木质纤维素水解液抑制物耐受菌发酵生产木糖醇的研究及产乙醇基因工程探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素是自然界含量丰富的可再生资源,可在水解后被微生物发酵生产木糖醇、乙醇等有用产品。然而其水解产生的抑制物阻碍微生物的生长与发酵,限制了该资源的有效利用。我们利用从土壤中筛选得到的耐受木质纤维素水解液抑制物的季氏毕赤酵母来发酵木糖产木糖醇,在添加了较高浓度的木质纤维素水解液主要抑制物的培养基中考察了接种量、碳源以及抑制物浓度对其木糖醇发酵的影响。同时研究了不同初始KLa对于季氏毕赤酵母生长、木糖消耗和木糖醇产量的影响,并考察了木糖代谢的关键酶——木糖还原酶、木糖醇脱氢酶和葡萄糖-6-磷酸脱氢酶的酶活性变化。
     研究结果显示,在添加木质纤维素水解液抑制物(糠醛、羟甲基糠醛和乙酸)的培养基中,接种量约1.8g l-1与葡萄糖:木糖比例(g:g)小于1:10的条件有利于季氏毕赤酵母发酵木糖生产木糖醇。即使在较高浓度抑制物(2g l-1糠醛、2g l-1羟甲基糠醛和3g l-1乙酸)存在条件下,该菌也能迅速降解糠醛和羟甲基糠醛,与无抑制物添加的对照相比,其木糖醇生产能力仍能维持90%以上。同时发现该酵母对氧供应敏感,在一个极低的供氧条件下(初始KLa=0.075h-1),木糖醇的产量(12.0g l-1)和对木糖的得率(0.61g g-1)达到最大。在低初始KLa(0.033-0.37h-1)范围内,葡萄糖-6-磷酸脱氢酶的酶活随KLa增大而提高;低初始KLa条件使木糖醇脱氢酶活性降低,从而抑制了木糖醇降解。另外,在该季氏毕赤酵母中观察到木糖还原酶的酶活低于木糖醇脱氢酶的酶活。
     与此同时,我们还筛选获得了一株遗传背景较为清晰能耐受木质纤维素水解液抑制物的细菌,成功构建了带有Zymomonas mobilis的pdc基因和adhB基因的质粒,为今后对其进行面向产乙醇的代谢工程改造奠定了一定基础。
Lignocellulosic materials are cost-effective resources for bio-production of value-added products such as xylitol and ethanol. However, the microbial utilization of lignocellulose is limited because of the toxic compounds present in the hydrolysate. In this work, a lignocellulosic inhibitory compounds-resistant strain, Pichia guilliermondii, was isolated and was used for xylitol production from xylose. Different inoculation sizes, mixed carbon sources, and concentrations of inhibitors were investigated. After optimization of these fermentation conditions, oxygen supply conditions, i.e., various initial volumetric oxygen transfer coefficient (KLa) values, and the behavior of key enzymes of xylose metabolism, i.e., xylose reductase (XR), xylitol dehydrogenase (XDH) and glucose-6-phosphate dehydrogenase (G6PD), were studied in detail. The results indicated that an inoculation size of 1.8g l-1 and a glucose:xylose ratio (g:g) of less than 1:10 was favorable to the P. guilliermondii fermentation in the presence of lignocellulosic inhibitory compounds. In culture medium with high concentration of inhibitors (2g l-1 furfural, 2g l-1 5-hydroxymethyl furfural and 3g l-1 acetic acid), this yeast degraded furfural and HMF rapidly and maintained the fermentation ability of more than 90% compared to the control without inhibitors addition. This strain was found to be very sensitive to oxygen supply during xylose fermentation. A very low initial KLa value, i.e., within the range of 0.033-0.37h-1, showed a significant effect on the cell growth, substrate uptake, xylitol production as well as the activities of key enzymes (XR, XDH and G6PD). The highest xylitol yield on xylose (0.61gg-1) was attained at an initial KLa value of 0.075h-1. The G6PD specific activity was enhanced with the increase of intail KLa; the very low initial KLa inhibited the activity of XDH, thus inhibited the degradation of xylitol. Furthermore, a XR/XDH ratio <1 was found in this yeast during xylitol production.
