P < 0.05)。
     结论:通过扩大消融区体积和减少消融区内残留血流,微泡型超声造影剂能够加强HIFU消融兔VX2肿瘤的作用。
     实验二微泡增强HIFU消融兔VX2肝肿瘤的连续性病理学变化
     目的:通过组织病理学、免疫组织化学及酶组织化学染色方法,探讨微泡型超声造影剂增强HIFU消融兔VX2肝肿瘤后一段时间内的连续性生物学效应变化。
     方法:50只新西兰大白兔接受超声引导下经皮穿刺种植法建立兔VX2肝肿瘤模型。种植14 d后,所存活荷瘤动物分为两组。HIFU消融系统计算机化控制程序将每个肿瘤“消融体”分割为多个“消融面”。II组接受每个“消融面”的辐照前,经耳缘静脉注射0.2 mL SonoVue溶液,并随后迅速推注2 mL 0.9 %生理盐水。I组在接受HIFU辐照前注射2 mL 0.9 %生理盐水作为对照。辐照后0 d、3 d、7 d及14 d每组各处死5只动物。通过大体病理学方法测量肿瘤及消融区大小。对消融区,过渡区(距消融区边缘3 mm以内的区域)及周围区(距消融区边缘3 mm以外的区域)组织进行HE染色,Ki 67、Bcl-2、CD 54和MMP-2免疫组化染色、NADPH-d及SDH染色。
     结果:辐照后0 d、3 d、7 d及14 d,所测量II组消融体积明显大于I组消融体积(P < 0.05)。辐照后0 d,HE染色示两组消融区内未见大片凝固样坏死。3 d后,HE染色示两组消融区内细胞坏死,过渡区有纤维包裹带生成。免疫组化染色示两组的过渡区Ki 67、Bcl-2、CD 54和MMP-2表达增加,两组间未见明显差异(P > 0.05)。辐照后0 d,NADPH-d及SDH染色即示消融区内酶活性丧失,染色呈阴性。在辐照后连续观察中,NADPH-d及SDH染色显示II组消融区残留活性肿瘤组织明显少于I组(P < 0.05)。结论:通过扩大消融范围,减少肿瘤残留及降低肿瘤复发转移风险,微泡型超声造影剂能够有效增强HIFU对兔VX2肿瘤的消融作用。
Part 1 Establish of A VX2 Rabbit Liver Tumor Model and The Role of Ultrasonography for Implantation and Sequential Evaluation
     Objective: To compare percutaneous US-guided implantation with the surgical implantation for establishing VX2 rabbit liver tumor model and to investigate the role of ultrasonography in the implantation process and the sequential evaluation.
     Methods: VX2 tumor tissue was obtained from the thigh of a tumor-bearing rabbit. Fifty healthy New Zealand rabbits were randomly divided into two groups (25 per group). Animals in group I underwent surgical implantation, while those in group II received percutaneous US-guided implantation. On 7 d, 14 d, 21 d, and 28 d after implantation, respectively, five rabbits in each group were examined using conventional 2-dimensional gray-scale ultrasonography, color Doppler flow imaging (CDFI), contrast enhanced pulsed-inversion harmonic ultrasonography (CE PIH US) and contrast enhanced color Doppler ultrasonography (CE CD US). Pathological examination was performed using haematoxylin-eosin (HE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and succinic dehydrogenase (SDH) stain. Results: During 28-day sequential period, 22 rabbits survived in group I and 23 in group II. The time duration of implantation in group II was 16.9±3.4 min (mean±SD), while that in group I was 21.5±4.1 min (P < 0.05). The tumor volume measured by conventional 2-dimensional gray-scale ultrasonography increased from 0.28±0.14 cm3 on 7 d to 16.49±5.50 cm3 on 28 d in group I, and from 0.31±0.19 cm3 to 19.79±4.70 cm3 in group II, while no significant difference existed between two groups (P > 0.05). On CDFI, CE PIH US and CE CD US, most tumors were hypervascular before 14 d, and after 14 d they were detected with peripheral vessels and the central hypovascular areas which were demonstrated as necrosis areas by HE stain, NADPH-d stain and SDH stain.
     Conclusions: Compared with the surgical implantation, the percutaneous US-guided implantation achieved a similar success rate with convenient inoculation performance and demanded shorter implantation duration . Conventional 2-dimensional gray-scale ultrasonography, CDFI, CE PIH US and CE CD US were useful in sequential evaluation of tumor growth and characteristic vascularity.
     Part 2 Experimental Studies of HIFU Ablation Enhanced by Microbubbles on Normal Rabbit Liver
     Study 1 Histological and Ultrastructure Changes on Normal Rabbit Liver after HIFU Ablation Enhanced by Microbubbles
     Objective: To explore the histological findings and ultrasturcture changes of normal rabbit liver after high-intensity focused ultrasound (HIFU) ablation enhanced by microbubbles of ultrasound contrast agent SonoVue. Methods: Forty-five rabbits were randomly divided into three groups (15 per group). Animals in group III were given injections of 0.2 mL SonoVue intravenously and 2 mL 0.9 % saline; those in group II were given 2 mL 0.9 % saline; and those in group I were not given injections as control. HIFU abltaion was set on a single dot with exposure time at 2 s and acoustic power at 600 W. After ablations, volumes of coagulated areas were measured. Tissues in ablated areas, transition areas (surrounding ablated areas within 3 mm)and surrounding areas (surrounding ablated areas beyond 3 mm) were examined under light microscopy with HE stain and the bubbles per 1000μm2 in ablated areas were calculated. Transmission electron microscopy was used and the percentage of interrupted nuclear membranes (the number of interrupted nuclear membranes/ the total number of nuclei) in ablated areas were calculated.
     Results: Coagulated volumes in group III (2.41±0.44 cm3, mean±SD) were larger than those in group I (0.83±0.16 cm3) and group II (0.80±0.13 cm3) (P < 0.05). Separated from unablated areas with a clear demarcation line, ablated areas in each group were detected without extensive necrotic tissues under light microscopy with HE stain. A few interrupted cell membranes and nuclei were detected in ablated areas in group III. More cavitation bubbles were observed in ablated areas in group III than those in the other two groups (P < 0.05). Transmission electron microscopy showed obvious coagulated necrosis in ablated areas in each group. More severe cell ultrastructure disorder, including the higher percentage of interrupted cell nuclear membranes, in group III than in the other two groups (P < 0.05). In each group, transition areas apeared lightly hydropic degeneration and surrounding areas were not affected. Conclusions: Ultrasound contrast agent can substantially increase the coagulated volume of HIFU and enhance the necrosis of ablated tissues, suggesting that microbubble be useful for improving HIFU efficiency.
