含噁二唑结构BMI的合成及其改性环氧的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双马来酰亚胺(BMI)具有易加工性,优异的耐化学腐蚀性,高强高模和耐高温性等优异的综合性能。但是BMI树脂不溶于普通溶剂中,高熔点及固化后性脆等缺点限制了其应用。由于含有1,3,4-噁二唑结构的聚合物具有高的玻璃化转变温度,优异的耐热氧化性,电性能和力学性能等。因此,在BMI中引入1,3,4-噁二唑基团来提高聚合物的性能得到了广泛的关注。环氧树脂是热固性树脂基体最主要的组成部分,是各工业领域中不可缺少的基础材料;但同时也存在着固化后交联密度高、质脆、耐温等级不够高和耐冲击性差等缺点。BMI与环氧树脂有良好的相容性,尤其是BMI经扩链以后两酰亚胺环之间的距离增加,这样不仅可提高BMI/EP/二元胺体系的热机械性能,还可起到增韧作用。因此本文合成了一种新型的含噁二唑结构的双马来酰亚胺(Mioxd),并用其对环氧树脂(DGEBA)进行改性,最大限度发挥BMI/EP/二元胺共混体系的高强高模耐高温等一系列优异的性能,以满足现今对于轻质、高强、耐高温、高韧性材料的需要。
     本论文首先通过设计,合成了一种新型的含噁二唑结构的Mioxd单体。采用FT-IR、NMR等手段验证了合成的]Mioxd单体与设计的结构相符合;通过设计正交实验优化了合成工艺,提高了产率。接着通过DSC、TGA等分析手段研究了合成的Imoxd单体的表观活化能与耐热性,结果表明Mioxd单体与传统的BMI单体有着相类似的表观活化能;而且具有较高的耐热性,说明1,3,4-噁二唑结构的引入提高了材料的耐热性能。
     然后用Mioxd单体对DGEDA/DDS (4,4'—二氨基二苯砜)固化体系进行改性,通过DSC研究了体系的固化动力学,确定了体系的固化工艺。结果表明,随着体系中Mioxd比例的增加,体系的固化放热峰向低温区移动,总反应热减小,利于材料的成型加工。通过对固化后的体系进行DSC与FT-IR分析,结果表明所选用的固化工艺是合理的。
     最后通过TGA、冲击性能测试、热变形温度(HDT)测试、弯曲性能测试、DMA、吸水率和SEM等方法考察Mioxd含量对改性体系热机械性能的影响,研究了树脂体系的结构与性能间的关系。结果表明Mioxd的加入能够降低体系的交联密度,当Mioxd的加入量为15%时体系的抗冲击强度和弯曲模量分别比未加入Mioxd体系提高36.5%和13.1%;DMA结果表明由于Mioxd中含有耐热性好的噁二唑和酰亚胺刚性结构环使得材料强度和玻璃化转变温度都随着Mioxd的含量的增加而增加;SEM结果表明改性后材料断裂面的形态逐渐呈现韧性断裂特征。
Bismaleimides (BMI) possess an advantageous combination of properties, such as favorable processability, excellent chemical resistance, outstanding thermal stability, unexpectedly high strength and high modulus. However, some essential disadvantages of these known BMIs are that they are sparingly soluble and difficult to melt, and the cured networks thereof are brittle. The introduction of 1,3,4-Oxadiazole moiety into the macromolecular chains of high-performance polymer materials has been the focus of considerable interest during the past several decades. This is owing to the polymers based on 1,3,4-Oxadiazoles exhibit good hydrolytic stability, high glass transition temperatures, excellent heat resistance in oxidative atmosphere, low dielectric constants and tough mechanical properties. Epoxy resins are considered to be the most important class of thermosetting polymers and extensively used in structural adhesives and fiber-reinforced composites. However, the inherent brittleness, limited impact strength and high level of moisture absorption restrict their utility for high-performance applications. BMI and epoxy resin has good compatibility, especially when the BMI with extended chains toughen epoxy resin, the toughness of epoxy resin will be dramatically increased owing to the distance between the two maleimide rings those can decrease the cross-link desity and the thermo and mechanical properties of modified systems will be improved. Thus, in this paper, a novel bismaleimide monomer containing 1,3,4-oxadiazole (Mioxd))were designed, synthesized and blended with EP/DDS to enhance the BMI/epoxy/diamine curing system of heat resistance, high strength and high modulus excellent performance to meet today for the lightweight, high strength, high temperature, high toughness material needs.
