BYHWD对大鼠红核脊髓束横断后神经元保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠红核脊髓束横断模型的建立
     目的:建立简易可靠的红核脊髓束横断动物模型。
     方法:成年SD大鼠随机分为模型组和假手术组。根据正常大鼠脊柱颈段的解剖特征,将大鼠颈曲由下突位变为上突位,在手术显微镜下不咬椎板,直接切开C3、C4间的黄韧带,暴露脊髓,横断颈髓右外侧索;假手术组大鼠只行黄韧带切开。用Fast-Blue(FB)逆行示踪红核脊髓束,检测红核神经元标记情况;对脊髓损伤部位纵切片进行Nissl染色,观察损伤部位结构破坏情况;采用自发性直立探究行为学测试方法,评判前肢的运动功能。
     结果:假手术组左侧红核神经元被FB标记,而模型组左侧红核未被FB标记;模型组Nissl染色显示脊髓右半的外侧白质及部分灰质断裂,而右侧的后索及脊髓左侧半保留完整;假手术组大鼠双侧前肢使用率相同,模型组大鼠在探究活动中不使用伤侧前肢。
     结论:采用非咬椎板法暴露脊髓,可将右侧的RST完全切断,本方法具有可靠性和简便实用性,制备的红核脊髓束横断模型是研究脊髓损伤的良好模型。
     第二部分BYHWD对大鼠红核脊髓束横断后神经元的存活、再生及功能修复的影响
     目的:探讨补阳还五汤(BYHWD)对红核脊髓束横断后神经元的存活、再生及功能修复的影响。
     方法:SD大鼠随机分为3组:①正常组,不予处理;②实验组:C3-C4右侧红核脊髓束横断后灌服补阳还五汤(25.65g生药/kg);③对照组:C3-C4右侧红核脊髓束横断后灌服蒸馏水。正常大鼠C3右外侧索FG逆行示踪定位红核脊髓束神经元在红核的分布;各组动物存活8周后,Nissl染色计数红核神经元并计算其平均截面积;用BDA神经束路顺行示踪方法检测轴突再生情况;采用自发性直立探究行为学测试方法评判前肢运动功能的恢复。
     结果:FG标记的红核位于中脑上丘层面,中脑水管的腹外侧,全长约为1200μm;红核神经元的数目和平均截面积实验组分别减少了22%和35%,对照组分别减少了42%和64%;实验组的大鼠在损伤的尾侧端可见少量BDA标记的纤维,对照组损伤的尾侧端则未见BDA标记的纤维;实验组伤侧前肢使用率明显高于对照组。
     结论:BYHWD提高了轴突横断后红核神经元的存活率,对红核神经元的萎缩有抑制作用;BYHWD能促进大鼠红核脊髓束横断后轴突的再生及部分功能修复。
     第三部分BYHWD对红核脊髓束横断后红核神经元BDNF和cAMP表达的影响
     目的:探索BYHWD对RST横断后红核神经元的BDNF和cAMP表达的影响。
     方法:成年SD大鼠随机分为正常组、实验组和对照组。其中实验组C3-C4右侧红核脊髓束横断后灌服补阳还五汤(25.65g生药/kg);对照组C3-C4右侧红核脊髓束横断后灌服蒸馏水。动物分别存活3、7、14或21天后处死。采用免疫组织化学及放射免疫方法,检测BYHWD对RST横断后不同时间点红核神经元BDNF的表达和cAMP含量。
     结果:BDNF阳性细胞计数及相对灰度值检测结果显示,术后3d和7d实验组和对照组红核神经元BDNF表达上调,与正常组比差异有显著性(P<0.05);随后,对照组BDNF表达下调,但实验组仍保持上调趋势。cAMP放射免疫测定结果显示,术后第3天,实验组和对照组红核内cAMP含量均降低,与正常组比差异有显著性(P<0.05);实验组在术后第7天,cAMP含量有所升高,至14、21天cAMP含量高于正常组(P<0.05);对照组在随后各时间点,cAMP含量都低于正常组(P<0.05)。
     结论:BYHWD能上调RST横断后红核中BDNF和cAMP的表达。
PARTⅠEstablishment of the rubrospinal tract transection animal model
     Objective To provide a simple and reliable animal model of rubrospinal tract(RST) transection.
     Methods Adult SD rats were divided into model group and sham operation group.According to the natural anatomical characters of rat spinal cord,cervical curves of the rats were changed from inferior to superior,rats received yellow ligment and a right-sided lateral funiculus transection or yellow ligment transection at the level between the 3~(rd) and 4~(th) cervical spinal cord(C3 and C4) under the operating microscope. Fast-Blue(FB) retrograde tracing of RST,Nissl staining of the spinal injured site and behavior analysis were carried out to evaluate the effect of RST transection.
     Results There was no FB labeled rubrospinal neuron in the model group,whereas FB labeled neurons were detected in the sham operation group;It was showed by Nissl staining that in the model group the right lateral funiculus and small part of gray matter were disconnected after transection,while the right posterial funiculus and the left half of the spinal cord remained intact;The injured forelimb was not used during spontaneous vertical exploration in the model group,whereas normal used in the sham operation group.