     Study 2 Sequential Histopathological Findings, Apoptosis and Cell Proliferation after HIFU Ablation Enhanced by Microbubbles on Normal Rabbit Livers
     Objective: To sequentially observe histopathological findings, apoptosis and the expression of proliferative cellular nuclear antigen (PCNA) in the rabbit liver tissue after HIFU ablation enhanced by ultrasound contrast agent SonoVue. Methods: Fifty rabbits were divided into two groups randomly (25 per group). Rabbits in group II received injections with 0.2 mL ultrasound contrast agent SonoVue and 2 mL 0.9 % saline before HIFU ablation, and those in group I received injections with only 2 mL 0.9 % saline. HIFU ablation was set on a 1- cm line with exposure time 4.8 s and acoustic power 600 W. Five rabbits in each group were killed, respectively, on 0 d, 1 d, 3 d, 7 d and 14 d after HIFU ablation. Tissues in ablated areas, transition areas (surrounding ablated areas within 3 mm) and surrounding areas (surrounding ablated areas beyond 3 mm) were excised for HE stain, immunohistochemical stain for PCNA expression, terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end labeling (TUNEL) stain for apoptosis,and observation under transmission electron microscopy.
     Results: On 0 d, 1 d, 3 d, 7 d and 14 d , the coagulated volume in group II (0.39±0.11 cm3,0.42±0.14 cm3,0.36±0.10 cm3,0.45±0.14 cm3,0.43±0.11 cm3, mean±SD) was larger than that in group I (0.15±0.06 cm3,0.16±0.07 cm3,0.16±0.04 cm3,0.17±0.07 cm3,0.16±0.07 cm3) (P < 0.05). Under light microscopy, a fibra band composed of fibrocytes and capillary vessels was detected in transition area after 3 days, and the fibra band in group II was wider than that in group I (P < 0.05). Apoptosis cells and PCNA-positive cells were detected in transition areas, but not in other areas. The apoptosis index in transition areas in group II was higher than that in group I (P < 0.05), and the indexes in both groups reached the peak values on 3 d. PCNA-positive index in transition areas in group II was higher that that in group I (P < 0.05), and the indexes in both groups reached the peak values on 7 d. Transmission Electron microscopy showed ablated areas in both groups were necrotic, and fibra bands were detected in transition areas. The cell structure in ablated areas in group II were destroyed more severely than that in group I.
     Conclusions: Compared with single HIFU, HIFU ablation enhanced by ultrasound contrast agent can improve the organization of coagulated areas, the apoptosis and cell proliferation in transition areas sequentially after ablation, which may be explored to benefit enhanced-HIFU treatment.
     Part 3 Experimental Studies of HIFU ablation Enhanced by Microbubbles on Rabbit VX2 Liver Tumor
     Study 1 HIFU Ablation Enhanced by Microbubbles on Rabbit VX2 Liver Tumors: Assessment with Ultrasound Imaging
     Objective: We investigated effects of HIFU enhanced by contrast agent SonoVue on rabbit VX2 liver tumors by using conventional 2-dimensional gray-scale ultrasonography, CDFI, power Doppler imaging (PDI), CE CD US, and CE PIH US. Methods: Fourteen days after US-guided implantation of VX2 tumors in livers of 50 rabbits, animals were randomly separated into two groups. Based on principles of HIFU, the volume of the tumor was divided into several parallel‘‘planes’’to be ablated. Before ablation on each‘‘plane,’’0.2 mL SonoVue was injected in bolus followed with 2 mL 0.9 % saline via ear veins of rabbits in
     group II and 2 mL 0.9 % saline was administrated in group I. Acoustic power of HIFU exposure was set at 600 W. Conventional gray-scale US, CD US, PDI, CE CD US, and CE PIH US were performed before and 1 h after ablation.
     Results: Twenty-three surviving rabbits in each group underwent HIFU ablation. Conventional gray-scale US showed ablated areas diffusely hyperechoic. On CE PIH US, coagulated areas presented perfusion defect. Conventional gray-scale US showed the ablated volume in group II (2.23±0.83 cm3)was larger than that in group I(1.22±0.55 cm3) (P < 0.05). CE PIH US also showed the ablated volume in group II (2.96±0.99 cm3)was larger than that in group I(1.41±0.47 cm3) (P < 0.05). CDFI and PDI demonstrated residual vessels in periphery ablated areas in group I, but no residual vessels in group II. CE CD US and CE PIH US depicted less residual vessels in periphery ablated areas in group II than those in group I (P < 0.05).
     Conclusion: By enlarging ablated volume and reducing residual vessels, effects of HIFU ablation on rabbit VX2 liver tumors were enhanced by ultrasound contrast agent.
     Study 2 HIFU Ablation Enhanced by Microbubbles on Rabbit VX2 Liver Tumors: Sequential Pathological Findings Objective: We investigated sequential effects of HIFU ablation enhanced by ultrasound contrast agent SonoVue using examination of histopathology, immunohistochemistry and enzyme histochemistry.
     Methods: Fourteen days after US-guided implantation of VX2 tumors in livers of 50 rabbits, animals were randomly separated into two groups. With HIFU algorithm, the tumor volume was divided into‘planes’for ablating. Before ablation on each‘plane’, 0.2 mL SonoVue was administrated in bolus in group II followed with 2 mL 0.9 % saline, and only 2 ml 0.9 % saline were injected in group I . Acoustic power of HIFU was set at 600 W. On 0 d, 3 d, 7 d and 14 d after ablation, the effects on ablated areas, transition areas (surrounding ablated areas within 3 mm) and surrounding areas (surrounding ablated areas beyond 3 mm) were assessed in terms of coagulated volume measurement, histopathological examination, immunohistochemistry of Ki 67, Bcl-2, CD 54 and MMP-2, and enzyme histochemistry of NADPH-d and SDH. Results: On 0 d, 3 d, 7 d and 14 d after ablation, the volume of coagulated areas in group II was larger than that in group I (P < 0.05). In both groups, HE stain demonstrated tissue necrosis in ablated areas and surrounding fibra bands after 3 d. Increased expression of Ki 67, Bcl-2, CD 54 and MMP-2 in transient areas was detected by immunohistochemistry, while no significant difference was detected between two groups (P > 0.05). The stain of NADPH-d and SDH showed enzyme activities in ablated areas decreased dramatically compared to surrounding tissues, while more animals with residual viable tissues in ablated areas in group I were detected than those in group II (P < 0.05).
     Conclusion: Contrast agent SonoVue can benefit effects of HIFU ablation on rabbit VX2 liver tumors by enlarging the coagulated volume, decreasing the residual tumors and reducing the risk of recurrence and metastasis.