     At the same time, a lignocellulosic inhibitory compounds-resistant bacterium was screened out with its known genomic background. A plasmid with pdc and adhB from Zymomonas mobilis was constructed in the aim of its genetic engineering towards ethanol production.
引文
[1] Sánchez C., Lignocellulosic residues: Biodegradation and bioconversion by fungi, Biotechnol. Adv., 2009, 27, 185-194.
    [2] Gong C.S., Cao N.J., Du J., Tsao G.T., Ethanol production from renewable resources, Adv. Biochem. Eng. Biotech., 1999, 65, 207-241
    [3] Whistler R.L., Richard E.L., In Pigman W, Houston D (eds) The carbohydrates. Academic, NewYork, 1970, Chapter 37, 447
    [4] Olsson L., Hahn-H?gerdal B., Fermentation of lignocellulosic hydrolysates for ethanol production, Enzyme Microb. Technol., 1996, 18, 312-331.
    [5] Fan L.T., Lee Y.H., Gharpuray M.M., The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis, Adv. Biochem. Eng., 1982, 23, 158-187.
    [6] Grethlein, H.E., Converse, A.O., Common aspects of acid prehydrolysis and steam explosion for pretreating wood, Bioresour. Technol., 1991, 36, 77-82.
    [7] Torget, R., Hsu, T.A., Two-temperature dilute acid prehydrolysis of hardwood xylan using a percolation process, Appl. Biochem. Biotechnol., 1994, 45/46, 5-23.
    [8] Palmqvist E., Hahn-H?gerdal B., Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition, Bioresour. Technol., 2000, 74, 25–33.
    [9] Dunlop A.P., Furfural formation and behavior, Ind. Eng. Chem., 1948, 40, 204-209.
    [10] Ulbricht R.J., Sharon J., Thomas J., A review of 5-hydroxymethylfurfura HMF in parental solutions, Fundam. Appl. Toxicol., 1984, 4, 843-853.
    [11] Bardet M., Robert D.R., Lundqvist K., On the reactions and degradation of the lignin during steam hydrolysis of aspen wood, Sven. Papperstidn., 1985, 6, 61-67.
    [12] Lapierre C., Rolando C., Monties B., Characterization of poplar lignins acidolysis products: capillary gas-liquid and liquid-liquid chromatography of monomeric compounds, Holzforschung, 1983, 37, 189-198.
    [13] Sears K.D., Beélik A., Casebier R.L., Engen R.J., Hamilton J.K., Hergert H.L., Southern pine prehydrolyzates: characterization of polysaccharides and lignin fragments, J. Polym. Sci., 1971, 36, 425-443.
    [14] Popoff T., Theander O., Formation of aromatic compounds from carbohydrates part III. Reaction of D-glucose and D-froctose in slightly acidic, aqueous solution, Acta Chem. Scand. B, 1976, 30, 397-402.
    [15] Suortti T., Identification of antimicrobial compounds in heated neutral glucose and fructose solutions, Lebensm. Unters. Forsch., 1983, 177, 94-96.
    [16] Tran A.V., Chambers R.P., Red oak derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS 5776, Biotechnol. Lett., 1985, 7, 841-846.
    [17] J?nsson L.J., Palmqvist E., Nilvebrant N.O., Hahn-H?gerdal B., Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor, Appl. Microbiol. Biotechnol., 1998, 49, 691-697.
    [18] Ando S., Arai, Kiyoto K., Hanai S.,. Identification of aromatic monomers in steam-exploded poplar and their influence on ethanol fermentation, J. Ferment. Technol., 1986, 64, 567-570.