     Conclusion These results indicate that RST could be completely transected between C3 and C4 without damaging the vertebral lamina.It is not only simple but also practicable and reliable for the RST transection model made in this method.The RST transection model is good for the study of spinal cord injury.
     PARTⅡEffect of BYHWD on survival,regeneration and functional recovery of neurons after rubrospinai tract transection
     Objective To explore the effect of BYHWD on survival, regeneration and functional recovery of neurons after rubrospinal tract transection.
     Methods Adult SD rats were divided into experimental group, control group and normal control group.Rats received treatment of either BYHWD or DW via gastrogavage after a right lateral funiculus transection at the level between C3 and C4 in the experimental or control group.Location of rubrospinal neurons in the RN was determined by Flouro-gold(FG) retrograde tracing.Eight weeks after injury,viability and atrophy of RN neurons were determined by Nissl staining,axon regeneration was examined by biotinylated dextran amine(BDA) tracing techniques,and functional recovery was studied by a test of forelimb usage during spontaneous vertical exploration.
     Results The FG labeled RN was 1200μm long,located ventrolateral to the aquaeductus cerebra at the superior colliculus level.RN cell number and mean somal size were decreased 22%and 35% in the experimental group and 42%and 64%in the control group respectively.There was a small number of BDA-labeled axons in the caudal of injury site in the experimental group,whereas no caudal axonal regeneration was detected in the control group.Rats in the experimental group used the injured forelimbs more often than those in the control group.
     Conclusion These results indicate that administration of BYHWD following RST transection leads to enhancement of axotomized neuron survival,prevention of neuronal atrophy,promotion of transected axon regeneration and functional recovery.
     PARTⅢEffect of BYHWD on expression of BDNF and cAMP of neurons in red nucleus after rubrospinal tract transection
     Objective To explore the effects of BYHWD on expression of BDNF and cAMP of RN neurons after RST transection.
     Methods Adult SD rats were divided into experimental group, control group and normal control group.Rats received treatment of either BYHWD or DW via gastrogavage after a right lateral funiculus transection at the level between C3 and C4 in the experimental or control group.After survival for 3,7,14 or 21 days,animals were sacrificed. Immunohistochemistry and radioimmunoassay were employed for detection of BDNF expression and cAMP concentration in RN neurons after RST transection.
     Results Showed by BDNF positive cell count and average gray value of BDNF positive products,BDNF expression was up-regulated both in the experimental and control group at the 3~(rd) and 7~(th) day after injury.Whereafter,BDNF expression in the control group was reduced, while in the experimental group,it remained the high level as the 7~(th) day's. It was found by cAMP radioimmunoassay that cAMP concentration was decreased both in the experimental and control group at the 3~(rd) day after injury.And it was then increased from the 7~(th) day and remained a high level until to the 21~(st) day in the experimental group(compared with normal control,P<0.05),whereas decreased in the control group (compared with normal control,P<0.05).
     Conclusion These results indicate that administration of BYHWD following RST transection leads to Up-regulation of BDNF and cAMP expression in red nucleus.
引文
[1] Hajebrahimi Z, Mowla SJ, Movahedin M, Tavallaei M.Gene expression alterations of neurotrophins, their receptors and prohormone convertases in a rat model of spinal cord contusion.Neurosci Lett. 2008; 441(3):261-6.
    [2] Basso DM, Beattie MS, Bresnahan JC.Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol. 1996; 139(2):244-56.
    [3] Marsh DR, Wong ST, Meakin SO, MacDonald JI, Hamilton EF, Weaver LC. Neutralizing intraspinal nerve growth factor with a trkA-IgG fusion protein blocks the development of autonomic dysreflexia in a clip-compression model of spinal cord injury.J Neurotrauma. 2002; 19(12):1531-41.
    [4] Lee MJ, Chen CJ, Cheng CH, Huang WC, Kuo HS, Wu JC, Tsai MJ, Huang MC, Chang WC, Cheng H. Combined treatment using peripheral nerve graft and FGF-1: changes to the glial environment and differential macrophage reaction in a complete transected spinal cord. Neurosci Lett. 2008; 433(3): 163-9.
    [5] Kwon BK, Oxland TR, Tetzlaff W. Animal models used in spinal cord regeneration research.Spine. 2002; 27(14): 1504-10.
    [6] Bernstein-Goral H, Bregman BS.Axotomized rubrospinal neurons rescued by fetal spinal cord transplants maintain axon collaterals to rostral CNS targets.Exp Neurol. 1997; 148(1):13-25.
    [7] Yick LW, So KF, Cheung PT, et al. Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury. J Neurotrauma. 2004; 21(7): 932-43.
    [8] Liu Y, Kim D, Himes BT, et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery offorelimb function. J Neurosci. 1999; 19(11):4370-87.
    [9] Ji B, Li M, Wu WT, Yick LW, Lee X, Shao Z, Wang J, So KF, McCoy JM, Pepinsky RB, Mi S, Relton JK. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury.Mol Cell Neurosci. 2006;33(3):311-20.