引文
1. ter Haar G. Therapeutic applications of ultrasound.Prog Biophys Mol Biol. 2007, 93(1-3):111-29.
    2. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH.High-intensity focused ultrasound: current potential and oncologic applications.AJR Am J Roentgenol. 2008 ,190(1):191-9.
    3. Haar GT, Coussios C.High intensity focused ultrasound: past, present and future.Int J Hyperthermia. 2007, 23(2):85-87.
    4. Kennedy JE, ter Haar GR, Cranston D. High intensity focusedultrasound: surgery of the future? Br J Radiol. 2003, 76(909):590-599.
    5. Leslie TA, Kennedy JE.High-intensity focused ultrasound principles, current uses, and potential for the future.Ultrasound Q. 2006, 22(4):263-272.
    6. Meyers R, Fry WJ, Fry FJ, Dreyer LL, Schultz DF, Noyes RF.Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. J Neurosurg. 1959,16(1):32–54.
    7. Gersten JW.Relation of ultrasound effects to the orientation of tendon in the ultrasound field. Arch Phys Med Rehabil. 1956, 37(4):201–209.
    8. Gersten JW. Muscle shortening produced by ultrasound. Arch Phys Med Rehabil. 1957, 38(2):83–87.
    9. Gersten JW, Kawashima E. Recent advances in fundamental aspects of ultrasound and muscle. Br J Phys Med. 1955,18(5):106–109.
    10. Lynn JG, Zwemer RL, Chick AJ. A new method for the generation and use of focused ultrasound in experiment biology. J Gen Physiol1942;26(2):179–193.
    11. Fry WJ, Mosberg Jr WH, Barnard JW, Fry FJ. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg .1954;11(5):471–478.
    12. Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron.1960, ME-7;166-181
    13. Lizzi FL, Driller J, Ostromogilsky M. Thermal model for ultrasonic treatment of glaucoma.Ultrasound Med Biol. 1984, 10(3):289-298.
    14. Madersbacher S, Kratzik C, Susani M, Marberger M. Minimally invasive therapy of benign prostatic hyperplasia with focused ultrasound. Urologe A. 1995, 34(2):98-104.
    15. ter Haar G, Sinnett D, Rivens I.High intensity focused ultrasound--a surgical technique for the treatment of discrete liver tumours. Phys Med Biol. 1989, 34(11):1743-1750.
    16. Xiong LL, Hwang JH, Huang XB, Yao SS, He CJ, Ge XH, Ge HY, Wang XF. Early clinical experience using high intensity focused ultrasound for palliation of inoperable pancreatic cancer. JOP. 2009, 10(2):123-129.
    17. Melodelima D, Chapelon JY, Theillere Y, Cathignol D. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies. Ultrasound Med Biol. 2004 , 30(1):103-111.
    18. Emerging technologies in therapeutic ultrasound: thermal ablation to gene delivery.Tachibana K.Hum Cell. 2004, 17(1):7-15.
    19. Jagannathan J, Sanghvi NT, Crum LA, Yen CP, Medel R, Dumont AS, Sheehan JP, Steiner L, Jolesz F, Kassell NF.High-intensity focused ultrasound surgery of the brain: part 1--A historical perspective withmodern applications.Neurosurgery. 2009, 64(2):201-10; discussion 210-211.
    20.周晓东,郑敏娟,李发琪,文爽,马平,杜永洪,白晋,王智彪.高强度聚焦超声辐照离体心肌组织的实验研究——局部心肌凝固剂量与温度的关系.中华超声影像学杂志. 2002,11(7):424-426.
    21. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005, 5 (4):321-327.
    22. Brujan EA, Ikeda T, Matsumoto Y. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys Med Biol. 2005, 50(20):4797-4809.
    23. Feril LB Jr, Kondo T, Zhao QL, Ogawa R, Tachibana K, Kudo N, Fujimoto S, Nakamura S. Enhancement ofultrasound-induced apoptosis and cell lysis by echocontrast agents. Ultrasound Med Biol. 2003, 29(2): 331-337
    24. Wu F.Extracorporeal high intensity focused ultrasound in the treatment of patients with solid malignancy. Minim Invasive Ther Allied Technol. 2006, 15 (1): 26–35.
    25.Zhou CW, Li FQ, Qin Y, Liu CM, Zheng XL, Wang ZB.Non-thermal ablation of rabbit liver VX2 tumor by pulsed high intensity focused ultrasound with ultrasound contrast agent: Pathological characteristics. World J Gastroenterol. 2008, 21;14(43):6743-6747.
    26. Khokhlova VA, Bailey MR, Reed JA, Cunitz BW, Kaczkowski PJ, Crum LA.Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom.J Acoust Soc Am. 2006, 119(3):1834-1848.
    27. Chen H, Li X, Wan M. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound. Ultrasonics. 2006, 22(44 Suppl 1):e427-429.
    28. Poliachik SL, Chandler WL, Ollos RJ, Bailey MR, Crum LA. The relation between cavitation and platelet aggregation during exposure to high-intensity focused ultrasound. Ultrasound Med Biol. 2004, 30(2):261-269.
    29. Ikeda T, Yoshizawa S, Tosaki M, Allen JS, Takagi S, Ohta N, Kitamura T, Matsumoto Y. Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med Biol. 2006, 32(9):1383-1397.
    30. Hynynen K. The threshold for thermally significant cavitation in dog's thigh muscle in vivo. Ultrasound Med Biol. 1991, 17(2):157–169.
    31. Sedelaar JP, Aarnink RG, van Leenders GJ, Beerlage HP, Debruyne FM, Wijkstra H, de La Rosette JJ.The application of three dimensional contrast enhanced ultrasound to measure volume of affected tissue after HIFU treatment for localized prostate cancer. Eur U rol. 2000, 37(5): 559-568.
    32. Kim YS, Rhim H, Choi MJ, Lim HK, Choi D. High-intensity focused ultrasound therapy: an overview for radiologists.Korean J Radiol. 2008, 9(4):291-302.
    33. Smith MJ, Ho VH, Darton NJ, Slater NK.Effect of Magnetite Nanoparticle Agglomerates on Ultrasound Induced Inertial Cavitation.Ultrasound Med Biol. 2009 Feb 27. [Epub ahead of print]
    34. Jacobs MA, Ouwerkerk R, Kamel I, Bottomley PA, Bluemke DA, Kim HS.Proton, diffusion-weighted imaging, and sodium (23Na) MRI of uterine leiomyomata after MR-guided high-intensity focused ultrasound: apreliminary study.J Magn Reson Imaging. 2009, 29(3):649-656.