    [19] Mussatto S.I, Roberto I.C., Alternadve for detoxification of diluted-acid lignocellulosic bydrolyzates for use in fermentative processes: a review, Bioresour. Technol., 2004, 93, 1-10
    [20] Azhar A.F., Bery M.K., Colcord A.R., Roberts R.S., Corbitt G.V., Factors affecting alcohol fermentation of wood acid hydrolysate, Biotechnol. Bioeng. Symp., 1981, 11, 293-300.
    [21] Boyer L.J., Vega K., Klasson K.T., Clausen E.C., Gaddy J.L., The effects of furfural on ethanol production by Saccharomyces cerevisiae, Biomass Bioeng., 1992, 3, 41-48.
    [22] Navarro A.R., Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models, Curr. Microbiol., 1994.29, 87-90.
    [23] Palmqvist E., Almeida J., Hahn-H?gerdal, B., Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture, Biotechnol. Bioeng., 1999, 62, 447-454.
    [24] Taherzadeh M.J., Gustafsson L., Niklasson C., Liden G., Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae,J. Biosci. Bioeng., 1998, 87, 169-174.
    [25] Sampaio F.C., Torre P., Passos F.M.L., De Moraes C.A., Perego P., Converti A., Influence of inhibitory compounds and minor sugars on xylitol production by Debaryomyces hansenii, Appl. Microbiol. Biotechnol., 2007, 136, 165-181.
    [26] Banerjee N., Bhatnagar R, Vdviswanathan L, Deve1opment of resistance in Saccharomyces cerevisiae against inhibitory effect of browing reaction products, Enzyme Microb. Technol., l98l, 3, 24-28.
    [27] Weigert B., Klein C., Lauterbach C., Dellweg H., Xylose fermentation by yeasts influence of furfural on the aerobic growth of the yeast Pichia stipitis, Biotechnol. Lett., 1988, 10, 895-900.
    [28] Delgenes J.P., Moletta R, Navarro J.M., Effects of Lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida Shehatae, Enzyme Microb. Technol., 1996, 19, 220-225.
    [29] Roberto I.C., Felipe M.G.A., Lacis L.S., Silva S, Utilization of sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii for xylitol production, Bioresour. Technol., 1991, 36, 271-275.
    [30] Liu Z.L., Slininger P.J., Dien B.S., Berhow M.A., Kurtzman C.P., Gorsich S.W., Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran, J. Ind. Microbiol. Biotechnol., 2004, 31, 345-352
    [31] Boopathy R., Bokang H., Daniels L., Biotransfomation of furfural and 5-hydroxylnethyl furfural by enteric bacteria, J. Ind. Microbiol., 1993, 11, 147-150.
    [32] Martinez A., Rodriguez M.E., York S.W., Effect of Ca(OH)2 treatment (“over-liming”) on the composition and toxicity of bagasse hemicelluloses hydrolysate, Biotech. Bioeng., 2000, 69, 526-536.
    [33] Preziosi-Belloy L., Nolleau V., Navarro J.M., Fermentation of hemicellulosic sugars and sugar mixtures to xylitol by Candida parapsilosis, Enzyme Microb. Technol., 1997, 21, 124–129.
    [34] Lawford H.Q., Rousseau J.D., Improving fermentation performance of 73recombinant Zymomonas in acetic acid-containing media, Appl. Biochem. Biotech., 1998, 70-72, 161-172
    [35] Nigam J.N., Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis, J. Ind. Microbiol. Biotechnol., 2001, 26, 145-150.
    [36] Watson N.E., Prior B.A., Lategan P.M., Factors in acid treated bagasse inhibiting ethanol production from d-xylose by Pachysolen tannophilus, Enzyme Microb. Technol., 1984, 6, 451-456.
    [37] Wilson J.J., Deschatelets L., Nishikawa N., Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspenwood hemicellulose by Pichia stipitis CBS5776, Appl. Microbiol. Biotechnol., 1989, 31, 592-596.
