微结构热辐射光谱控制特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类认识水平的不断进步,热辐射研究由传统的宏观大尺度研究逐渐拓展至微观小尺度问题的研究。对于一个热辐射问题,当物体结构的特征尺度与热辐射波长相近时,热辐射与结构的耦合将会产生许多新现象,该过程便是热辐射与微结构耦合过程。研究结果发现,通过控制微结构形态特征,可人为地控制耦合过程,进而控制热辐射能量传递过程,此即微结构热辐射光谱控制问题。近年来,随着MEMS微结构技术的不断进步,微结构热辐射光谱控制问题引起了广泛关注,据信该技术方法在与热辐射相关的技术领域有着广阔的应用前景。本文以微结构热辐射光谱控制特性为主要研究对象,同时,开展微结构光谱控制应用方面的研究。具体研究内容包括以下几个方面:
     1.微/纳尺度热辐射能量传递
     基于电磁波理论,分析微结构热辐射光谱控制问题,采用麦克斯韦方程组描述热辐射电磁波场量的相互激励关系;讨论热辐射电磁波的传播特性和偏振方式,基于坡印亭矢量定义热辐射能流以及光谱特性,分析热辐射与微结构的相互耦合过程;将时域有限差分思想用于麦克斯韦方程组离散,给出FDTD数值计算方法,同时,建立与FDTD方法相对应的入射波引入方法和边界处理方法;讨论微结构材料光学参数,并概括归纳常用材料的光学特性。
     2.一维微结构光谱控制特性研究
     研究周期性一维微结构的反射控制特性和透射控制特性,深入分析入射角、偏振方式、形态特征参数、周期以及折射率比值对其光谱控制特性的影响;针对周期结构光谱控制带宽受限的问题,将一维微结构延伸至非周期结构,研究非周期结构的反射控制特性、透射控制特性以及反射透射兼容控制特性,研究入射角及偏振方式对其光谱控制特性的影响;分别讨论周期结构和非周期结构的设计方法。
     将周期性一维微结构的光谱控制特性用于Morpho蝴蝶的结构显色研究,建立表皮微结构物理模型,计算表皮微结构的光谱特性;研究分析表皮微结构参数、入射角以及表皮材料光学参数对其光谱特性的影响;最后,根据计算分析结果解释结构显色机理。
     3.一维微结构滤光器光谱控制研究
     针对GaSb(锑化镓)电池的热光伏系统,将一维微结构光谱控制特性用于滤光器的光谱控制研究,分析滤光器与辐射器的辐射能量光谱分布及电池转化能力的匹配特性;根据匹配特性优化设计滤光器结构,计算其光谱控制特性,研究入射角及偏振方式对滤光器光谱控制特性的影响;采用PVD真空镀膜技术加工制作滤光器,测试其光谱控制特性,并根据测试结果评估滤光器的光谱控制效率;将非周期性一维微结构用于滤光器的光谱控制研究,优化设计非周期结构滤光器,计算其光谱控制特性,研究入射角及偏振方式对滤光器光谱控制特性的影响,根据计算所得光谱特性评估其光谱控制效率。
     4.热致变色材料光谱控制研究
     针对(La_(1-x)Sr_x)MnO_3型热致变色材料在太阳辐射波段吸收较大的问题,将一维微结构的光谱控制特性用于实现热致变色材料的光谱控制。根据热致变色材料的应用环境温度及自身的光谱特性,优化设计一维微结构,计算优化结构的光谱特性;根据计算得到的光谱特性,计算一维微结构对热致变色材料的光谱控制效果。
     5.二维粗糙表面光谱特性计算研究
     研究二维随机粗糙形态特征,建立随机粗糙表面模型;根据粗糙表面形态特征及表面模型,给出粗糙表面生成方法;将FDTD方法用于二维粗糙表面光谱特性的数值计算,将计算结果与现有的实验结果、GOA(几何光学近似方法)结果、EMT(电磁波解析法)结果进行比较,验证FDTD计算方法的有效性;根据FDTD计算结果研究粗糙表面的光谱特性,分析粗糙表面光谱特性的影响因素。
     研究二维光栅结构减反表面的结构特征,给出设计方法;针对0.2~0.3μm波段,选用Si作为基体材料,设计Si基二维光栅结构减反表面,采用FDTD方法计算减反表面的光谱特性,研究减反表面的特征单元高度、宽度、入射角以及偏振方式对其光谱特性的影响。
With a growing progress in the realization of nature in the world, the conventional thermal radiation analyses in macroscopic and large scale gradually extends in microcosmic and small scale. When the characteristic length becomes comparable to thermal radiation photon wavelength, magical and complicated phenomena are showed in the course of interplay between thermal radiation and microstructure. The existed researches have given many evidences that the interplay effect and thermal radiation energy transmission could be controlled by adjusting its configuration of microstructure, and this topic is correlated to thermal spectral control using microstructure issue. Recently, with the development in MEMS microstructure fabrication technology, there has been a growing interest in realization of the theme of thermal spectral control using microstructure., and it is considered that this theme will be applied in many fields relating to thermal radiation widely. This dissertation will give explorations to its spectral control properties and applications on the theme of thermal spectral control using microstructure.The detailed contents in this dissertation are listed in the following aspects.