    [10] Sed(?) J, Urdz(?)kov(?) L, Jendelov(?) P, Sykov(?) E.Methods for behavioral testing of spinal cord injured rats.Neurosci Biobehav Rev. 2008; 32(3):550-80.
    [11] Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995; 12(1): 1-21.
    [12] Gale K, Kerasidis H, Wrathall JR. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment.Exp Neurol. 1985; 88(1): 123-34.
    [13] Abraham VS, Swain JA, Forgash AJ, Williams BL, Musulin MM. Ischemic preconditioning protects against paraplegia after transient aortic occlusion in the rat.Ann Thorac Surg. 2000; 69(2):475-9
    [14] Reuter DG, Tacker WA Jr, Badylak SF, Voorhees WD 3rd, Konrad PE.Correlation of motor-evoked potential response to ischemic spinal cord damage.J Thorac Cardiovasc Surg. 1992;104(2):262-72.
    [15] Schallert T, Lindner MD.Rescuing neurons from trans-synaptic degeneration after brain damage: helpful, harmful, or neutral in recovery of function? Can J Psychol. 1990; 44(2):276-92.
    [16] Choi-Lundberg DL, Lin Q,Schallert T, Crippens D, Davidson BL, Chang YN, Chiang YL, Qian J, Bardwaj L, Bonn MC. Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derivedneurotrophic factor. Exp Neurol. 1998; 154(2):261-75.
    [17] Schallert T, Jones TA."Exuberant" neuronal growth after brain damage in adult rats: the essential role of behavioral experience.J Neural Transplant Plast. 1993; 4(3): 193-8.
    [18] Xiao M, Klueber KM, Lu C, Guo Z, Marshall CT, Wang H, Roisen FJ. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Exp Neurol. 2005;194(1):12-30.
    [19] Puigdellivol-Sanchez A, Valero-Cabre A, Prats-Galino A, et al. On the use of fast blue, fluoro-gold and diamidino yellow for retrograde tracing after peripheral nerve injury: uptake, fading, dye interactions, and toxicity. Journal of Neuroscience Methods. 2002; 115 (2): 115-127.
    [20] Andersen LB, Schreyer DJ. Constitutive expression of GAP-43 correlates with rapid, but not slow regrowth of injured dorsal root axons in the adult rat. Exp Neurol.1999; 155 (2): 157-164.19.
    [21] K(?)chler M, Fouad K, Weinmann O, Schwab ME, Raineteau O. Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol. 2002; 448(4):349-59.
    [22] Xiao M, Klueber KM, Guo Z, Lu C, Wang H, Roisen FJ. Human adult olfactory neural progenitors promote axotomized rubrospinal tract axonal reinnervation and locomotor recovery. Neurobiol Dis. 2007; 26(2):363-74.
    [23] Brown LT. Rubrospinal projections in the rat. J Comp Neurol. 1974; 154(2): 169-87.
    [1] Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis. 2004;15(3):415-36.
    [2] Mori F, Himes BT, Kowada M, Murray M, Tessler A. Fetal spinal cord transplants rescue some axotomized rubrospinal neurons from retrograde cell death in adult rats.Exp Neurol. 1997;143(1):45-60.
    [3] Himes BT, Liu Y, Solowska JM, Snyder EY, Fischer I, Tessler A. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats. J Neurosci Res. 2001;65(6):549-64.
    [4] Plunet W, Kwon BK, Tetzlaff W. Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J Neurosci Res.2002;68(1):1-6.
    [5] Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci. 2004; 24(28):6402-9
    [6] Pearse DD, Sanchez AR, Pereira FC, Andrade CM, Puzis R, Pressman Y, Golden K, Kitay BM, Blits B, Wood PM, Bunge MB. Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival,migration, axon association, and functional recovery. Glia. 2007; 55(9):976-1000.
    [7] Kamei N, Tanaka N, Oishi Y, Hamasaki T, Nakanishi K, Sakai N, Ochi M. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine. 2007; 32(12): 1272-8.
    [8] Li S, Liu BP, Budel S, Li M, Ji B, Walus L, Li W, Jirik A, Rabacchi S, Choi E, Worley D, Sah DW, Pepinsky B, Lee D, Relton J, Strittmatter SM. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci. 2004; 24(46): 10511-20
    [9] Nie DY, Xu G, Ahmed S, Xiao ZC. DNA vaccine and the CNS axonal regeneration. Curr Pharm Des. 2007;13(24):2500-6.
    [10] Tan AM, Colletti M, Rorai AT, Skene JH, Levine JM. Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord. Neurosci. 2006; 26(18):4729-39.
    [11] Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci. 2007; 27(9):2176-85.
    [12] Jones LL, Margolis RU, Tuszynski MH.The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol. 2003; 182(2):399-411
    [13] Fawcett J. Repair of spinal cord injuries: where are we, where are we going? Spinal Cord. 2002; 40(12):615-23.
    [14] Bradbury EJ, McMahon SB. Spinal cord repair strategies: why do they work? Nat Rev Neurosci. 2006; 7(8):644-53.
    [15] Li XM, Bai XC, Qin LN, Huang H, Xiao ZJ, Gao TM. Neuroprotective effects of Buyang Huanwu Decoction on neuronal injury in hippocampus after transient forebrain ischemia in rats. Neurosci Lett. 2003; 346(1-2):29-32.