    [38] Roberto I.C., Silva S.S., Felipe M.G.A., de Mancilha I.M., Sato S., Bioconversion of rice straw hemicellulose hydrolysate for the production of xylitol, Appl. Biochem. Biotech., 1996, 57-58, 339-347.
    [39] Van Zyl C., Prior B.A., du Preez J.C., Acetic acid inhibition of D-xylose fermentation by Pichia stipitis, Enzyme Microb. Technol., 1991, 13, 82-86.
    [40] Ferrari M.D., Neirotti E., Albomoz C., Saucedo E., Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis, Biotechnol. Bioeng., 1992, 40, 753-759.
    [41] Ando S., Arai I., Kiyoto K., Hanai S., Indentification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae, J. Ferment. Technol., 1986, 64, 567-570.
    [42] Heipieper H.J., Weber F.J., Sikkema J., Kewelo H., de Bont J.A.M., Mechanism of resistance of whole cells to toxic organic solvents, Trends Biotechnol., 1994, 12, 409-415.
    [43] Palmqvist E., Hahn-H?gerdal B., Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification, Bioresour. Technol., 2000, 74, 17-24.
    [44] Mussatto, S.I., Roberto, I.C., Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii, Biotechnol. Lett., 2001, 23, 1681-1684.
    [45] Parajo J.C., Dominguez H., Donminguez J.M., Charcoal adsorption of woodhydrolysates for improving their fermentability: Influence of the operational conditions, Bioresour. Technol., 1996, 57, 179-185.
    [46] Rodrigues R.C.L.B., Felipe M.G.A., Almeida e Silva J.B., Vitolo M., Gómez P.V., The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and non-volatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation, Braz J. Chem. Eng., 2001, 18, 299–311.
    [47] Amartey S., Jeffries T., An improvement in Pichia stipitis fermentation of acid-hydrolysed hemicelluloses achieved by overliming (calcium hydroxide treatment) and strain adaption, World J. Microb. Biotech., 1996, 12, 281-283.
    [48] Hyvonen L., Koivistoinen P., Yoirol F., In Chichester C.O, Mrak E.M, Stewart G. (eds) Advances in Food Research, Vol.28, Academic Press, New York.
    [49]郑建仙,功能性食品甜味剂,北京,中国轻工业出版社,1997, 8-12.
    [50] M?kinen K.K., Xylitol and oral health, Adv. Food Res., 1979, 25, 137-158.
    [51]吴星,木糖醇微生物转化的研究,工业微生物, 1994, 4 (4), 24-26.
    [52]尤新,木糖醇的生产和应用,北京,轻工业出版社, 1984.
    [53] Parajo ?J.C., Domin?guez H., Domin?guez J.M., Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis, Bioresour. Technol., 1998, 65, 191-201.
    [54] Hyv?nen L., Koivistoinen P., Voirol F., In Chichester C.O., Mrak E. M. & Stewart G. (eds) , Advances in Food Research, Academic Press, New York, 1982, 28, 373-403.
    [55] Pepper T., Olinger P. M., Xylitol in sugar-free confections, Food Technol., 1988, 10, 98-106.
    [56] Horitsu H., Yahashi Y., Takamizawa K., Kawai K., Suzuki T., Watanabe N., Production of xylitol from D-xylose by Candida tropicalis: optimization of production rate, Biotechnol. Bioeng., 1992, 40, 1085-1091.
    [57] Barbosa M.F.S., Medeiros M.B., Mancilha I.M., Schneider H., Lee H., Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii, J. Ind. Microbiol., 1988, 3, 241-251.
    [58] Vongsuvanlert V., Tani Y., Xylitol production by a methanol yeast Candida boidinii (Kloeckera sp.) no. 2201, J. Ferment. Bioeng., 1989, 67, 35-39.
    [59] Furlan S.A., Boutlloud P., Strehaiano P., Riba, J.P., Study of xylitol formation from xylose under oxygen limiting conditions, Biotechnol. Lett., 1991, 13, 203-206.