     1. Thermal radiation energy transmission in Nano/Microscale
     Thermal spectral control using microstructure is explored based on electromagnetic wave theory. The Maxwell equations are used to show the inducing relations between the electric and magnetic component. Others aspects are also investigated including the propagation characteristics of thermal radiation wave and its polarization. The fundamental course of the interplay effect is presented between thermal radiation and microstructure, which will be used to direct the thermal spectral control investigation. The FDTD algorithm is proposed by discretizing the Maxwell curl equation in Yee cell. The incidence wave introduction and the boundary condition technique are given to apply in FDTD simulation. This dissertation also discusses the optic parameters of microstructure materials, and gives summaries on microstructure materials.
     2. Thermal spectral control properties of one-dimensional microstructure
     The spectral control properties of one-dimensional periodic microstructure (1DPMS) are simulated and investigated by the proposed FDTD algorithm, also, the effects to the spectral control properties are simulated and analyzed from several influencing factors including incident angle, polarization, configuration parameters, period and the ratio of refraction index. The valuable methods are proposed in order to extend the limited spectral control band of 1DPMS, accordingly, 1DPMS is developed to one-dimensional non-periodic microstructure (1DNPMS). The spectral control properties of 1DNPMS are presented and simulated by FDTD method. The effects from incident angle and polarization to the spectral control properties of 1DMPMS are simulated and analyzed with comparing to those of 1DPMS. The methods are proposed for designing 1DPMS and 1DNPMS, respectively.
     The spectral control properties of 1DPMS are used to explore the structure color of Morpho butterfly. This dissertation is proposed 1DPMS model for the scale microstructure of Morpho butterfly, and simulated its spectral properties by FDTD algorithm, simulated and analyzed the effect to the spectral properties from the microstructure parameters, incident angle and refraction index of the scale microstructure. Finally, the structure color of Morpho butterfly is analyzed and explained based the simulated results.
     3. The spectral control properties of one-dimensional microstructure filter
     The spectral control properties of One-dimensional microstructure are introduced to develop spectral control filter for thermophotovoltaic (TPV) system with GaSb cell. This dissertation analyzed the matched characteristics with GaSb cell and the power distribution of radiator. 1DPMS filter is designed according to the matched characteristics. The designed filter is simulated and analyzed for its spectral control properties and the spectral control effect from incident angle and polarization. And the designed filter is fabricated by PVD technique. The spectral control properties of the fabricated component are measured and used to evaluate its spectral control performance. Also, 1DNPMS filter is designed according to the matched characteristics. And the 1DNPMS filter's spectral control properties are simulated and used to evaluate its spectral control performance, which is compared to those of 1DPMS filter component.
     4. Spectral control to the variable emittance material
     The spectral control properties of one-dimensional microstructure are used to control the spectral properties of (La_(1-x)Sr_x)MnO_3 in order to reduce and restrain its absorption within the solar radiation wavelength ,which is one kind of variable emittance material. One-dimensional microstructure is designed according to itself spectral properties and the temperature of its applied circumstance. The designed structure is simulated by FDTD method so that its spectral control performance is evaluated.
     5. The spectral properties of two-dimensional roughness surface
     This dissertation investigates the shape of two-dimensional roughness surface, and proposes the model for the roughness surface. The method is given to form the roughness surface. The FDTD algorithm is used to simulate and calculate the bidirectional reflectivity of the two-dimensional roughness surface, and the simulated results are compared with the measured data, GOA simulating results and EMT simulating ones from other references. Also, the spectral properties distribution and its influencing factor are analyzed according to the FDTD simulating results.
     This dissertation presents the configuration characteristics of two-dimensional grating artireflection-structured surface, and provides designing method for the periodic surface. The artirecflection-structured surface is designed using silicon material in order to achieve spectral control in the wavelength of 0.2~0.3μm. FDTD method is used to simulate and investigate the spectral properties of the designed surface and the effects to its spectral properties from the height and width of characteristic cell, incident angle and polarization.