    35. Abdollahi A, Domhan S, Jenne JW, Hallaj M, Dell'Aqua G, Mueckenthaler M, Richter A, Martin H, Debus J, Ansorge W, Hynynen K, Huber PE. Apoptosis signals in lymphoblasts induced by focused ultrasound. FASEB J. 2004,18(12):1413-1414.
    36. Huber PE, Debus J. Tumor cytotoxicity in vivo and radical formation in vitro depend on the shock wave-induced cavitation dose. Radiat Res. 2001, 156(3):301-309.
    37. J. Debus, J. Spoo, J. Jenne, P. Huber, P. Peschke. Sonochemically induced radicals generated by pulsed high-energy ultrasound in vitro and in vivo. Ultrasound Med Biol.1999, 25 (2): 301–306.
    38. Hundt W, Steinbach S, O'Connell-Rodwell CE, Bednarski MD, Guccione S.The effect of high intensity focused ultrasound on luciferase activity on two tumor cell lines in vitro, under the control of a CMV promoter. Ultrasonics. 2009, 49(3):312-318.
    39. Haar GT, Coussios C.High intensity focused ultrasound: physical principles and devices.Int J Hyperthermia. 2007, 23(2):89-104.
    40. Wang ZB, Wu F, Wang ZL. Concept of biological focal field and its importance in tissue resection with high intensity focused ultrasound. J Acoust Soc Am. 1998, 103(5): 2869-2873.
    41. Damianou C, Hynynen K.The effect of various physical parameters on the size and shape of necrosis tissue volume during ultrasound surgery. J Acoust Soc Am.1994, 95(3):1641-1649.
    42.郑敏娟,周晓东,李发琪,文爽,马平,杜永洪,白晋,王智彪.高强度聚焦超声照射正常离体心肌组织的实验研究-局部心肌的凝固损伤范围与声辐照剂量的关系.中华超声影像学杂志. 2002,11(5):297-299.
    43. Bailey MR, Couret LN, Sapozhnikov OA, Khokhlova VA, ter Haar G, Vaezy S, Shi X, Martin R, Crum LA. Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med Biol. 2001, 27(5):695-708.
    44. Bihrle R, Foster RS, Sanghvi NT, Fry FJ, Donohue JP. High-intensity focused ultrasound in the treatment of prostatic tissue. Urology. 1994, 43(2 Suppl):21-26.
    45. Madersbacher S, Kratzik C, Susani M, Marberger M. Tissue ablation in benign prostatic hyperplasia with high intensity focused ultrasound. J Urol.1994, 152(6 Pt 1):1956-1960.
    46. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. High-intensity focused ultrasound: current potential and oncologic applications. American Journal of Roentgenology. 2008, 190(1):191-199.
    47. Leslie TA, Kennedy JE.High intensity focused ultrasound in the treatment of abdominal and gynaecological diseases.Int J Hyperthermia. 2007, 23(2):173-182.
    48. Wu F, ter Haar G, Chen WR.High-intensity focused ultrasound ablation of breast cancer.Expert Rev Anticancer Ther. 2007;7(6):823-831.
    49. Rebillard X, SouliéM, Chartier-Kastler E, Davin JL, Mignard JP, Moreau JL, Coulange C; Association Francaise d'Urologie. High-intensity focused ultrasound in prostate cancer; a systematic literature review of the French Association of Urology. BJU Int. 2008, 101(10):1205-1213.
    50. Wu F, Wang ZB, Chen WZ, Zhu H, Bai J, Zou JZ, Li KQ, Jin CB, Xie FL, Su HB.Extracorporeal high intensity focused ultrasound ablation in thetreatment of patients with large hepatocellular carcinoma.Ann Surg Oncol. 2004, 11(12):1061-1069.
    51. Li LY, Yang M, Gao X, Zhang HB, Li JF, Xu WF, Lin Z, Zhou XL.Prospective comparison of five mediators of the systemic response after high-intensity focused ultrasound and targeted cryoablation for localized prostate cancer.BJU Int. 2009. [Epub ahead of print]
    52. Lu P, Zhu XQ, Xu ZL, Zhou Q, Zhang J, Wu F.Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer.Surgery. 2009, 145(3):286-293.
    53. Xiong LL, Hwang JH, Huang XB, Yao SS, He CJ, Ge XH, Ge HY, Wang XF.Early clinical experience using high intensity focused ultrasound for palliation of inoperable pancreatic cancer. JOP. 2009, 10(2):123-129.
    54. Ren XL, Zhou XD, Yan RL, Liu D, Zhang J, He GB, Han ZH, Zheng MJ, Yu M. Sonographically guided extracorporeal ablation of uterine fibroids with high-intensity focused ultrasound: midterm results.J Ultrasound Med. 2009 , 28(1):100-103.
    55. Wu F, Wang ZB, Chen WZ, Wang W, Gui Y, Zhang M, Zheng G, Zhou Y, Xu G, Li M, Zhang C, Ye H, Feng R. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrason Sonochem. 2004, 11(3-4):149-154.
    56. He SX, Wang GM. The noninvasive treatment of 251 cases of advanced pancreatic cancer with focused ultrasound surgery. In: Andrew MA, Crum LA, Vaezy S, eds. Proceedings from the 2nd International Symposium on Therapeutic Ultrasound. Seattle, WA: University of Washington. 2002, 51-56.
    57. Hu Z, Yang XY, Liu Y, Sankin GN, Pua EC, Morse MA, Lyerly HK, Clay TM, Zhong P. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med. 2007, 5: 34.
    58. Hundt W, O'Connell-Rodwell CE, Bednarski MD, Steinbach S, Guccione S. In vitro effect of focused ultrasound or thermal stress on HSP70 expression and cell viability in three tumor cell lines. Acad Radiol. 2007, 14 (7): 859–870.
    59. Wu F, Wang ZB, Lu P, Xu ZL, Chen WZ, Zhu H, Jin CB. Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med Biol. 2004, 30(9):1217-1222.
    60. Rosberger DF, Coleman DJ, Silverman R, Woods S, Rondeau M, Cunningham-Rundles S. Immunomodulation in choroidal melanoma: reversal of inverted CD4 / CD8 ratios following treatment with ultrasonic hyperthermia. Biotechnol Ther. 1994, 5(1-2):59-68.
    61. Wu F, Zhou L, Chen WR. Host antitumor immune responses to HIFU ablation. Int J Hyperthermia. 2007, 23(2):165-171.
    62. Wu F, Wang ZB, Cao YD, Zhou Q, Zhang Y, Xu ZL, Zhu XQ. Expression of tumor antigens and heat shock protein 70 in breast cancer cells after high intensity focused ultrasound ablation. Ann Surg Oncol. 2007, 14(3):1237-1242.