     First of all, in this thesis, a novel bismaleimide monomer (Mioxd) containing 1,3,4-oxadiazole moiety were designed and synthesized. The structure of Mioxd was carefully characterized by FT-IR and NMR. Optimize synthesis technique by orthogonal test to improve synthetic yield. Subsequently the apparent activation energy and heat resistance of Mioxd were studied by DSC and TGA. The results show that Mioxd monomer has apparent activation energy comparable with the traditional BMI and has good high heat resistance with a fairly wide thermal decomposition process, indicating 1,3,4-oxadiazole structure contributes to the heat-resistant material.
     The DGEDA/DDS (4,4'-diaminodiphenyl sulfone) systems were further modified by Mioxd and the curing kinetics and procedure of Mioxd/DGEBA/DDS were carefully studied by DSC and FT-IR. DSC results show that the curing exothermic peak moved to the low temperature region and the total reaction heat decreases of the co-curing resin systems decreased with the increase of Mioxd content, which is benefit to material molding. The cured systems were investgated by FT-IR and DSC. The results indicate that the system can be completely cured.
     Finally, the effect of Mioxd content on the thermo and mechanical properties of copolymer were investigatied by a combination of methods such as TGA, impact strength, HDT, flexural test, DMA, water absorption and SEM. Compared with neat epoxy system, the impact strength and flexural modulus of 15 wt % modified system reach the maximum value of 2.57kJ/m2 and 2.41 GPa, increasing by 36.5% and 13.1%, respectively. In addition, DMA results show that the strength and Tg of blends increasing as the content of Mioxd increasing. Furthermore, SEM results indicate that fracture surface of modified system presents ductile fracture features with the increasing of Mioxd content.
引文
[1]陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1998.
    [2]M. B. Dow, H. B. Dexter. Development of stitched, braided and woven composite structures in ACT program and at Langley research center (1985-1997), NASA Technical Paper 97-206234 [R]. Virginia:National Aeronautics and Space Administration,1997.
    [3]陈平,唐忠朋,王秀杰,等.环氧树脂与氰酸酯共固化物的结构与性能[J].材料研究学报,2004,18(3):265-272.
    [4]陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社,2004.
    [5]赵稼祥.复合材料在军事上应用研究现状与展望.第六届全国复合材料会议论文集[C].北京:中国宇航学会,1990.
    [6]梁国正,顾嫒娟.双马来酰亚胺树脂[J].化学工业出版社,1997,3.
    [7]陈平,廖明义.高分子合成材料学[M].北京:化学工业出版社,2005.
    [8]李全步,胡程耀,叶炜,等.双马来酰亚胺改性酚醛型环氧树脂性能研究[J].航空材料学报,第28卷第2期,2008年4月.
    [9]刘柏松,刘国栋,张留成.液晶双马来酰亚胺改性环氧树脂的研究[J].工程塑料应用,2006,34(3):20—22.
    [10]A. Ashok Kumar, M. Alagar, R. M. V. G. K. Rao. Sythesis and characterization of siliconized epoxy-1,3-bis(maleimido)benzene intercross linked matrix materials [J]. Polymer,2002,43:693-702.
    [11]Lin S C, Eli M. Pearce. High performance Thermosets[M]. New York:Hanser/Gardner Publications, Inc.1994.
    [12]Serafini T T. High Temperature Polymer Matrix Composites[M]. New Jersey:Noyes Data Corporation,1987.