引文
1.杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998
    2.Holman J P.Heat Transfer.Beijing:China Machine Press,2005
    3.威尔特,威克斯,威尔逊,罗勒.东亮、热量和质量传递原理.北京:化学工业出版社,2005
    4.Coutts T J.A review of progress in thermophotovoltaic generation of electricity.Renewable and Sustainable Energy Reviews,1999,3:77-184
    5.Coutts T J.An overview of thermophotovoltaic generation of electricity.Solar Energy Materials & Solar Cells,2001,66:443-452
    6.闵桂荣.航天器热控制(第二版).北京:科学出版社,1998
    7.张俊华,沈国土,杨宝成等.自然地表红外辐射场理论模拟方法初探.红外技术,2006,28(8):435-438
    8.蒋耀庭,潘丽娜.红外物理与红外隐身技术.激光与红外.2000,30(4):232-233
    9.Abdo A,Nellis G,Wei A,et al.Optimizing the Fluid Dispensing Process for Immersion Lithography.Journal of Vacuum Science & Technology B.2004,22:3454-3458
    10.Furumi S,Yokoyama S,Otomo A,et al.Study on laser action from UV-curable chiral nematic liquid crystals.Thin Solid Films,2003,438-439:423-427
    11.刘广平,宣益民,韩玉阁.一维光子晶体在热光伏技术中的应用.光子学报,2008,28(1):115-119
    12.Liu Guangping,Xuan Yimin,Han Yuge,et al.Investigation of one-dimensional Si/SiO_2photonic crystals for thermophotovoltaic filter.Science in China Series E:Technological Sciences,2008,51(11):2031-2039
    13.Sullivan F O,Celanovic I,Jovanovic N,et al.Optical characteristic of one-dimensional Si/SiO_2 photonic crystals for thermophotovoltaic applications.J.Appl.Phys.,2005,97:033529-033535
    14.Ivan C,Francis S,Natalija J,et al,1D and 2D Photonic Crystals for Thermophotovoltaic applications.Proc.SPIE,2004,5450:416-422
    15.Rahmlow T D,Wasem J E,Gratrix E J.Engineering Spectral Control Using Front Surface Filters for Maximum TPV Energy Conversion System Performance.2~(nd)International Energy Conversion Engineering Conference,2004,5678-5687
    16.Kritensen R T,Beausang J F,Depoy D M.Frequency selective surfaces as near infrared electromagnetic filters for thermophotovoltaic spectral control.2~(nd)International Energy Conversion Engineering Conference,2004,5763
    17.Kristensen R T,Beausang J F,Depoy D M.Frequency Selective Surfaces as Near Infrared Electromagnetic Filters for Thermophotovoltaic Spectral Control.J.Appl.Phys..2004,95(9):4845-4851
    18.Lin S Y,Moreno J,Fleming J G.Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation.Appl.Phys.Lett.,2003,83(2):380-382
    19.Sai H.,Yugami H.,Kanamori Y.,et al.Spectral selective thermal radiation and absorbers with periodic microstructured surface for high-temperature applications.Microscal Thermophysical Engineering,2003,7:101-115
    20.Sai H,Yugami H.Thermophotovoltaic generation with selective radiatiors based on tungsten surface gratings.Appl.Phys.Lett.2004,85(16):3399-3401
    21.Licciulli A,Diso D,Torsello G,et al.The challenge of high-performance selective emitters for thermophotovoltaic applications.Semicond.Sci.Technol.(Jap.),2003,18:S174-S183
    22.Daniel J K,Saeid G,John C B,et al.Predicted performance of quantum well thermoelectrics for power generation.4~(th)International Energy Conversion Engineering Conference and Exhibit,2006,San Diego,California