    63. Fried NM, Roberts WW, Sinelnikov YD, Wright EJ, Solomon SB. Focused ultrasound ablation of the epididymis with use of thermal measurements in a canine model. Fertil Steril. 2002, 78(3):609-613.
    64. Lu P, Zhu XQ, Xu ZL, Zhou Q, Zhang J, Wu F.Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery. 2009,145(3):286-293.
    65. Marberger M. Ablation of renal tumours with extracorporeal high-intensity focused ultrasound. BJU Int 2007, 99(5 Pt B):1273–1276.
    66. Hynynen K, Colucci V, Chung A, Jolesz F.Noninvasive arterial occlusion using MRI-guided focused ultrasound. Ultrasound Med Biol. 1996, 22(8):1071–1077.
    67. Engel DJ, Muratore R, Hirata K, Otsuka R, Fujikura K, Sugioka K, Marboe C, Lizzi FL, Homma S.Myocardial lesion formation using high-intensity focused ultrasound. J Am Soc Echocardiogr. 2006, 19(7):932-937.
    68. Mitnovetski S, Almeida AA, Goldstein J, Pick AW, Smith JA. Epicardial high-intensity focused ultrasound cardiac ablation for surgical treatment of atrial fibrillation.Heart Lung Circ. 2009,18(1):28-31.
    69. Frenkel V, Oberoi J, Stone MJ, Park M, Deng C, Wood BJ, Neeman Z, Horne M 3rd, Li KC.Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model.Radiology. 2006, 239(1):86-93.
    70. Vaezy S, Zderic V, Karmy-Jones R, Jurkovich GJ, Cornejo C, Martin RW. Hemostasis and sealing of air leaks in the lung using high-intensity focused ultrasound. J Trauma. 2007, 62(6):1390-1395.
    71. Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, Maier SE, Hadani M, Mardor Y. Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy.Neurosurgery. 2006, 59(5):949-955.
    72. Forslund C, Persson J, Str?mqvist B, Lidgren L, McCarthy ID.Effects of high-intensity focused ultrasound on the intervertebral disc: a potential therapy for disc herniations.J Clin Ultrasound. 2006, 34(7):330-338.
    73. Muratore R, Akabas T, Muratore IB. High-intensity focused ultrasound ablation of ex vivo bovine achilles tendon. Ultrasound Med Biol. 2008 , 34(12):2043-2050.
    74. Zou X, Wang J, Zhao H, Zhang J, Wu W, Ye B.Echinococcus granulosus: protoscolicidal effect of high intensity focused ultrasound.Exp Parasitol. 2009, 121(4):312-316.
    75. Liu HL, Wai YY, Chen WS, Chen JC, Hsu PH, Wu XY, Huang WC, Yen TC, Wang JJ.Hemorrhage detection during focused-ultrasound induced blood-brain-barrier opening by using susceptibility-weighted magnetic resonance imaging.Ultrasound Med Biol. 2008, 34(4):598-606.
    76. Yuh EL, Shulman SG, Mehta SA, Xie J, Chen L, Frenkel V, Bednarski MD, Li KC.Delivery of systemic chemotherapeuticagent to tumors by using focused ultrasound: study in a murine model. Radiology. 2005, 234(2):431–437.
    77. Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, Poff J, Xie J, Libutti SK, Li KC, Wood BJ.Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect.Clin Cancer Res. 2007,13(9):2722-2727.
    78. Dittmar KM, Xie J, Hunter F, Trimble C, Bur M, Frenkel V, Li KC.Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience.Radiology. 2005, 235(2):541-546.
    79. O'Neill BE, Li KC. Augmentation of targeted delivery with pulsed high intensity focused ultrasound. Int J Hyperthermia. 2008, 24(6):506-520.
    80. O'Neill BE, Vo H, Angstadt M, Li KP, Quinn T, Frenkel V. Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle. Ultrasound Med Biol. 2009, 35(3): 416-424.
    81. Frenkel V, Li KC.Potential role of pulsed-high intensity focused ultrasound in gene therapy.Future Oncol. 2006, 2(1):111-119.
    82. Deckers R, Quesson B, Arsaut J, Eimer S, Couillaud F, Moonen CT. Image-guided, noninvasive, spatiotemporal control of gene expression. Proc Natl Acad Sci U S A. 2009,106(4):1175-1180.
    83. Miller MW. Gene transfection and drug delivery. Ultrasound Med Biol. 2000; 26(suppl 1):S59–S62.
    84. Miller DL, Song J. Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol. 2003, 29(6):887–893.
    85. Mougenot C, Quesson B, de Senneville BD, de Oliveira PL, Sprinkhuizen S, Palussière J, Grenier N, Moonen CT. Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magn Reson Med. 2009, 61(3):603-614.
    86. Zhang L, Chen WZ, Liu YJ, Hu X, Zhou K, Chen L, Peng S, Zhu H, Zou HL, Bai J, Wang ZB. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus..Eur J Radiol. 2008.[Epub ahead of print]
    87. Ziadloo A, Vaezy S.Real-time 3D image-guided HIFU therapy.Conf Proc IEEE Eng Med Biol Soc. 2008, 2008:4459-4462.
    88. Orvieto MA, Zorn KC, Lyon MB, Tolhurst SR, Rapp DE, Seip R, Sanghvi N, Shalhav A.High intensity focused ultrasound renal tissue ablation: a laparoscopic porcine model.J Urol. 2009,181(2):861-866.
    89. Paterson RF, Barret E, Siqueira TM Jr, Gardner TA, Tavakkoli J, Rao VV, Sanghvi NT, Cheng L, Shalhav AL. Laparoscopic partial kidney ablation with high intensity focused ultrasound. J Urol. 2003,169(1):347–351.
    90. Klingler HC, Susani M, Seip R, Mauermann J, Sanghvi N, Marberger MJ. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. European Urology. 2008, 53(4):810–818.
    91. Yu T, Xu C.Hyperecho as the indicator of tissue necrosis during microbubble-assisted high intensity focused ultrasound: sensitivity, specificity and predictive value.Ultrasound Med Biol. 2008, 34(8):1343-1347.
    92. Coussios CC, Farny CH, Haar GT, Roy RA.Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperthermia. 2007, 23(2):105-120.
    93. Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation. Ultrasound Med Biol. 2005, 31(7):947-956.
    94. Rabkin BA, Zderic V, Crum LA, Vaezy S. Biological and physical mechanisms of HIFU-induced hyperecho in ultrasound images. Ultrasound Med Biol. 2006, 32(11):1721-1729.