    [16] Fan L, Wang K, Cheng B. Effects of buyang huanwu decoction on apoptosis of nervous cells and expressions of Bcl-2 and bax in the spinal cord of ischemia-reperfusion injury in rabbits. J Tradit Chin Med. 2006; 26(2): 153-6.
    [17] Cai G, Liu B, Liu W, Tan X, Rong J, Chen X, Tong L, Shen J. Buyang Huanwu Decoction can improve recovery of neurological function, reduce infarction volume, stimulate neural proliferation and modulate VEGF and Flkl expressions in transient focal cerebral ischaemic rat brains. J Ethnopharmacol. 2007;113(2):292-9.
    [18] Cheng YS, Cheng WC, Yao CH, Hsieh CL, Lin JG, Lai TY, Lin CC, Tsai CC. Effects of buyang huanwu decoction on peripheral nerve regeneration using silicone rubber chambers.Am J Chin Med. 2001; 29(3-4):423-32.
    [19] Yick LW, So KF, Cheung PT, Wu WT. Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury. J Neurotrauma. 2004;21(7):932-43.
    [20] Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, Murray M. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol.2003; 184(1):97-113.
    [21] Kiichler M, Fouad K, Weinmann O, Schwab ME, Raineteau O. Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol. 2002; 448(4):349-59.
    [22] Brown LT. Rubrospinal projections in the rat. J Comp Neurol. 1974; 154(2): 169-87.
    [23] Kwon BK, Oxland TR, Tetzlaff W. Animal models used in spinal cord regeneration research.Spine. 2002; 27(14):1504-10.
    [24] Liu Y, Kim D, Himes BT, et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery offorelimb function. J Neurosci. 1999; 19(11):4370-87.
    [25] Muir GD, Whishaw IQ. Red nucleus lesions impair overground locomotion in rats: a kinetic analysis. Eur J Neurosci. 2000; 12(3): 1113-22.
    [26] 朱长庚主编.神经解剖学. 北京:人民卫生出版社, 2002.422
    [27] Buffo A, Fronte M, Oestreicher AB, Rossi F. Degenerative phenomena and reactive modifications of the adult rat inferior olivary neurons following axotomy and disconnection from their targets. Neuroscience. 1998; 85(2):587-604.
    [28] Giehl KM, Tetzlaff W. BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur J Neurosci. 1996; 8(6): 1167-75.
    [29] Himes BT, Goldberger ME, Tessler A. Grafts of fetal central nervous system tissue rescue axotomized Clarke's nucleus neurons in adult and neonatal operates. J Comp Neurol. 1994; 339(1):117-31.
    [30] Logan A, Ahmed Z, Baird A, Gonzalez AM, Berry M.Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury.Brain. 2006; 129(Pt 2):490-502
    [31] Xiao M, Klueber KM, Lu C, Guo Z, Marshall CT, Wang H, Roisen FJ. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Exp Neurol. 2005; 194(1): 12-30.
    [32] Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W. BDF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration. J Neurosci. 1997; 17(24):9583-95.
    [33] Kwon BK, Liu J, Lam C, Plunet W, Oschipok LW, Hauswirth W, Di Polo A, Blesch A, Tetzlaff W. Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine. 2007; 32(11): 1164-73.
    [34] Liu Y, Himes BT, Murray M, Tessler A, Fischer I. Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp Neurol. 2002; 178(2): 150-64.
    [35] Zhang ZF, Liao WH, Yang QF, Li HY, Wu YM, Zhou XF. Protective effects of adenoviral cardiotrophin-1 gene transfer on rubrospinal neurons after spinal cord injury in adult rats. Neurotox Res. 2003; 5(7):539-48.
    [36] Massion J. The mammalian red nucleus. Physiol Rev. 1967; 47(3):383-436.
    [37] You SW, Chen BY, Liu HL, Lang B, Xia JL, Jiao XY, Ju GSpontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.Restor Neurpl Neurosci. 2003; 21 (1-2):39-45.
    [1] Venero JL, Knusel B, Beck KD, Hefti F.Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections: effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration. Neuroscience. 1994; 59(4):797-815
    [2] Jin Y, Fischer I, Tessler A, Houle JD. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol. 2002;177(1):265-75
    [3] Sasaki M, Hains BC, Lankford KL, Waxman SG, Kocsis JD. Protection of corticospinal tract neurons after dorsal spinal cord btransection and engraftment of olfactory ensheathing cells. Glia. 2006; 53(4):352-59
    [4] Liu Y, Himes BT, Murray M, Tessler A, Fischer I. Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp Neurol. 2002; 178(2): 150-64.
    [5] Liu Y, Kim D, Himes BT, et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery offorelimb function. JNeurosci. 1999; 19(11):4370-87.
    [6] Rydel RE, Greene LA. cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor.Proc Natl Acad Sci U S A. 1988; 85(4):1257-61
    [7] Hanson MG Jr, Shen S, Wiemelt AP, McMorris FA, Barres BA. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J Neurosci. 1998; 18(18):7361-71.