    23.Chen Y B.Rigorous modeling of the radiative properties of micro/Nanostructures and comparisons with measurements of fabricated gratings and slits arrays.A dissertation of Georgia Institute of Technology,2007
    24.Vukusic P,Sambles J R.Photonic structures in biology.Nature,2003,424:852-855
    25.刘广平,宣益民,韩玉阁.Morpho蝴蝶的结构显色特性.激光生物学报,2007,10(5):37-41
    26.Bechmann P,Spizzichino A.The scattering of electromagnetic waves from rough surface.Pergamon,1963
    27.Drolen B L.Biderectional reflectance and secularity of twelve spacecraft thermal control materials.J.Therm.Anal.,1992,6(4):672-679
    28.Hebb J P,Jensen K F,Thomas J.The effect of surface roughness on the radiative properties of patterned silicon wafers.IEEE Trans.Semicond.Manuf.,1998,11(4):607-614
    29.Zhou Y H,Zhang Z M.Radiative properties of semitransparent silicon wafers with rough surfaces.Journal of Heat Transfer,2003,125:462-470
    30.Khenchaf A.Bistatic scattering and depolarization by randomly rough surfaces: Application to the natural rough surfaces in X-band.Waves in Random and Complex Media,2001,11:6-89
    31.Hutley M C,Maystre D.The total absorption of light by a diffraction grating.Opt.Commun.,1976,V19:431-436
    32.Hesketh P J,Zemel J.,Gebhart B..Polarized spectral emittance from periodic micromachined surface.Ⅰ.Doped silicon:The normal direction.Phys.Rev.B.,1988 Ⅰ,37(18):10795-10802
    33.Hesketh P J,Zemel J.,Gebhart B..Polarized spectral emittance from periodic micromachined surface.Ⅱ.Doped silicon:Angulaer ariation.Phys.Rev.B.,1988 Ⅱ,37(18):10803-10813
    34.Ghmari F,Ghbara T,Laroche M,Greffet,J Jet al.Influence of microroughness on emissivity.J.Appl.Phys.,2004,96(5):2656-2664
    35.Yablonovitch E.Inhibited spontaneous emission in solid-state.Phys.Rev.Lett.,1987,58:2059-2062
    36.John S.Strong localization of photons in certain disordered dielectric superlattices.Phys.Rev.Lett.,1987,58:2046
    37.刘广平,宣益民,韩玉阁,李强.一维光子晶体热辐射光谱控制模拟研究.工程热物理学报,2007,28(3):475-477
    38.Narayanaswamy A,Chen G.Thermal emission control with one-dimensional metallodielectric photonic crystals.Phys.Rev.B,2004,70:125101-1-125101-4
    39.H(o|¨)gstr(o|¨)m H,Rung A,Ribbing C G.Si/SiO_2 multilayer-a 1-dimensional photonic crystal with a polaritonic gap.Proc.of SPIE,2003,5184:22-29
    40.Shin D C,Kim M S,Yong T O,et al.Optical properties of a SiO_2 photonic crystals layer fabricated by seeded growth of spherical nanoparticle.Proc.of SPIE,2005,5733,450-455
    41.Lee H Y,Yao T.Design and evaluation of ominidirectional one-dimensional photonic crystals.J.Appl.Phys.,2003,93(2):819-830
    42.Herman H,Ribbing C G.Polaritonic and photonic gaps in SiO_2/Si and SiO_2/Air periodic structures.Photonic and Nanostructures,2004,2:23-32
    43.Patrini M,Galli M,Belotti M,et al.Optical response of one-dimensional(Si/SiO_2)m photonic crystals.J.Appl.Phys.,2002,92(4):1816-1820
    44.Negro L D,Stolfi M,Yi Y,et al.Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals.Appl.Phys.Lett.2004,84(25):5186-5188
    45.Pralle M U,Moelders N,Mcneal M P,et al.Photonic crystal enhanced norrow-band infrared emitters.Appl.Phys.Lett..2002,81(25):4685-4687.