    95. Zhou XD, Ren XL, Zhang J, He GB, Zheng MJ, Tian X, Li L, Zhu T, Zhang M, Wang L, Luo W. Therapeutic response assessment of high intensityfocused ultrasound therapy for uterine fibroid: utility of contrast-enhanced ultrasonography.Eur J Radiol. 2007, 62(2):289-294.
    96. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. High-intensity focused ultrasound: current potential and oncologic applications. American Journal of Roentgenology. 2008,190(1):191–199.
    97. Li JJ, Xu GL, Gu MF, Luo GY, Rong Z, Wu PH, Xia JC. Complications of high intensity focused ultrasound in patients with recurrent and metastatic abdominal tumors. World J Gastroenterol. 2007,13(19):2747–2751.
    98. Kennedy JE, Wu F, ter Haar GR, Gleeson FV, Phillips RR, Middleton MR, Cranston D. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics. 2004, 42(1-9):931-935.
    99. Stewart EA, Gedroyc WM, Tempany CM, Quade BJ, Inbar Y, Ehrenstein T, Shushan A, Hindley JT, Goldin RD, David M, Sklair M, Rabinovici J. Focused ultrasound treatment of uterine fibroid tumours: safety and feasibility of a noninvasive thermoablative technique. Am J Obstet Gynecol 2003,189(1):48–54.
    100. Hynynen K, Chung AH, Colucci V, Jolesz FA. Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo. Ultrasound Med Biol. 1996, 22 (2):193-201.
    101. Chen LL, Rivens I, Haar Gt, Riddler S, Hill CR, Bensted JPM.Histological changes in rat liver tumours treated with high-intensity focused ultrasound. Ultrasound Med Biol. 1993, 19(1):67-72.
    102. Kim CK, Park BK, Lee HM, Kim SS, Kim E. MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. AJR Am J Roentgenol. 2008,190(5):1180-1186.
    103. Gelet A, Chapelon JY, Bouvier R, Pangaud C, Lasne Y. Local control ofprostate cancer by transrectal high intensity focused ultrasound therapy : preliminary results. J Urol.1999, 161(1):156-162.
    104. Wu F, Wang ZB, Chen WZ, Zou JZ, Bai J, Zhu H, Li KQ, Xie FL, Jin CB, Su HB, Gao GW. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: early Chinese clinical experience.Ultrasound Med Biol. 2004, 30(2):245-260.
    105. Kieran K, Hall TL, Parsons JE, Wolf JS Jr, Fowlkes JB, Cain CA, Roberts WW. Refining histotripsy: defining the parameter space for the creation of nonthermal lesions with high intensity, pulsed focused ultrasound of the in vitro kidney. J Urol. 2007, 178(2): 672-676.
    106. Tanter M, Pernot M, Aubry JF, Montaldo G, Marquet F, Fink M.Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound.Int J Hyperthermia. 2007, 23(2):141-151.
    107. Cirillo S, Petracchini M, D'Urso L, Dellamonica P, Illing R, Regge D, Muto G. Endorectal magnetic resonance imaging and magnetic resonance spectroscopy to monitor the prostate for residual disease or local cancer recurrence after transrectal high-intensity focused ultrasound. BJU Int. 2008, 102(4):452-458.
    108. Zhu H, Zhou K, Zhang L, Jin C, Peng S, Yang W, Li K, Su H, Chen W, Bai J, Wu F, Wang Z.High intensity focused ultrasound (HIFU) therapy for local treatment of hepatocellular carcinoma: Role of partial rib resection. Eur J Radiol. 2008 Aug 14. [Epub ahead of print]
    109. Pernot M, Aubry JF, Tanter M, Marquet F, Montaldo G, Boch AL, Kujas M, Seilhean D, Fink M. High power phased array prototype for clinical high intensity focused ultrasound : applications to transcostal andtranscranial therapy.Conf Proc IEEE Eng Med Biol Soc. 2007, 2007:234-237.
    110. Tanter M, Pernot M, Aubry JF, Montaldo G, Marquet F, Fink M.Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. Int J Hyperthermia. 2007, 23(2):141-151.
    111. Civale J, Clarke R, Rivens I, ter Haar G. The use of a segmented transducer for rib sparing in HIFU treatments.Ultrasound Med Biol. 2006, 32(11):1753-1761.
    112. Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H. Erythrocytes, as well as microbubble contrast agents, are important factors in improving thermal and therapeutic effects of high-intensity focused ultrasound. Ultrasound Med Biol. 2005; 31(3):385–390.
    113. Melodelima D, N'Djin WA, Parmentier H, Rivoire M, Chapelon JY. Toric HIFU transducer for large thermal ablation. Conf Proc IEEE Eng Med Biol Soc. 2007, 2007:230-233.
    114. Rubio Briones J, Collado Serra A, Gómez-Ferrer Lozano A, Casanova Ramón-Borja J, Iborra Juan I, Solsona Narbón E. High-intensity focused ultrasound in small renal masses.Adv Urol. 2008:809845.
    115. Cheng SQ, Zhou XD, Tang ZY, Yu Y, Bao SS, Qian DC. Iodized oil enhances the thermal effect of high-intensity focused ultrasound on ablating experimental liver cancer. J Cancer Res Clin Oncol. 1997, 123(11-12):639-644.
    116. Yumita N, Sakata I, Nakajima S, Umemura S.Ultrasonically induced cell damage and active oxygen generation by4-formyloximeetylidene-3-hydroxyl-2-vinyl-deuterio-porphynyl(IX)-6-7-diaspartic acid: on the mechanism of sonodynamic activation. Biochim Biophys Acta. 2003, 1620(1-3):179-184.
    117. Hanajiri K, Maruyama T, Kaneko Y, Mitsui H, Watanabe S, Sata M, Nagai R, Kashima T, Shibahara J, Omata M, Matsumoto Y. Microbubble-induced increase in ablation of liver tumors by high-intensity focused ultrasound. Hepatol Res. 2006, 36(4):308-314.
    118. Wu F, Wang ZB, Chen WZ, Zou JZ, Bai J, Zhu H, Li KQ, Jin CB, Xie FL, Su HB. Advanced hepatocellular carcinoma: treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization. Radiology. 2005, 235(2):659-667.
    119. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol. 1968, 3(5):356-366.
    120. Quaia E. Microbubble ultrasound contrast agents: an update. Eur Radiol. 2007,17(8): 1995-2008.
    121.谭开彬,高云华,刘平,左松,刘政,朱贤胜.自制脂膜氟碳声学造影剂长时间增强组织灰阶显像的机理初探.中国声医学杂志. 2003,19(3):161-164.
    122. Isozaki T, Numata K, Kiba T, Hara K, Morimoto M, Sakaguchi T, Sekihara H, Kubota T, Shimada H, Morizane T, Tanaka K.Differential diagnosis of hepatic tumors by using contrast enhancement patterns at US.Radiology. 2003, 229(3):798-805.