    [13]李友清,刘润山,刘丽,等.溶剂含水量对二苯甲烷双马来酰亚胺合成和性能的影响[J].绝缘材料,2003(5):11-13,16.
    [14]袁莉,马晓燕,梁国正,等.双马来酰亚胺合成副产物的处理与利用[J].热固性树脂,2003,18(4):16-19.
    [15]鲍世庆.双马来酰亚胺(BMI)树脂生产技术及用途[J].辽宁化工,1998,27(4):198-201.
    [16]马晓燕,吕玲,颜红侠.双马来酰亚胺树脂合成与改性[J].新型化工材料,2000,28(6):18—21.
    [17]Rigo B, Cauliez P. Reaction of hexamethyldisilazane with diacylhydrazines an easy 1,3,4-oxadiazole synthesis[J]. Synth. Commun.,1986,16(13):1665-1670.
    [18]Mogilaiah K, Babu H, Rao K, et al. Synthesis andantimicrobial activity of some new 1,3,4-oxadiazolyl-1,8-naphthyridines[J]. Indian J Heterocycl Chem,2000,10(2): 109-112.
    [19]Hazarika J, Kataky J C S. Studies on biologically active heterocycles:part X. Synthesis.
    [20]冯国仁,陶兰,刘影英,1,3,4-噁二唑衍生物的合成研究进展[J],自然科学报,2006,11(6):470—475.
    [21]潘家杏,张遂坡,高振衡.2,5-二芳基嗯二唑衍生物的合成及光性能的研究[J].高等学校化学学报,1987,8(2):137-140.
    [22]Tang H Y, Song N H, Zhou Q F, et al. Synthesis and Properties of Silicon-Containing Bismaleimide Resins[J]. Journal of Applied Polymer Science, Vol.109,190-199 (2008).
    [23]Tang H Y, Song N H, Zhou Q F, et al. Synthesis and properties of 1,3,4-oxadiazole-containing high-performance bismaleimide resins [J]. Polymer.2006.10.040.
    [24]Tang H Y, Song N H, Zhou Q F, et al. Preparation and properties of high performance bismaleimide resins based on 1,3,4-oxadiazole-containing monomers [J]. European Polymer Journal.2007.01.016.
    [25]吴金翠,嗯二唑衍生物的合成与性质研究[D],安徽大学高分子化学与物理系,1998.
    [26]任仲皎,李云,李建等.多聚磷酸作用下由硫代氨基脲合成1,3,4—噁二唑[J].化学试剂,1997,19(6):373-381.
    [27]张自义,陈立民,冯小明,等.酰氨基硫脲及其相关杂环衍生物的研究Ⅻ.1-(乙酰氨基)-3-芳酰基硫脲及3-(α-苯基氰甲基)-4-芳基-1,2,4-三唑-5-硫酮衍生物的合成[J].有机化学,1989,9(2):150-155.
    [28]张志明,李国文,马於光,等.用于电子传输材料的含噻吩环二唑衍生物的合成[J].有机化学,2000,20(4):529-532.
    [29]张文勤,杨梅,孙雁,等.2,5-二芳基二唑的研究(Ⅲ)-反式-2-{4-[2-(4-取代苯基)乙烯基]苯基}-5-(4-联苯基)-二唑的合成、电子光谱与光性能[J].高等学校化学学报,1997,18(1):85-87.
    [30]杨骏,花文廷.2,5-二取代-1,3,4-二唑类化合物的合成[J].化学通报,1996,9(1):18-26.
    [31]Hadizadeh F, Tafti F I. Synthesis of substituted 2-(2-alkylthio-l-benzyl-5-imidszoly-1)-1,3,4-oxadiazoles[J]. JHeterocycl Chem, 2002,39(4):841—844.
    [32]Academic K, Bureau C. Thioureas from 3-aminoquinazolin-4(3H)-ones. Unuaual alkaline recylizalition of 3-(N',N'-s-trialkylisothioureido)quinazalin-4(3H)-ones into new 1,3,4-oxadiazoles[J].Russ Chem Bull,2001,50(2):272-275.