    46.Fujita T,Kitabayashi T,Seki A,et al.Optical properties of asymmetric photonic crystals.Physica E.2000,7:681-685
    47.Le Gall J,Olivier M,Greffet J-J.Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-photon polarition.Phys.Rev.B.,1997,55(15):10105-10114
    48.Pitarke J M,Garcia-Vidal F J,Pendry J B.Interface modes of two-dimensional composite structures.Surface Science.1999,433-435:605-611
    49.English R A,Pitarke J M,Pendry J B.Order-N effective response of two-dimensinal metallic structures.Surface Science.2000,454-456:1090-1093
    50.Bogomolov V N,Prokofiev A V,Samoilovich S M,et al.Photonic band gap effect in a solid state cluster lattice.Journal of Luminescence.1997,72-74:391-392
    51.Kreiter M,Oster J,Sambles R,et al.Thermally induced emission of light from a metallic diffraction grating,mediated by surface plasmons.Optics Communications.1999,168:117-122
    52.Gupta S,Tuttle G,Sigalas M,et al.Infrared filters using metallic photonic band gap structures on flexible substrates.Appl.Phys.Lett.,1997,71(17):2412-2414
    53.E1-Kady I,Sigalas M M,Biswas R,et al.Metallic photonic crystals at optical wavelengths.Phys.Rev.B..2000,62(23):15299-15302
    54.Li Z Y.Modified thermal radiation in three-dimensional photonic crystals.Phys.Rev.B.2002,66:R241103-1-R241103-4
    55.Sang H Y,Li Z Y,Gu B Y.Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals.Phys.Rev.E.2004,70:066611-1-066611-6
    56.Enoch S Simom J-J,Escoubas L,et al.Simple layer-by-layer photonic crystal for the control thermal emission.Appl.Phys.Lett..2005,86,:261101-1-261101-3
    57.Gu Z H,Dummer R S,Maradudin A A,et al.Experimental study of the opposition effect in the scattering of light from a randomly rough metals surface.Applied Optics,1989,28:537-743
    58.Gu Z H,Lu J Q,Martinez A,et al.Enhanced backscattering from a one-dimensional rough dielectric film on a glass substrate.Optical Letters,1994,19:604-606
    59.Gu Z H,Lu J Q,Maradudin A A,et al.Enhanced backscattering from a free-standing dielectric film.Applied Optics,1995,34:3529-3534
    60.Maradudin A A, Lu J Q, Michel T, et al.Enhanced backscattering and transmission of light from random surfaces on semi-infinite substrates in thin films.Waves in Random Media, 1991, 3: S129-S141
    61.Torrance K E, Sparrow E M.Theory for off-specular reflection from roughened surfaces.Journal of the Optical Society of America A, 1967, 57:1105-1114
    62.Smith A M, Muller P R, Frost W, et al.Super- and subspecular maxima in the angular distribution of polarized radiation reflected from roughened dielectric surfaces.Progress Astronautics and Aeronautics: Heat Transfer and Spacecraft Thermal Control, ed.J.Lucas.AIAA, New York, 1971: 249-269
    63.O'Donnell K A, Mendez E R.Experimental study of scattering from characterized random surfaces.Journal of the Optical Society of America A, 1987, 4: 1194-1205
    64.Chan T K, Kuga Y, Ishimaru A.Experimental studies of bistatic scattering from two-dimensional conducting random rough surfaces IEEE Transaction in Geoscience Remote Sensing, 1996, 34: 674-680
    65.Ghmari F, Sassi I, Sifaoui M S Directional hemispherical radiative properties of random dielectric rough surface.Waves in Random andComplex Media, 2005, 15(4): 469-486
    66.Dimenna R A, Kuckius R O.Quantifying specular approximations for angular scattering from perfectly conducting random rough surfaces.Journal of Thermophysics and Heat Transfer, 1994, 8: 393-399
    67.Tang K, Buckius R O.The geometric optics approximation for reflection from two-dimensional random rough surfaces.International Journal of Heat Mass Transfer,1998,41:2037-2047
    68.Macaskill C, Kachoyan B J.Iterative approach for the numerical simulation of scattering from one- and two-dimensional rough surfaces.Applied Optics, 1993, 32:2839-2847
    69.Tsang L, Chan C H, Pak K.Backscattering enhancement of a two-dimensional random rough surface (three-dimensional scattering) based on Monte Carlo simulations.Journal of the Optical Society of America A, 1994,11: 711-715