    [60] Roseiro J.C., Peito M.A., Girio F.M., Amaral-Collaqo M T., The effects of oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii, Arch. Microbial., 1991, 156, 484-490.
    [61] Winkelhausen E., Kuzmanova S., Microbial conversion of D-xylose to xylitol, J. Ferment. Bioeng., 1998, 86, 1-4.
    [62] Yablochkova E.N., Bolotnikova O.I., Mikhailova N.P., Nemova N.N., Ginak, A.I., The activity of key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium, Microbiology, 2004, 73, 129-133.
    [63] Granstr?m T.B., Izumori K., Leisola M., A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol, Appl. Microbiol. Biotechnol., 2007, 74, 277–281.
    [64] Nigam P., Singh D., Processes for fermentative production of xylitol - A sugar substitute, Process Bioche., 1995, 30, 117-124.
    [65] Sirisansaneeyakul S., Staniszewski M., Rizzi M., Screening of yeasts for production of xylitol from D-xylose, J.Ferment. Bioeng., 1995, 6, 564-570.
    [66] Kilian S.G., van Uden N., Transport of xylose and glucose in the xylose fermenting yeast Pichia stipitis, Appl. Microbial. Biotechnol., 1998, 27, 545-548.
    [67] Ligthelm M.E., Prior B.A., du Preez J. C., Brandt V., An investigation of d-{1-13C} xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions, Appl. Microbial. Biotechnol., 1988, 28, 293-296.
    [68] Laplace J.M., Delgenes J.P., Moletta R., Navarro J.M., Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: oxygen requirement as a key factor, Appl. Microbial. Biotechnol., 1991, 36, 158-162.
    [69] Branco R.F., Santos J.C., Sarrouh B.F., Rivaldi J.D., Pessoa Jr A., Silva, S.S., Profiles of xylose reductase, xylitol dehydrogenase and xylitol production underdifferent oxygen transfer volumetric coefficient values, J. Chem. Technol. Biotechnol., 2009, 84, 326-330.
    [70] Roberto I.C., De Mancilha I.M., Sato S., Influence of kLa on bioconversion of rice straw hemicellulose hydrolysate to xylitol, Bioprocess Eng., 1999, 21, 505-508.
    [71] Parajo J.C., Dominguez H., Dominguez J.M., Production of xylitol from concentrated wood hydrolysate by Debaryomyces hansenii: effect of the initial cell concentration, Biotechnol. Lett., 1998, 18, 593-598.
    [72] Cao N-J., Tang R., Gong C.S., Chen L.F., The effect of cell density on the production of xylitol from D-xylose by yeast, Appl. Biochem. Biotechnol., 1994, 45-46, 515-519.
    [73] Roberto I.C., Sate S., de Mancilha I.M., Effect of inoculums level on xylitol production from rice straw hemicelluloses hydrolysate by Candida guilliermondii, J. Ind. Microbial., 1996, 16, 348-350.
    [74] Sirisansaneeyakul S., Staniszewski M., Rizzi M., Screening of yeasts for production of xylitol from D-xylose, J. Ferment. Bioeng., 1995, 6, 564-570.
    [75] Nolleau V., Preziosi-Belloy L., Delgenes J.P., Navarro J.M., Xylitol production from xylose by two yeast strains: sugar tolerance, Current Microbiol., 27, 1993, 191-197.
    [76] Lee H., Sopher C.R., Yau K.Y.F., Induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars in Candida guilfiermondii, J. Chem. Technol. Biotechnol., 1996, 66, 375-379.
    [77] Meyrial V., Delgenes J.P., Moletta R., Navarro J.M., Xylitol production from D-xylose by Candidu guiUiermondii: fermentation behavior, Biotechnol. Lett., 1991, 11, 281-286.
    [78] San?chez S., Bravo V., Garcia? J.F., Cruz N., Cuevas M., Fermentation of D-glucose and D-xylose mixtures by Candida tropicalis NBRC 0618 for xylitol production, World J. Microb. Biotech., 2008, 24, 709-716.
