P2P网络内容分发关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P2P(Peer-to-Peer)内容分发技术已发展成为当今互联网上最具影响力的技术之一。相较于传统的C/S架构及CDN架构的内容分发技术,P2P技术具有性能优越、扩展性强、易于部署等优势。其中,BitTorrent已成为应用最为广泛的P2P系统,基于P2P技术的文件共享与实时流媒体服务均已成为互联网流量占用最大的应用类型之一
     然而,由于P2P网络中节点上传带宽有限且各不相同,不同类型的应用或终端用户对带宽、延迟、业务持续时长等有不同的要求,如何为终端用户提供较高的服务质量仍面临着诸多挑战和难题。基于上述原因,本文围绕如何分析和优化P2P网络中一点到多点的内容分发效率这一问题,针对BitTorrent系统以及文件共享与流媒体直播应用中所涉及的重叠网络拓扑构建、带宽分配、数据调度等关键技术展开了研究,主要工作和研究成果体现在以下三个方面:
     首先,以节点的上传带宽信息为基础,推导出片段扩散模型及上传带宽利用率模型,并提出了改进的拓扑构建机制和激励机制。推导出的模型有助于更深刻理解BitTorrent系统中TFT周期、最大并行上传数、片段大小等重要参数的作用;提出的基于上传带宽的拓扑构建机制UC-track算法有利于提高BitTorrent网络的拓扑特性和传输效率;提出的包含带宽限制策略与带宽分配策略的激励机制PU算法不仅提高了BitTorrent系统的公平性,同时也大幅度减小了源服务器的负载。
     其次,将BitTorrent系统泛化为一般的P2P系统。针对文件共享应用,以最终完成时间为系统性能优化目标,在节点带宽异质的情况下,研究了如何合理利用辅助节点的空闲带宽及数据资源以提高系统性能,为任意给定的目标节点集合提供最优的下载服务。针对文件共享的区分服务问题,在节点带宽完全异质的情况下,对P2P网络中的文件传输机制建立了扩展的均等服务模型和区分服务模型,得出了最终完成时间的最优值,并且提出了达到此最优值的优化算法。另外,从分析和仿真两方面对比了基于流的传输模型与基于块的传输模型应用于P2P文件传输中的主要区别,得出了扩展模型的适用条件。利用得出的扩展模型,可实现在P2P网络中对任意划分的节点集合进行任意等级的文件共享区分服务。
     最后,针对实时性要求更高的流媒体直播应用,以播放延迟与播放概率为系统性能优化目标,在节点带宽同质的Mesh形拓扑条件下,将传输方案分为片段优先方案、节点优先方案与Epidemic方案三类,建立了基于Pull方式的流媒体传输方案分析框架,提出了片段选择策略、节点选择策略、请求选择策略精确的模型;通过改进的分段选片策略与随机推送策略,提出一种基于Push方式的流媒体直播优化策略LR2,使得流媒体直播与文件共享可以在同一框架下优化。
     本文的结论有着重要的理论和应用价值,一方面可以对P2P网络内容分发问题中带宽分配及数据调度技术提供深入的认识,另一方面可以对提高P2P系统的性能提供有价值的参考。
Nowadays peer-to-peer (P2P) content distribution has become one of the most influential technologies on Internet. Compared with the traditional C/S and CDN architectures, P2P technology has the advantages of high efficiency, good scalability and easy deployment. BitTorrent (BT) has been the most popular P2P system, and both P2P-based file sharing and real-time streaming service have become the main application types that consume one of the largest fractions of Internet traffic.
     However, since peers have very limited and heterogeneous upload bandwidth, different users or applications have different requirements, such as bandwidth, delay, transmission duration, there are still some difficulties and challenges to provide high quality services. Based on above reasons, we focus on how to analyze and optimize the efficiency of point-to-multipoint content distribution in P2P network. We study the key technologies involved in BitTorrent system and the applications of file sharing and live streaming, e.g., overlay construction, bandwidth allocation, data scheduling. More specifically, the contribution of this thesis lies in the following three aspects.
     First, we deduce the piece diffusion and the upload utilization models based on the upload bandwidth of peers, and propose improved strategies for overlay construction and incentive mechanism. The derived models can reveal the delicate relationship between some key parameters, such as TFT round, maximum concurrent uploading number, piece size; the proposed overlay construction strategy UC-track algorithm can optimize the topological features of the BitTorrent overlay and improve the efficiency of data transmission in BitTorrent system; the proposed incentive mechanism PU algorithm, which consists of bandwidth limitation strategy and bandwidth allocation strategy, can significantly improve the fairness of BitTorrent system whereas the load on the seed is reduced considerably.