    [8] Song HJ, Poo MM.Signal transduction underlying growth cone guidance by diffusible factors. Curr Opin Neurobiol. 1999; 9(3):355-63.
    [9] Ming GL, Song HJ, Berninger B, Holt CE, Tessier-Lavigne M, Poo MM. cAMP-dependent growth cone guidance by netrin-1. Neuron. 1997; 19(6):1225-35.
    [10]Nishiyama M,Hoshino A,Tsai L,Henley JR,Goshima Y,Tessier-Lavigne M,Poo MM,Hong K.Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning.Nature.2003;423(6943):990-5.
    [11]Jo SA,Wang E,Benowitz LI.Ciliary neurotrophic factor is and axogenesis factor for retinal ganglion cells.Neuroscience.1999;89(2):579-91.
    [12]Kao HT,Song HJ,Porton B,Ming GL,Hoh J,Abraham M,Czernik AJ,Pieribone VA,Poo MM,Greengard P.A protein kinase A-dependent molecular switch in synapsins regulates neurite outgrowth.Nat Neurosci.2002;5(5):431-7.
    [13]Cai D,Shen Y,De Bellard M,Tang S,Filbin MT.Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism.Neuron.1999;22(1):89-101
    [14]Gao Y,Nikulina E,Mellado W,Filbin MT.Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase.J Neurosci.2003;23(37):11770-7.
    [15]Neumann S,Bradke F,Tessier-Lavigne M,Basbaum AI.Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation.Neuron.2002;34(6):885-93.
    [16]Qiu J,Cai D,Dai H,McAtee M,Hoffman PN,Bregman BS,Filbin MT.Spinal axon regeneration induced by elevation of cyclic AMP.Neuron.2002;34(6):895-903.
    [17]Nikulina E,Tidwell JL,Dai HN,Bregman BS,Filbin MT.The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery.Proc Natl Acad Sci U S A.2004;101(23):8786-90.
    [18]Pearse DD,Pereira FC,Marcillo AE,Bates ML,Berrocal YA,Filbin MT,Bunge MB.cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury.Nat Med.2004;10(6):610-6.
    [19]邓盘月,聂笃余,蔡维君,张建一,万炜,罗学港.大鼠脊髓全横断后脑源性神经营养因子及其高亲和力受体在运动皮质表达的变化.解剖学报.2002; 33(6):581-586
    [20]Brunello N, Reynolds M, Wrathall JR, Mocchetti I. Increased nerve growth factor receptor mRNA in contused rat spinal cord. Neurosci Lett. 1990; 118(2): 238-40.
    [21] Ikeda O, Murakami M, Ino H, et al. Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulationof myelin basic protein expression. J Neuropathol Exp Neurol. 2002; 61 (2): 142-53.
    [22]Shen S, Wiemelt AP, McMorris FA, Barres BA.Retinal ganglion cells lose trophic responsiveness after axotomy. Neuron. 1999; 23(2):285-95.
    [23]Cui Q, Yip HK, Zhao RC, So KF, Harvey AR.Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol Cell Neurosci. 2003; 22(1):49-61.
    [24]Xu XL, Ji H, Gu SY, Shao Q, Huang QJ, Cheng YP Cardioprotective effects of Astragali Radix against isoproterenol-induced myocardial injury in rats and its possible mechanism. Phytotherapy Res. 2008 ;22(3):389-94.
    [25]Fan Y, Wu DZ, Gong YQ, Zhou JY, Hu ZB.Effects of calycosin on the impairment of barrier function induced by hypoxia in human umbilical vein endothelial cells.Eur J Pharmacol. 2003; 481(1):33-40.
    [26]Domeniconi M, Filbin MT.Overcoming inhibitors in myelin to promote axonal regeneration.J Neurol Sci. 2005; 233(1 -2):43-7.
    [1] Bregman BS, Diener PS, McAtee M, et al. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury. Adv Neurol. 1997; 72:257-75.
    [2] Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. Prog Brain Res. 2007; 161:217-33.
    [3] Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001; 24:677-736.
    [4] Ye JH, Houle JD. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. xp Neurol. 1997; 143:70-81.
    [5] Thoenen H. Neurotrophins and neuronal plasticity. Science. 1995;270: 593-98.
    [6] Hennigan A, O'Callaghan R, Kelly A. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochemical Society Transactions. 2007;35:424-27.
    [7] Tucker KL, Meyer M, Barde YA. Neurotrophins are required for nerve growth during development. Nat Neurosci. 2001; 4: 29-37.
    [8] Johnson EM, Taniuchi M, Clark HB, et al. Demonstration ofthe retrograde transport of nerve growth factor receptor in the periphenal and central nervous system. J Neuroci. 1987; 7: 923
    [9] Hempstead BL, Martin-Zanca M, Kaplan DR, et al. High-afinity NCF binding requires coexpression ofthe trk protooncogene and the low-afinity NCF receptor.Nature.1991; 35:632-78.
    [10]Lykissas MG, Batistatou AK, Charalabopoulos KA, et al. The role of neurotrophins in axonal growth, guidance, and regeneration.Curr Neurovasc Res. 2007; 4:143-51.