    123. Numata K, Morimoto M, Ogura T, Sugimori K, Takebayashi S, Okada M, Tanaka K. Ablation therapy guided by contrast-enhanced sonography withSonazoid for hepatocellular carcinoma lesions not detected by conventional sonography.J Ultrasound Med. 2008, 27(3):395-406.
    124.Dai Y, Chen MH, Yin SS, Yan K, Fan ZH, Wu W, Wang YB, Yang W. Focal liver lesions: can SonoVue-enhanced ultrasound be used to differentiate malignant from benign lesions?Invest Radiol. 2007, 42(8):596-603.
    125. Nicolau C, Vilana R, CataláV, Bianchi L, Gilabert R, García A, BrúC. Importance of evaluating all vascular phases on contrast-enhanced sonography in the differentiation of benign from malignant focal liver lesions. AJR Am J Roentgenol. 2006, 186(1):158–167.
    126. Leen E, Ceccotti P, Kalogeropoulou C, Angerson WJ, Moug SJ, Horgan PG. Prospective multicenter trial evaluating a novel method of characterizing focal liver lesions using contrast-enhanced sonography. AJR Am J Roentgenol. 2006, 186(6):1551–1559.
    127. Puttemans T.Update on abdominal imaging: contrast enhanced ultrasonography.JBR-BTR. 2007, 90(6):497-502.
    128. Dietrich CF.Comments and illustrations regarding the guidelines and good clinical practice recommendations for contrast-enhanced ultrasound (CEUS)--update 2008.Ultraschall Med. 2008, 29 Suppl 4:S188-202.
    129. Carrafiello G, Recaldini C, LaganàD, Piffaretti G, Fugazzola C. Endoleak detection and classification after endovascular treatment of abdominal aortic aneurysm: value of CEUS over CTA.Abdom Imaging. 2008, 33(3):357-362.
    130. Clevert DA, Weckbach S, Minaifar N, Clevert DA, Stickel M, Reiser M.Contrast-enhanced ultrasound versus MS-CT in blunt abdominal trauma.Clin Hemorheol Microcirc. 2008, 39(1-4):155-169.
    131. Meloni MF, Bertolotto M, Alberzoni C, Lazzaroni S, Filice C, Livraghi T, Ferraioli G.Follow-up after percutaneous radiofrequency ablation of renal cell carcinoma: contrast-enhanced sonography versus contrast-enhanced CT or MRI. AJR Am J Roentgenol. 2008 , 191(4):1233-1238.
    132. Mayer CR, Geis NA, Katus HA, Bekeredjian R.Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opin Drug Deliv. 2008, 5(10):1121-1138.
    133. Willmann JK, Lutz AM, Paulmurugan R, Patel MR, Chu P, Rosenberg J, Gambhir SS. Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology. 2008, 248(3): 936-944.
    134. Blomley MJ, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO. Unger and M.J. Monaghan, Microbubble contrast agents: A new era in ultrasound. BMJ. 2001, 322(7296):1222-1225.
    135. Yu T, Wang Z, Mason TJ. A review of researches into the uses of low level ultrasound in cancer therapy. Ultrason Sonochem. 2004,11(2):95-103.
    136. Miller MW, Everbach EC, Cox C, Knapp RR, Brayman AA, Sherman TA. A comparison of the hemolytic potential of Optison? and Albunex? in whole human blood in vitro: acoustic pressure, ultrasound-frequency, donor and passive cavitation detection considerations. Ultrasound Med Biol. 2001, 27(5):709-721.
    137. Watanabe Y, Aoi A, Horie S, Tomita N, Mori S, Morikawa H, Matsumura Y, Vassaux G, Kodama T. Low-intensity ultrasound and microbubbles enhance the antitumor effect of cisplatin. Cancer Sci. 2008, 99(12):2525-2531.
    138. Xie F, Boska MD, Lof J, Uberti MG, Tsutsui JM, Porter TR. Effects oftranscranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med Biol. 2008, 34(12): 2028-2034.
    139. Willmann JK, Lutz AM, Paulmurugan R, Patel MR, Chu P, Rosenberg J, Gambhir SS. Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology. 2008, 248(3):936-944.
    140.Yu T, Wang G, Hu K, Ma P, Bai J, Wang Z. A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study. Urol Res. 2004, 32(1):14-19.
    141.Tung YS, Liu HL, Wu CC, Ju KC, Chen WS, Lin WL. Contrast-agent-enhanced ultrasound thermal ablation. Ultrasound Med Biol. 2006, 32(7):1103-1110.
    142. Yu T, Xiong S, Mason TJ, Wang Z.The use of a micro-bubble agent to enhance rabbit liver destruction using high intensity focused ultrasound.Ultrason Sonochem. 2006, 13(2):143-149.
    143.沙卫红,李瑜元,聂玉强,王智彪,李发琪,李崇雁,王燕芹,龚晓波,马平.高强度聚焦超声联用超声造影剂对治疗兔肝焦域效应的影响.中华超声影像学杂志. 2004,13(4):299-302.
    144. Zderic V, Brayman AA, Sharar SR, Crum LA, Vaezy S. Microbubble-enhanced hemorrhage control using high intensity focused ultrasound.Ultrasonics. 2006, 45(1-4):113-120.
    145. Holt RG, Roy RA. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol. 2001, 27(10):1399-1412.
    146. Takegami K, Kaneko Y, Watanabe T, Watanabe S, Maruyama T, Matsumoto Y, Nagawa H. Heating and coagulation volume obtained withhigh-intensity focused ultrasound therapy: comparison of perflutren protein-type A microspheres and MRX-133 in rabbits. Radiology. 2005, 237(1):132-136..
    147. Sokka SD, King R, Hynynen K.MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol, 2003,48(2):223-241.
    148. Kobayashi N, Yasu T, Yamada S, Kudo N, Kuroki M, Kawakami M, Miyatake K, Saito M. Endothelial cell injury in venule and capillary induced by contrast ultrasonography.Ultrasound Med Biol. 2002; 28(7):949–956.
    149. Unger EC, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, Quigley R. Therapeutic applications of microbubbles. Eur J Radiol. 2002, 42(2):160-168.
    150. Miller DL, Thomas RM. Contrast-agent gas bodies enhance hemolysis induced by lithotripter shock waves and high intensity focused ultrasound in whole blood. Ultrasound in Med and Biol. 1996, 21(8): 1089-1095.
    151. Prat F, Chapelon JY, Abou el Fadil F, Sibille A, Theillière Y, Ponchon T, Cathignol D. Focused liver ablation in the rabbit: A potential new method of extracorporeal treatment. Gut. 1994, 35(3):395-400.