    [33]Hui X P, Zhang L M, Zhang Z Y.Synthesis andantibacterial activities of 1,3,4-thiadiazole,1,3,4-oxadiazole and 1,2,4-triazole derivaties of 5-methylisoxazole[J]. Indian J Chem Sect,1999,38B(9):1066-1069.
    [35]Mandour A H, Fawzy N M, E1-Shihi, et al. Synthesis, antimicrobial and antiaflatoxigenic activities of some benzofuran containing 1,2,4-triazole,1, 3,4-thiadiazole and oxadiazole derivaties[J]. Pak J Sci Ind Res,1995,38:11-12.
    [36]曾敏,王宇光,田火亘,等.新型双马来酰亚胺的合成研究[J].绝缘材料,2001,04:20-22
    [37]朱玉珑,虞鑫海.新型含醚键双马来酰亚胺的合成[J].绝缘材料,2005,05:6-8
    [38]King J. J, Chaudari M. A, Zahir S. A New Bismaleimide System for High Performance Application[J]. Int. SAMPE. Symp. Exhib.1984:392-408.
    [39]Phelan J. C, Sung C. S. P. Cure Characterization in Bis(maleimide)/Diallybisphenol A Resin by Fluorescence, FT-IR and UV-Ref lection Spectroscopy [J]. Macromolecules, 1997,30(22):6845-6851.
    [40]Phelan J. C, Sung C. S. P. Fluorescence Characterization of Cure Products in Bis(maleimide)/Diallybisphenol A Resin[J]. Macromolecules,1997,30(22):6837-6844.
    [41]Hand J. Solution Process for the Preparation of Dolyimides from Diamines and Arhydrides:US,3996203[P].1976-12-07.
    [42]ORPHANIDES GUS G. Preparation of Maleimides and dimaleimides:US,4154737[P]. 1979-05-15.
    [43]Chandra R, Rajabi L, Soni R K. The Effect of Bismaleimide Resin on Curing Kinetics of Epoxy/amine Thermosets[J]. J. Appl. Polym. Sci,1996,62:661-671.
    [44]曾黎明.先进复合材料基体改性双马来酰亚胺树脂研究[J].武汉工业大学学报,2000,22(4):7-11.
    [45]金珂佳.新型含二氮杂萘酮结构双马来酰亚胺的合成[D].大连理工大学博士论文,2008.
    [46]李俊燕.可溶性聚芳醚改性环氧/氰酸酯共混树脂体系的研究[D].大连理工大学博士论文,2009.
    [47]Rosu D, Mititelu A, Cascaval C N. Cure kineties of aliquid-Crystalline Poxy resin studied by non- isothermal data[J]. Polym. Test.,2004,23:209-215
    [48]赵玉庭,姚希曾.复合材料聚合物基体[M].武汉:武汉工业大学出版社,1992.10-50
    [49]Pascual V, Jose S, Martinez M M. Infiuenee of the curing temperature in the mechan Properties of nanosilica filled epoxy resincoating[JI. Maeromol, SymP.,2006, 233:137-140.
    [50]王德中.环氧树脂生产与应用[M].北京:化学工业出版社,2001:4-11
    [51]陈晓松,刘日鑫.环氧树脂的增韧改性研究进展[J].SCIENCE & TECHNOLOGY INFORMATION.2009年第35期.
    [52]苏航,魏伯荣,宫大军,等.橡胶增韧环氧树脂的研究[J].中国胶粘剂,2007,16,(11):4-7.
    [53]胡兵,曾黎明,耿东兵,等.聚醚醚酮增韧改性环氧树脂[J].化工新型材料,2007,35,(3):60-62.
    [55]HO T H, WANG C S. Modification of epoxy resin with siloxane cataining phenol aralkyl epoxy resin for electronic encapsulation application [J].Euro polymer,2001, 37:267-275.