    [79] Da Silva D.D.V., Felipe M.G.A., Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate, J. Chem. Technol. Biotechnol., 2006, 81,1294-1300.
    [80] Rosa S.M.A., Felipe M.G.A., Silva S.S., Vitolo M., Xylose reductase production by Candida guilliermondii, Appl. Biochem. Biotechnol., 1998, 70-72, 127-135.
    [81] Gong C.S., Chen L.F., Tsao G.T., Quantitative production of xylitol from o-xylose by a high-xylitol producing yeast mutant Candidu tropicalis HXP2, Biotechnol. Lett., 1981, 3,130-135.
    [82] Du Preez, J.C., Process parameters and environmental factors affecting D-xylose fermentation by yeasts, Enzyme Microb. Technol., 1994, 16, 944-956.
    [83] Sene L., Vitolo M., Felipe M.G.A., Silva, S.S., Effects of environmental conditions on xylose reductase and xylitol dehydrogenase production by Candida guilliermondii, Appl. Biochem. Biotechnol., 2000, 84-86, 371-380.
    [84] Dien B.S.,Cotta M.A., Jeffries T.W., Bacteria engineered for fuel ethanol production: currentstatus, Appl Microbiol Biotechnol, 2003, 63, 258-266.
    [85] Shoubridge E.A., Hochachka P.W., Ethanol: novel end product of vertebrate anaerobic metabolism, Science, 1980, 209, 308-309.
    [86] Montenecourt B.. S. Zymomonas, a unique genus of bacteria, In Demain A.L., Solomon N.A. (eds.), Biology of industrial microorganisms. Benjamin-Cummings Publishing Co., Inc., Menlo Park, Calif., 1985, 261-289.
    [87] Zaldivar. J, Nielsen. J, Olsson. L., Fuel ethanol production from lignocelluloses: a challenge for metabolic engineering and process integration, Appl. Microbial. Biotechnol., 2005, 56, 17-34.
    [88] Zhang, M., Eddy C., Deanda K., Finkelstein M., Picataggio, S., Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis, Science, 1995, 267, 240-243.
    [89] Bothast R.J., Nichols N.N., Dien B.S., Fermentation with new recombinant organisms, Biotechnol Prog., 1999, 15, 867-875.
    [90] Deanda K., Zhang M., Eddy M., Picataggio S., Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering, Appl. Environ. Microbiol., 1996, 62, 4465-4470.
    [91] Chou Y., Zhang M., Mohaghegui A., Evans K., Finkelstein M., Construction and evaluation of a xylose/arabinose fermenting strain of Zymomonas mobilis, 19thSymposium on Biotechnology Fuels. Chemical Abstracts, Colorado Springs, 2004, May 4-8.
    [92] Lawford H.G., Rousseau J.D., Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose, Appl Biochem. Biotechnol., 2002, 98, 429-448.
    [93] Sahm H., Eggeling L., D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction, Appl. Environ. Microbiol., 1999, 65, 1973-1979.
    [94] Kawaguchi H., Vertes A.A., Okino S., Inui M., Yukawa H., Engineering of a Xylose Metabolic Pathway in Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 2006, 72, 3418-3428.
    [95] Ingram L.O, Conway T., Clark D.P., Sewell G.W., Preston J.F., Genetic engineering of ethanol production in Escherichia coli., Appl. Environ. Microbiol., 1987, 53, 2420-2425.
    [96] Wiselogel A., Tyson S., Johnson D., Biomass feedstock resourcesand composition. Taylor & Francis, Washington, D.C., 1996.
    [97] Ohta K., Beall D., Mejia J.P., Shanmugam K.T., Ingram L.O., Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II, Appl Environ Microbiol., 1991, 57, 893-900.
    [98] Lindsay S.E., Bothast R.J., Ingaoi L.O., Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures, Appl. Micmbiol. Biotechnol., 1995, 43, 70-75.