    152. Huber PE, Debus J. Tumor cytotoxicity in vivo and radical formation in vitro depend on the shock-wave induced cavitation dose.Radiat Res. 2001, 156(3):301-309.
    153. Li P, Cao LQ, Dou CY, Armstrong WF, Miller D. Impact of myocardial contrast echocardiography onvascular permealbility:an in vivo dose response study of delivery mode, pressure amplitude and contrast dose. Ultrasound Med Biol. 2003, 29(9):1341-1349.
    154. Ward M, Wu J, Chiu JF. Experimental study on the effects of Optison concentration on sonoporation in vitro. Ultrasound Med Biol. 2000, 26(7):1169-1175.
    155. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 2000, 7(23):2023-2027.
    156. Hagit Ashush, Leon A., Rozenszajn, Michal Blass, Mira Barda-Saad, Damir Azimov, Judith Radnay, Dov Zipori, Uri Rosenschein. Apoptosis Induction of Human Myeloid Leukemic Cells by Ultrasound Exposure. Cancer Res. 2000, 60(4): 1014-1020.
    157. Cairns RA, Khokha R, Hill RP. Molecular mechanisms of tumor invasion and metastasis : an integrated view. Curr Mol Med. 2003, 3(7): 659-671.
    158. Virmani S, Harris KR, Szolc-Kowalska B, Paunesku T, Woloschak GE, Lee FT, Lewandowski RJ, Sato KT, Ryu RK, Salem R, Larson AC, Omary RA. Comparison of two different methods for inoculating VX2 tumors in rabbit livers and hind limbs. J Vasc Interv Radiol 2008;19(6):931-936.
    159. Lin WY, Chen J, Lin Y, Han K. Implantation of VX2 carcinoma into the liver of rabbits: a comparison of three direct-injection methods. J Vet Med Sci. 2002, 64(7): 649-652.
    160. Lee JM, Youk JH, Lee YH, Kim YK, Kim CS, Li CA. Detection of hepatic VX2 tumors in rabbits: comparison of conventional US and phase-inversion harmonic US during the liver-specific late phase of contrast enhancement. Korean J Radiol. 2003, 4(2):124-129.
    161. Chen JH, Lin YC, Huang YS, Chen TJ, Lin WY, Han KW. Induction of VX2 carcinoma in rabbit liver: comparison of two inoculation methods.Lab Anim. 2004,38(1):79-84.
    162. Thorstensen O, Isberg B, Svahn U, Jorulf H, Venizelos N, Jaremko G. Experimental tissue transplantation using a biopsy instrument and radiologic methods. Invest Radiol. 1994, 29(4):469-471.
    163. Kaneko Y, Maruyama T, Takegami K, Watanabe T, Mitsui H, Hanajiri K, Nagawa H, Matsumoto Y.Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue. Eur Radiol, 2005, 15(7): 1415–1420.
    164.顾慧琼,向理科,王智彪.高强度聚焦超声治疗兔胫骨移植性鳞状细胞癌中的空化现象.天津医药.2005,33(6):363-365.
    165. Chavrier F, Chapelon JY, Gelet A, Cathignol D. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles. J Acoust Soc Am. 2000, 108(1):432-440.
    166. Kerr JF, Wyllie AH, Currie AR.Apoptosis:A basic biological phenomelion with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26(4): 239-257.
    167. Rai R, Richardson C, Flecknell P, Robertson H, Burt A, Manas DM. Study of apoptosis and heat shock protein(HSP) expression in hepatocytes following radiofrequency ablation(REA).J Surg Res. 2005,129(1):147-151.
    168. Ohno T, Kawano K, Sasaki A, Aramaki M, Yoshida T, Kitano S.Expansion of an ablated site and induction of apoptosis after microwave coagulation therapy in rat liver. J Hepatobiliary Pancreat Surg. 2001, 8(4):360-366.
    169.谭塔林,王红梅.肝缺血-再灌注损伤与细胞凋亡.医学综述. 2006,12(1):18-20.
    170. Maga G, Hubscher U. Proliferating cell nuclear antigen(PCNA):A dancer with many partners. J Cell Sci, 2003; 116(Pt 15):305l-3060.
    171. Raff M. Cell suicide for beginners. Nature. 1998, 396(6707): l19-122.
    172. Beenken SW, Bland KI. Biomarkers for breast cancer.Minerva Chir. 2002 , 57(4): 437-448.
    173. Hariharan P, Myers MR, Banerjee RK. HIFU procedures at moderate intensities-effect of large blood vessels. Phys Med Biol. 2007, 52(12):3493–3513.
    174. Huang J, Holt RG, Cleveland RO, Roy RA. Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms. J Acoust Soc Am. 2004, 116(4 Pt 1):2451–2458.
    175. Li CX, Xu GL, Jiang ZY, Li JJ, Luo GY, Shan HB, Zhang R, Li Y. Analysis of clinical effect of high-intensity focused ultrasound on liver cancer. World J Gastroenterol. 2004, 10(15):2201–2204.
    176. Yamashiki N, Kato T, Bejarano PA, Berho M, Montalvo B, Shebert RT, Goodman ZD, Seki T, Schiff ER, Tzakis AG. Histopathological changes after microwave coagulation therapy for patients with hepatocellular carcinoma: review of 15 explanted livers. Am J Gastroenterol. 2003, 98(9):2052-2059.
    177. Frich L, Bj?rnland K, Pettersen S, Clausen OP, Gladhaug IP. Increased activity of matrix metalloproteinase 2 and 9 after hepatic radiofrequency ablation. J Surg Res.2006,135(2):297-304.
    178. Nikfarjam M, Muralidharan V, Christophi C. Altered growth patterns of colorectal liver metastases after thermal ablation. Surgery. 2006,139(1):73-81.
    179. Karavias DD, Tsamandas AC, Tepetes K, Kritikos N, Kourelis T, Ravazoula P, Vagenas K, Siasos N, Mirra N, Bonikos DS.. BCL-2 and BAX expression and cell proliferation, after partial hepatectomy with andwithout ischemia, on cholestatic liver in rats: an experimental study. J Surg Res. 2003,110(2): 399-408.
    180. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3): 311-322.
    181.Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol. 2000, 18(5): 1135-1149.
    182. Qin LX, Tang ZY. Recent progress in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma: a review of the literature. J Cancer Res Clin Oncol. 2004, 130(9): 497-513.
    183. Zhou XD. Recurrence and metastasis of hepatocellular carcinoma: progress andprospects. Hepatobiliary Pancreat Dis Int. 2002,1(1): 35-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700