    [11]Karamoysoyli E, Burnand RC, Tomlinson DR, et al.Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy.Diabetes. 2008; 57:181-189.
    [12] Lee TH, Yang JT, Ko YS, et al.Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia. Brain Res. 2008;1187:1-11.
    [13] Levi Montalcini R. The nerve growth factor thirty-five years later. Science. 1987; 237:1154-62.
    [14] Tang XQ, Heron P, Mashburn C, et al.Targeting sensory axon regeneration in adult spinal cord.J Neurosci. 2007; 27:6068-78.
    [15]Jubran M, Widenfalk J. Repair of peripheral nerve transections with fibrin sealant containing neurotrophic factors. Exp Neurol. 2003; 181:204-12.
    [16]Chiaretti A, Antonelli A, Genovese O, et al. Nerve growth factor and doublecortin expression correlates with improved outcome in children with severe traumatic brain injury.J Trauma. 2008; 65:80-85.
    [17] Schwartz JP, Nishiyama N.Neurotrophic factor gene expression in astrocytes during development and following injury.Brain Res Bull. 1994; 35:403-7.
    [18] Blesch A, Yang H, Weidner N, Hoang A, et al. Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mnl Cell Neurosei. 2004; 27:190-201.
    [19] Goldberg JL. How does an axon grow? Genes Dev. 2003; 17:941-58.
    [20] Patel TD, Jackman A, Rice FL, et al. Development of sensory neurons in the absence of NGF/TrkA signaling in vim. Neuron. 2000; 25:345-57.
    [21]Barde YA. The nerve growth factor family. Prog Growth Factor Res. 1990; 2: 237-48.
    [22]Barde YA. What, if anything, is a neurotrophic factor. Trends Neurosci. 1988; 11:343-46.
    [23] Barde YA. Trophic factors and neuronal survival. Neuron. 1989; 2: 1525-34.
    [24]Barde YA. Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res. 1994; 390: 45-56.
    [25] Fayard B, Loeffler S, Weis J, et al. The secreted brain-derived neurotrophic factor precursor pre-BDNF binds to TrkB and p75NTR but not to TrkA or TrkC. J Neurosci Res. 2005; 80:18-28.
    [26] Binder DK, Croll SD, Gall CM, et al. BDNF and epilepsy: too much of a good thing? Trends Neurosci. 2001; 24:47-53.
    [27] Hiebert GW, Khodarahmi K, McGraw J, et al. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J Neurosci Res. 2002; 69:160-68.
    [28] Kobayashi NR, Fan DP, Giehl KM, et al. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and talpha 1-Tubulin mRNA expression, and promote axonal regeneration. J Neurosci.1997; 17:9583-95.
    [29] Tobias CA, Shumsky JS, Shibata M, et al. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol. 2003; 184: 97-113.
    [30]Vavrek R, Girgis J, Tetzlaff W, et al. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain. 2006; 129: 1534-45.
    [31]Pernet V, Di PA. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain. 2006; 129: 1014-26.
    [32]Brunello N, Reynolds M, Wrathall JR, et al. Increased nerve growth factor receptor mRNA in contused rat spinal cord. NeurosciLett. 1990; 118: 238-40.
    [33] Dougherty KD, Dreyfus CF, Black IB. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis.2000; 7: 574-85.
    [34] Jin Y, Fischer I, Tessler A, et al. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol. 2002; 177: 265-75.
    [35] Ikeda O, Murakami M, Ino H, et al. Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression. J Neuropathol Exp Neurol.2002; 61:142-153.
    [36] Ikeda K, Tanihara H, Tatsuno, T et al. Brain-derived neurotrophic factor shows a protective effect and improves recovery of the ERG b-wave response in light-damage. J Neurochem. 2003; 87: 290-96.
    [37] Ikeda O, Murakami M, Ino H, et al. Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol (Ber1). 2001; 102: 239-45.
    [38] Ip NY, Li Y, Yancopoulos GD, et al. Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci. 1993; 13:3394-405.
    [39]Nistico G, Ciriolo MR, Fiskin K, et al. NGF restores decrease in catalase activity and increases superoxide dismutase and glutathione peroxidase activity in the brain of aged rats. Free Radic Biol Med. 1992; 12:177-81.
    [40] Ikeda O, Murakami M, Ino H, et al. Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol (Berl). 2001; 102: 239-45.
    [41]Novikova LN, Novikov LN, Kellerth JO. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci. 2000; 12: 776-80.
    [42] Kobayashi NR, Fan DP, Giehl KM, et al. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axtomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration. J Neurosci. 1997; 17:9583-95.
    [43]Sharma HS. Neurotrophic factors attenuate microvascular permeability disturbances and axonal injury following trauma to the rat spinal cord. Acta Neurochir Suppl. 2003; 86:383-88.
    [44] Batchelor PE, Wills TE, Hewa AP, et al. Stimulation of axonal sprouting by trophic factors immobilized within the wound core. Brain Res. 2008; 1209: 49-56.