    [99] Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A.A., Yukawa H., Metabolic analysis of Corynebacterium glutamicum during latate and succinate productions under oxygen deprivation conditions, J. Mol. Microbiol. Biotechnol., 2004, 7, 182-196.
    [100] Inui M., Kawaguchi H., Murakami S., Vertes? A.A., Yukawa H., Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions, J. Mol. Microbiol. Biotechnol., 2004, 8, 243-254.
    [101] Liu Z.L., Slininger P.J., Gorsich S.W., Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains, Appl. Biochem. Biotechnol., 2005, 121, 451-460.
    [102] Oh D.-K., Effect of glucose on xylitol production by Candida parapsilosis, Korean J. Appl. Microb. Biotechnol., 1996, 24, 149-154.
    [103] Converti A., Perego P., Torre P., Silva, S.S., Mixed inhibitions by methanol, furfural and acetic acid on xylitol production by Candida guilliermondii, Biotechnol. Lett., 2000, 22, 1861-1865.
    [104] Sanchez B., Bautista J., Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisae and biomass production from Candida guilliermondii, Enzyme Microb. Technol., 1988, 10, 315-318.
    [105] Keating J.D., Panganiban C., Mansfield S.D., Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds, Biotech. Bioeng., 2006, 93, 1196-1206.
    [106] Diaz de Villegas M.E., Villa P., Guerra M., Rodriguez E., Redondo D., Martinez A., Conversion of furfural into furfuryl alcohol by Saccharomyces cerevisiae, Acta. Biotechnol., 1992, 12, 351-354.
    [107] Larsson S., Palmqvist E., Hahn-H?gerdal B., Tengborg C., Stenberg K., Zacchi G., Nilvebrant N.O., The generation of fermentation inhibitors during dilute acid hydrolysis of softwood, Enz. Microb. Technol., 1998, 24, 151-159.
    [108] Vandeska E., Kuzmanova S., Jerries T.W., Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates, J. Ferment. Bioeng., 1995, 80, 513-516.
    [109] Kwon D.-H., Kim M.-D,, Lee T.-H.,. Oh Y.-J., Ryu Y.-W., Seo J.-H., Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae, J. Molecular Catalysis B: Enzymatic 2006, 43, 86-89.
    [110] Jeppsson M., Johansson B., Jensen P.R., Hahn-H?gerdaland B., Gorwa-Grauslund, M.F., The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinantSaccharomyces cerevisiae strains, Yeast, 2003, 20, 1263-1272.
    [111] Chin J.W., Khankal R., Monroe C.A., Maranas C.D., Cirino P.C., Analysis of NADPH supply during xylitol production by engineered Escherichia coli, Biotechnol. Bioeng., 2009, 102, 209-220.
    [112] Scheffers W.A., Stimulation of fermentation in yeasts by acetoin and oxygen, Nature, 1966, 210, 533-534.
    [113] Eliasson A., Hofmeyr J.H.S., Pedler S., Hahn-H?gerdal B., The xylose reductase xylitol dehydrogenase xylulokinase ratio affects product formation in recombinant xylose-utilizing Saccharomyces cerevisiae, Enzyme Microb. Technol., 2001, 29, 288-297.
    [114] Liu S., Dien B.S., Nichols N.N., Bischoff K.M., Hughes S.R., Cotta M.A., Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis, FEMS Microbiol. Lett., 2007, 274, 291-297.
    [115] Talarico L.A., Gil M.A., Yomano L.P., Ingram L.O., Maupin-Furlow J.A., Construction and expression of an ethanol production operon in Gram-positive bacteria, Microbiology, 2005, 151, 4023-4031.
    [116] Hespell R.B., Wyckoff H., Dien B.S., Bothast R.J., Stabilization of pet operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate- lyase activities, Appl. Environ. Microbiol., 1996, 62, 4594-4597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700