    70.Fu K, Hsu P F.Modelling the Radiative Properties of Microscale Random Roughness Surface.Journal of Heat Transfer.2007,129: 71-78
    71.Petit R, Botten L C, Electromagnetic theory of gratings, Berlin, 1980, New York 72.Hartman N F, Gaylord T K.Antireflection gold surface-relief gratings: experimental characteristics.APPLIED OPTICS.1988, 27(17): 3738-3743
    73.Raguin D H, Morris M G Antireflection structured surfaces for the infrared spectral region.APPLIED OPTICS.1993,32(7):1154-1167
    74.Raguin D H,Morris M G.Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles.APPLIED OPTICS.1993,32(14):2582-2598
    75.Motamedi M E,Southwell W H,Gunning W J.Antireflection surfaces in silicon using binary optics technology.APPLIED OPTICS.1992,31(22):4371-4376
    76.Lalanne P,Morris M G Antireflection behavior of silicon subwavelength periodic structures for visible light.Nanotechnology.1997,8:53-56
    77.Hsdob(?)s K,Kirsch S,Carl A,et al.Reflection properties of nanostructure-arrayed silicon surfaces.Nanotechnology.2000,11:161-164
    78.Joannopoulos J D,Meade R D,Winn Joshua N.Photonic Crystals:Molding the flow of light.Princeton:Princeton University Press,1995
    79.Joannopoulos J D,Villeneuve Pierre R,Fan Shanhui.Photonic crystals.Solid State Communications.1997,102(2-3):165-173
    80.Economou E N,Zdetsis A.Classical wave propagation in periodic structures.Phys.Rev.B,1989,40(2):1334-1337
    81.Satpathy S,Zhang Z,Salehpour M R.Theory of photon bands in three-dimensional periodic dielectric structures.Phys.Rev.Lett.,1990,64(11):1239-1242
    82.Zhang Z,Satpathy S.Electromagnetic wave propagation in periodic structures:Bloch wave solution of Maxwell's equation.Phys.Rev.Lett.,1990,65(21):2650-2653
    83.Yablonovitch E,Gmitter,Leung K M.Photonic band structure:The face-centered-cubic case employing nonspherical atoms.Phys.Rev.Lett.,1991,67(17):2295-2298
    84.Yablonovitch E,Gmitter T J,Phtonic band structure:The face-centered-cubic case.Phys.Rev.Lett.1989,63(18):1950-1953
    85.Ozba E,Michel E,Tuttle G,et al.Micromachined millimeter-wave photonic band-gap crystals.Appl.Phys.Lett.,1994,64(16):2059-2061
    86.Kweon Gyeong-il,Lawandy N M.Quantum electrodunamics in Photonic crystals.Optics Communications,1995,118:388-411
    87.Ho K M,Chen C T,Soukoulis C M.Existence of a photonic gap in periodic dielectric structures.Phys.Rev.Lett.65-25(1990),3125
    88.Fink Y,Winn J N,Fan S,et al.A dielectric ominidirectional reflector.Science,1998,282(5394):1679-1682
    89.温熙森.光子/声子晶体理论与技术.北京:科学出版社,2006
    90.Lin S Y.A three-dimensional photonic cyrstal in the infrared wavelengths.Nature,1998,394:252-253
    91.Lin S Y,Fleming J G,Chow E,et al.Enhancement and suppression of thermal emission by a three-dimensional photonic crystal.Phys.Rev.B.2000,62(4):R2243-R2246
    92.Lin S Y,Fleming J G,El-Kady I.Experimental observation of photonic-crystal emission near a photonic band edge.Appl.Phys.Lett..2003,83(4):593-595
    93.Lin S Y,Fleming J G and El-Kady I.Three-dimensional photonic crystal emission through thermal excitation.Optic letter.2003,V28:1909-1911
    94.Lin S Y,Fleming J G Efficient light emission by a three-dimensional,all-metallic photonic crystals and its energy consequences.Proc.of SPIE,2003,5000:1
    95.Fleming J G,Lin S Y,El-Kady L,et al.All-metallic three-dimensional photonic crystals with a large infrared bandgap.Nature.2002,47:52-55
    96.Seager C H,Sinclair M B,Fleming J G.Accurate measurement of thermal radiation from a tungsten photonic lattice.Appl.Phys.Lett.,2005,86:244105
    97.Trupke T,W(u|¨)rfel P,Green M A.Comment on”Three-dimensional photonic crystal emitter for thermal photovoltaic power generation”[Appl.Phys.Lett.83 380(2003)].Appl.Phys.Lett..2004,84(11):1997-1998
    98.Lin S Y,Moreno J,Fleming J G.Response to“Comment on'Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation'”.Appl.Phys.Lett.,2004,84(11):1999
    99.Maruyama S,Kashiwa T,Yugami H,et al.Thermal radiation from two-dimensionally confined modes in microcavities.Appl.Phys.Lett.,2001,79(9):1393-1395