    [55]张凯.聚合物材料宏观断口分析[J].高分子材料科学与]:程,1995,11,(4):22-25.
    [56]曹有名.分子设计改性硅橡胶及增韧环氧树脂[J].高分子材料科学与工程,2011,17,(5):101-04.
    [57]廖希异,谢建良,等.环氧树脂增韧改性技术研究进展[J].四川化工,2007,10,(1):15-19.
    [58]陈平.环氧树脂增韧研究进展与方向[J].纤维复合材料,2003,(2):12-17.
    [59]赵世琦,云会明.刚性粒子增韧环氧树脂的研究[J].中国塑料,1999,13,(9):35-39.
    [60]梅启林,王继辉,黄志雄,等.多壁碳纳米管—有机蒙脱土协同增韧环氧树脂[J].复合材料学报,2008,25,(6):146-151.
    [61]SUE H J, Earls J D, Hefner R E Jr. Fracture behaviour of liquid crystal epoxy resin systems based on the diglycidyl ether of 4,4' -prime-dehydroxy-2 -methylstilbene and sulphanilamide part I:effects of curing variations [J]. Journal of materials science,1997,32, (15):4031-4037.
    [62]张宏元.增韧环氧树脂的研究[J].中国塑料,1999,13,(9):35-39.
    [63]张娇霞,郑亚萍,许磊.环氧树脂增韧改性研究进展[J].粘接,2008,29,(9):39-42.
    [64]邱华,齐暑华,王劲,等.核壳聚合物增韧环氧树脂的研究进展[J].中国胶粘剂,2006,15,(6):37-41.
    [65]张楷亮,王立新.改性蒙脱石增强增韧环氧树脂纳米复合材料性能研究[J].中国塑料,2001,15,(3):37-39.
    [66]郭江涛,何亮,马铁成,等.无机纳米粒子增韧改性环氧树脂的研究进展[J].塑料科技,2008,36,(12):96-100.
    [67]SU C C, HSIEN T C, CHUG P Y. Study of ionic polymer toughening epoxy resin [J]. Journal Applied Polymer Science,2002,86:3740-3751.
    [68]Koga K K, Lei W Y. Structure and properties of epoxy-modified with rigid particles. Journal of Polymer Science,1993,25(2):185-195
    [69]Ishizu K. Application of a series of novel curing agent and toughing modified for epoxy resin. Progress in Polymer Science,1998,23(8):1383-1408
    [70]Jones C D, Lyon L A. Modification of epoxy resins by acrylic copolymer with side-chained mesogenic units. Polymer,2000,33(22):8301~8306
    [71]Albertsson A C, Carlfors J. Study on epoxy resins modified with polycarbonate polyurethane. Journal of Applied Polymer Science,1998,68(4):695-705
    [72]Yuyama H, Yamamoto K. Effects of moisture on properties of epoxy molding compounds. Journal of Applied Polymer Science,2000,77(10):2237-2245
    [73]关长参,张斌.双马来酰亚胺改性无溶剂环氧胶粘剂的研究[J].中国胶粘剂,1993,2(4):5-8.
    [74]王汝敏,陈立新,张宏伟,等.双马来酰亚胺改性芳香胺固化环氧树脂的研究[J].中国塑料,2005,19(6):30-34.
    [75]王德志,曲春艳,张杨,等.耐热性双马改性环氧结构胶膜的研究[J].中国胶粘剂,2005,14(4):6-9.
    [76]王伟,冷继国,周祖福.酚醛型环氧树脂增韧双马来酰亚胺的研究[J].玻璃钢/复合材料,1995,3:20—22.
    [77]赵丽梅,夏华,龚荣洲.双马来酰亚胺改性酚醛型环氧树脂的研究[J].功能材料,2007,3(38):404-407.
    [78]Dae S K, Mi J H. Cure behavior and properties of an epoxy resin modified with the bismaleimide resin[J]. Polymer engineering and science,1995,35:1353-1358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700