    [45] Mocchetti I, Wrathall JR. Neurotrophie factors in CNS trauma. J Neuro trauma. 1995; 12:853-70
    [46] Hayes RL, Yang K, whitson JS, et al. Cytokeletal derangements following central neurvous system injury:modulation by neurotrophie gene Iransfection, J Neurotrauma, 1995; 12: 933-41
    [47]Kaddls FG, Zawada WM, Scl'maek J, et al. Conditioned mediuln from Aged monkey fibroblasts stably expression CDNF and BDNF improves surviral of embryome dopamme neurons in vitro. Cell Tissue Res. 1996; 286:241-7.
    [48]Novikova LN, Novikov LN, Kellerth JO. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci. 2000; 12: 776-80.
    [49] Liu Y, Himes BT, Murray M, et al. Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp Neurol. 2002; 178: 150-64.
    [50] Blesch A, Tuszynski MH. Transient growth factor delivery sustains regenerated axons after spinal cord injury. J Neurosci. 2007; 27: 10535-45.
    [51] Blesch A, Yang H, Weidner N, et al. Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci. 2004; 27: 190-201.
    [52] Blesch A. Neurotrophie factors in neurodegeneration. Brain Pathol. 2006; 16:295-303.
    [53] Bregman BS, Broude E, McAtee M, et al. Transplants and neurotrophie factors prevent atrophy of mature CNS neurons after spinal cord injury. Exp Neurol. 1998; 149: 13-27.
    [54] Bregman BS, Coumans JV, Dai HN, et al. Transplants and neurotrophie factors increase regeneration and recovery of function after spinal cord injury. Prog Brain Res. 2002; 137: 257-73.
    [55]Hendriks WT, Ruitenberg MJ, Blits B, et al .Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res. 2004; 146:451-76.
    [56] Liu Y, Kim D, Himes BT, et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci.1999; 19:4370-87.
    [57]Teng FY, Tang BL. Axonal regeneration in adult CNS neurons-signaling molecules and pathways. J Neurochem. 2006; 96:1501-8.
    [58]Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury.Exp Neurol. 2008; 209:321-32.
    [59] Park K, Luo JM, Hisheh S, et al. Cellular mechanisms associated with spontaneous and ciliary neurotrophic factor-cAMP-induced survival and axonal regeneration of adult retinal ganglion cells.J Neurosci. 2004; 24:10806-15.
    [60] Chen XR, You SW, Jin DD. The role of cyclic AMP in repair of hemisection of spinal cord in rats models.Zhonghua Wai Ke Za Zhi. 2005; 43:517-21.
    [61] Huang HF, Li MT, Wang S, et al. Alteration of cyclic adenosine 3',5'-monophosphate signaling in rat testicular cells after spinal cord injury.J Spinal Cord Med. 2003; 26:69-78
    [62]Nikulina E, Tidwell JL, Dai HN, et al.The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci USA. 2004; 101:8786-90.
    [63] Han PJ, Shukla S, Subramanian PS, et al. Cyclic AMP elevates tubulin expression without increasing intrinsic axon growth capacity. Exp Neurol. 2004; 189:293-302.
    [64]Pearse DD, Pereira FC, Marcillo AE, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury .Nat Med. 2004; 10:610-16.
    [65] De Felice FG, Wasilewska-Sampaio AP, Barbosa AC, et al. Cyclic AMP enhancers and Abeta oligomerization blockers as potential therapeutic agents in Alzheimer's disease.Curr Alzheimer Res. 2007; 4:263-71.
    [66]Cai D, Shen Y, De Bellard M, et al. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron. 1999; 22: 89-101.
    [67]Gao Y, Deng K, Hou J, et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron. 2004; 44:609-21.
    [68] Dent EW and Gertler FB. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron. 2003; 40:209-27.
    [69]Gallo G, Letourneau PC. Regulation of growth cone actin filaments by guidance cues. J Neurobiol. 2004; 58:92-102.
    [70] Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209: 294-301.
    [71] Shao Z, Browning JL, Lee X, et al. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron. 2005; 45: 353-59.
    [72]Fournier AE, Strittmatter SM. Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol. 2001; 11: 89-94.
    [73] David S, Fry EJ, Lopez-Vales R. Novel roles for Nogo receptor in inflammation and disease.Trends Neurosci. 2008; 31:221-6.
    [74]Niederost B, Oertle T, Fritsche J, et al. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Racl. J Neurosci. 2002; 22: 10368-76.
    [75] Woolf CJ. Nogo: Now Where to Go? Neuron. 2003; 38:153-6.
    [76]Bandtlow CE, Schwab ME. NI-35/250/nogo-A: a neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibers in the adult vertebrate CNS. Glia. 2000; 29: 175-81.
    [77] Caroni P, Schwab ME. Antibody against myelin-associated inhibitor of neurite growth neutralizes non-permissive substrate properties of CNS white matter. Neuron. 1988; 1:85-96.
    [78] Nie DY, Zhou ZH, Ang BT, et al. Nogo-A at CNS paranodes is a ligand of Caspr: possible regulation of K(+) channel localization. EMBO J. 2003; 22:5666-78.
    [79] McGee AW, Strittmatter SM. The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci. 2003; 26: 193-98.