    100.Sai H,Kanamori Y,Yugami H.Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructure.Journal of Micromechanics and Microengineering,2005,15:S243-S249
    101.Sai H,Kanamori Y,Yugami H.High-temperature resistive surface grating for spectral control of thermal radiation.Appl.Phys.Lett.2003.82(11):1685-1687
    102.陈旻.顾培夫.刘旭等.一维光子晶体的电磁波理论及实现方法.光子学报,2001,30(8):953-956
    103.Li H Q,Gu G C,Chen H,et al.Disordered dielectric high reflectors with broadband from visible to infrared.Appl.Phys.Lett.,1999,74(22):3260-3262
    104.Li H Q,Chen H,Qiu X J.Band-gap extension of disordered 1D binary photonic crystals.Physica B,2000,279:164-167
    105.Chigrin D N,Lavrinenko A V,Yarotsky D A,et al.Observation of total omnidirectional reflection from a one-dimensional dielectric lattic..Appl.Phys.A,1999,68:25-28
    106.Kong J A.电磁波理论(影印版).北京:高等教育出版社,2002
    107.Kong J A.麦克斯韦方程(影印版).北京:高等教育出版社,2004
    108.Leung K M,Liu Y F.Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media.Phys.Rev.Lett.,1990,65(41):2646-2649
    109.Leung K M,Liu Y F.Photon band structures:The plane-wave method.Phys.Rev.B,1990,41(14):10188-10190
    110.Li Z Y,Lin L L.Photonic band structures solved by a plane-wave-based transfer-matrix method.Phys.Rev.E.2003,67:046607-1046607-11
    111.Pendry J B,Mackinnon A.Calculation of photon dispersion relation.Phys.Rev.Lett..1992,69:2772-5
    112.Gantzounis G,Stefanou N.Theoretical analysis of three-dimensional polaritonic photonic crystals.Phys.Rev.B.2005,72:075107-1-075107-7
    113.王辉,李永平.用特征矩阵法计算光子晶体的带隙结构.物理学报.2001,50(11):2172-2178
    114.Moharam M G,Gaylord T K.Rigorous coupled wave analysis of planar grating diffraction.Journal of the Optical Society of America.1981,71:811-818
    115.Moharam M G,Gaylord T K.Diffraction analysis of dielectric surface-relief grating.Journal of the Optical Society of America.1982,72(10):1385-1362
    116.Moharam M.G,Grann E B,Pommet D A,et al.Formulation for stable and efficient implementation of the rigorous coupled wave analysis of binary gratings.Journal of the Optical of AmericaA.1995a,12:1068-1076
    117.Moharam M,Pommet D G,Grann E B,et al.Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings-Enhanced transmittance matrix approach.Journal of the Optical of America A.1995b,12:1077-1086
    118.Yee Kane S.Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media.IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,1966,AP-14(3):302-307
    119.Kunz K,Luebbers R,The Finite Difference Time Domain Method for Electromagnetics,CRC Press,1993
    120.Taflove A,Hagness S,Computational Electrodynamics:The Finite-Difference Time-Domain Method,Artech House,Norwood,2000
    121.葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学,2002
    122.S(?)nchez A S,Halevi P.Simulation of tuning of one-dimensional photonic in the presence of free electrons and holes.J.Appl.Phys.,2003,94(1):797-799
    123.Shiveshwari L,Mahto P.Photonic band gap effect in one-dimensional plasma dielectric photonic crystals.Solid State Communication,2006,138:160-164
    124.Li Z Y,Ho K M.Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals.Phys.Rev.B.2003,67:165104-1-165104-15
    125.Maksymov I S,Marsal L F,Pallar(?)s.Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic cdyrstals.Optic Communications,2004,239:213-222
    126.Vuckovic J,Painter O,Xu Y,et al.FDTD calculation of the spontaneous emission coupling factor in optical microcavities.Proc.of SPIE,2000,3937:2-10
    127.Xu Y,Lee R K,Yariv A.Finite-difference time-domain analysis of spontaneous emission in microdisk cavity.Phys.Rev.A,2000,61:033808
    128.Liu G P,Xuan Y M,Han Y G,Li Q.Numerical investigation on the spectral properties of roughness surface by FDTD method.1~(st)Asian Symposium on Computational Heat Transfer and Fluid Flow,2007,Xi'an,China
    129.Ehsani H,Bhat I,Borrego J,et al.Optical properties of degenerately doped silicon films for application in thermophotovoltaic systems.J.Appl.Phys.,1997,81(1):432-439
    130.井孝功.量子力学,哈尔滨:哈尔滨工业大学也出版社,2004.