    [80] Liu BP, Fournier A, GrandPre T, et al . Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science. 2002; 297: 1190-3.
    [81] Wang KC, Kim JA, Sivasankaran R, et al. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002; 420: 74-78.
    [82] Kim JE, Liu BP, Park JH, et al. Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury. Neuron. 2004; 44: 439-51.
    [83] Zheng B, Ho C, Li S, et al. Lack of Enhanced Spinal Regeneration in Nogo-Deficient Mice. Neuron. 2003; 38: 213-24.
    [84] Kubo T, Yamashita T. Rho-ROCK inhibitors for the treatment of CNS injury. Recent Patents CNS Drug Discov. 2007; 2:173-9.
    [85] Liu S, Peulve P, Jin O, et al. Axonal regrowth through collagen tubes bridging the spinal cord to nerve roots. J Neurosci Res, 1997; 49: 425-32.
    [86] Kubo T, Yamaguchi A, Iwata N, et al.The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther Clin Risk Manag. 2008; 4:605-15.
    [87] Brfsamle C, Huher AB, Fiedler, M et al. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant humanized IN -1 antibody fragment.Neurosci. 2000; 20:8061-68.
    [88] Liebscher T, Schnell L, Schnell D, et al. Nogo-A antibody improves regeneration and locomotion of spinal cord injured rats. Ann Neurol. 2005;58:706-19.
    [89] Fouad K, Klusman I, Schwab ME. Regenerating corticospinal fibers in the Marmoset(Callitrix jacchus)after spinal cord lesion and treatment with the anti-Nogo-A antibody IN-1. Eur J Neurosci. 2004; 20:2479-82.
    [90] Fournier AE, Gould GC, Liu BP, et al. Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J Neurosci. 2002;22:8876-83.
    [91]GrandPre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature. 2002; 417:568-73.
    [92] Li S, Strittmatter SM. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci. 2003; 23:4219-27.
    [93] Cai D, Qiu J, Cao Z, et al. Neuronal cyclic amp controls the developmental loss in ability of axons to regenerate. J Neurosci. 2001; 21:4731-39.
    [94] Fruttiger M, Montag D, Schachner M, et al. Crucial role for the myelin-associated glycoprotein in the maintenance of axonal-myelin integrity. Eur J Neurosci. 1995; 7:511-15.
    [95] Gris P, Tighe A, Levin D, et al.Transcriptional regulation of scar gene expression in primary astrocytes.Glia. 2007; 55:1145-55.
    [96] Barton WA, Liu BP, Tzvetkova D, et al. Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. EMBO J. 2003; 22:3291-302.
    [97] Wang KC, Koprivica V, Kim JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature. 2002; 417:941-44.
    [98] Mueller BK, Mack H, Teuseh N. Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov. 2005; 4:387-98.
    [99] Fawcett JW. Axon growth and regeneration: intrinsic neuronal effects. Trend Neurosci. 1992; 15: 5-8.
    [100]Kreutzberg GW. Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 1996;19: 312-18.
    [101]Asher RA,.Mougensjern DA, Fidler PS, et al. Neurocan is upregulated in injured brain and in evtokine-treated astroeytes. J Neurosci. 2000; 20:2427-38.
    [102]Kubo T, Hata K, Yamaguchi A, et al. Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration.Curr Pharm Des. 2007; 13:2493-9.
    [103] Moon LD, Asher RA, Rhodes KE, et al. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC.Nat Neurosci. 2001; 4:465-6.
    [104]Brndlmry EJ, Moon LD, Popat RJ, et al. Chondroitinaae ABC promotes unctional recovery after spinal cord injury. Nature. 2002; 416:636-40.
    [105] Moon LDF, Brecknell JE, Franklin RJM, et al. Robust regeneration of CNS axons through a track depleted of CNS glia. Exp Neurol. 2000; 161:49-66.
    [106] Logan A, Berry M, Gonzalez AM, et al. Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur J Neurosci. 1994; 6: 355-61.
    [107] Smith GM, Silver J. Transplantation of immature and mature astrocytes and their effect on scar formation in the lesioned central nervous system. Prog Brain Res. 1988;78:353-61.
    [108]Lepore AC, Dejea C, Carmen J, et al. Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration.Exp Neurol. 2008;211:423-32.
    [109]Z'Graggen WJ, Metz GA, Kartje GL, et al. Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. J Neurosci, 1998;18:4744-57.
    [110]Nie DY, Xu G, Ahmed S, et al. DNA vaccine and the CNS axonal regeneration.Curr Pharm Des. 2007; 13:2500-6.
    [111]Amberger VR, Avellanaadalid V, Hensel T, et al. Oligodendrocyte-type 2 astrocyte progenitors use a metalloendoprotease to spread and migrate on CNS myelin. Eur J Neurosci. 1997; 9:151-62.
    [112]deRivero Vaccari JP, Lotocki G, Marcillo AE, et al.A molecular platform in neurons regulates inflammation after spinal cord iniurv.J Neurosci. 2008: 28:3404-14.
    [113] Pizzi MA, Crowe MJ. Matrix metalloproteinases and proteoglycans in axonal regeneration.Exp Neurol. 2007; 204:496-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700