    131.方俊鑫,殷之文.电介质理论,第一版,北京:科学出版社,1989
    132.Palik E D.Handbook of Optical Constants of Solids.New York:Academic Press Inc.,1985
    133.唐晋发,顾培夫,刘旭等.现代光学薄膜技术.杭州:浙江大学出版社,2006
    134.卢进军,刘卫国.光学薄膜技术.西安:西北工业大学出版社,2005
    135.刘恩科,朱秉升,罗晋生.半导体物理学.西安:西安交通大学出版社,1998
    136.刑文训,谢金星.现代优化计算方法.北京:清华大学出版社,1999,140-189
    137.Gu Z Z,Uetsuka H,Takahashi K,et al.Strutural Color and the Lotus Effect.Angew.Chem.Int.Ed.2003,42(8):894-897
    138.Vukusic P,Sambles J R,Lasemce C R,et al.Quantified interference and diffraction in single Morpho butterfly scales.Proc.Roy.Soc.B.,1999,266:1403-1411
    139.Plattner L.Optical properties of the scales of Morpho rhetenor butterflies:theoretical and experimental investigation of the back-scattering of light in the visible spectrum.J.R.Soc.Lond.Interface,2004,6:1-11
    140.Yamada,Iida H.Numerical Investigation for Radiative Characteristics of a Scale of Morpho Butterfly.Thermal Science & Engineering(Japan),2002,10(2):75-83
    141.Kiinoshita S,Yoshilka S,Kawagoe K.Mechanisms of structural color in the Morpho butterfly:cooperation of regularity and irregularity in an iridescent scale.Proc.R.Soc. Lond.B,2002,269:1417-1421
    142.Akira S,Yoko I,Yusuke M,et al.Optimization of reproduced Morpho blue coloration.Proc.of SPIE,2007,6767:1-6
    143.Serge B,Eric C,Anabela D S.Determination of the cuticle index of the scales of the iridescent butterfly Morpho Menelaus.Optics Communications,2003,228:349-356
    144.Saswatee B,James B C,Toyohiko Y.Color characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method.Micron,2007,38:97-103
    145.Ferguson L G,Fraas L M.Theoretical study of GaSb PV cell efficiency as a function of temperature.Solar Energy Materials and Solar Cells,1995,39:11-18
    146.史建中,曾一兵,刘文言.发射率可调型智能热控涂层的发展现状.宇航材料工艺,2007,5:1-3,12
    147.Shimakawa S,Yosshitake T,Kubo Y,et al.A variable emittance radiator based on a metal-insulator transition of(La,Sr)MnO_3 thin films.Appl.Phys.Lett.,2002,80(25):4864-4866
    148.Tachikawa S,Ohnishi A,Shimakawa Y,et al.Development of a variable emittance radiator based on a perovskite manganee oxide.8~(th)AIAA/ASME Joint Thermophysics and Heat Transfer Conference
    149.Atsushi O,Toru M,Yuichi S,et al.Variable Thermal Emittance Radiator Using Metal-Insulator Phase Transition in La_(1-x)Sr_xMnO_3.Jpn.J.Appl.Phys.,2002,41:7263-7265
    150.Shimazaki K,Ohnishi A,Nagasaka Y.Development of spectral selective multilayer film for a variable emittance device and its radiation properties measurements.International Journal of Thermophysics,2003,24(3):757-769
    151.Urushibara A,Moritomo Y,Arima T,et al.Insulator-metal transition and giant magnetoresistance in La_(1-x)Sr_xMnO_3.Phys.Rev.B.,1995,51(20):14103-14109
    152.Gunes M,Genecer H,Kolat K,et al.Microstructure and magnetoresistance of a La_(0.36)Ca_(0.33)MnO_3 film produced using the dip-coating method.Materials Science and Engineering B,2007,36:41-45
    153.陈伟,钟伟,潘成福,et al.La_(0.8-x)Ca_(0.2)MnO_3纳米颗粒的距离温度与磁热效应.物理学报,2001,50(2):319-323
    154.吴春华,邱家稳.锰酸镧掺杂可变发射率热控制器件研究进展.真空于低温,2005,4:194-196
    155.Brewster,M Q.Thermal Radiative Transfer and Properties,Wiley,1991
    156.Thorsos E I.The validity of the Kichhoff approximation for roughness surface scattering using Gaussian roughness spectrum.J.Acoust.Soc.Amer., 1988, 83(1):78-92
    157.Tran P, Maradudin A A.Electromagnetic scattering from two-dimensional randomly rough, perfectly conducting random rough surfaces: iterative methods.Journal of the Optical Society of America A, 1994,11:1686-1689
    158.Hesketh P J, Zemel J N, Gebhart B.Organ pipe radiant modes of periodic micromachined silicon surfaces, Nature, 1986, 324: 549-551
    159.Wang T K, Zemel J N.Polarized spectral emittance from periodic micromachined surfaces: V.Undoped silicon: Angular measurement in shallow lamellar gratings.Applied Optics, 1993, 32: 2021-2027
    160.Carminati R, Greffet J-J.Near-field effects in spatial coherence of thermal sources.Phys.Rev.Lett., 1999, 82(8): 1661-1663
    161.Greffet J-J, Carminati R, Joulain K, et al.Coherent emission of light by thermal sources.Nature, 2002,416: 61-64
    162.Enger R C, Case S K.Optical elements with ultrahigh spatial-frequency surface corrugations.APPLIED OPTICS.1983,22(20): 3220-3228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700