     Furthermore, we generalize the BitTorrent system into a common P2P system. As to file sharing, we focus on the system performance metric of last finish time. In an upload-constrained P2P file sharing system, we study how to allocate the spare upload bandwidth and how to schedule data resource of assistant peers to improve the performance of P2P file distribution systems. We model both the equal service process and the differentiated service process when the initial data distribution of peers satisfies some special conditions, and also show how to minimize the time to get the file to any number of peers. The proposed fluid-based models can reveal the intrinsic relations among the initial data amount, the size of peer set and the minimum last finish time. The closed-form expressions derived from the extended models can closely approximate the chunk-based models and systems as well, especially for relatively large files. As an application of the extended models, we propose a recursive differentiated service strategy to provide differentiated service to multiple peer sets efficiently.
     Finally, with regard to the live streaming which has more advanced demands of real time, we concentrate on the system performance metrics of playout delay and playout probability. In a mesh-based overlay where peers have homogeneous upload bandwidth, we establish the analytic framework for the pull-based streaming schemes in P2P network, give accurate models of the chunk selection and peer selection strategies, and organize them into three categories, i.e., the chunk first scheme, the peer first scheme and the epidemic scheme. Moreover, we propose the LR2strategy, which incorporates a segmented chunk selection strategy and a random push strategy, then live streaming and file sharing can be optimized in a unified modeling framework.
     The results of this thesis have important theoretical and practical significance. On one hand, they could provide fundamental insights into bandwidth allocation and data scheduling in P2P content distribution; on the other hand, they could give helpful reference for improving system performance of P2P systems.
引文
[1]D. Andersen, H. Balakrishnan, F. Kaashoek, R. Morris. Resilient overlay networks [J]. Computer Communication Review,2002,32(1):66-66.
    [2]Z. Li, P. Mohapatra. QRON:QoS-aware routing in overlay networks [J]. IEEE Journal on Selected Areas in Communications,2004,22(1):29-40.
    [3]L. Subramanian, I. Stoica, H. Balakrishnan, R. Katz. OverQoS:offering Internet QoS using overlays [J]. ACM SIGCOMM Computer Communication Review, 2003,33(1):11-16.
    [4]T. Murase, H. Shimonishi, M. Murata. Overlay network technologies for QoS control [J]. IEICE Transactions on Communications,2006, E89-B(9): 2280-2291.
    [5]H. Shimonishi, T. Hama, M. Y. Sanadidi, M. Gerla, T. Murase. TCP-westwood low-priority for overlay QoS mechanism [J]. IEICE Transactions on Communications,2006, E89-B(9):2414-2423.
    [6]X. Zhuang, S. Zhu. Disjoint multipath QoS routing [C]. IEEE Consumer Communications and Networking Conference,2007,556-559.
    [7]R. Kokku, A. Bohra, S. Ganguly, A. Venkataramani. A multipath background network architecture [C],2007,1352-1360.
    [8]Z. Duan, Z. L. Zhang, Y. T. Hou. Service Overlay Networks:SLAs, QoS, and Bandwidth Provisioning [J]. IEEE/ACM Transactions on Networking,2003, 11(6):870-883.
    [9]B. De Vleeschauwer, F. De Turck, B. Dhoedt, P. Demeester. Server placement and path selection for QoS-enabled overlay networks [J]. European Transactions on Telecommunications,2009,20(3):247-263.
    [10]D. Pendarakis, S. Shi, D. Verma, M. Waldvogel. ALMI:An application level multicast infrastructure [C]. Proc. the 3rd Usenix Symposium on Internet Technologies and Systems,2001,49-60.
    [11]Y. Chu, S. G Rao, S. Seshan, H. Zhang. A case for end system multicast [J]. IEEE Journal on Selected Areas in Communications,2002,20(8):1456-1471.
    [12]C. K. Yeo, B. S. Lee, M. H. Er. A survey of application level multicast techniques [J]. Computer Communications,2004,27(15):1547-1568.
    [13]M. Hosseini, D. T. Ahmed, S. Shirmohammadi, N. Georganas. A survey of application-layer multicast protocols [J]. IEEE Communications Surveys & Tutorials,2007,9(3):58-74.
    [14]Sandvine Report [OL]. http://www.sandvine.com/downloads/documents/Pheno-mena_2H_2012/Sandvine_Global_Internet_Phenomena_Report_2H_2012.pdf
    [15]Napster [OL]. http://www.napster.com/
    [16]Gnutella [OL]. http://rfc-gnutella.sourceforge.net/
    [17]eMule [OL]. http://www.emule.com/
    [18]BitTorrent [OL]. http://www.bittorrent.com/
    [19]Tribler [OL]. http://www.tribler.org/
    [20]J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. Epema, M. Reinders, M. Van Steen, H. Sips. TRIBLER:a social-based peer-to-peer system [J]. Concurrency and Computation:Practice and Experience,2008,20(2): 127-138.
    [21]S. Xie, B. Li, G. Y. Keung, X. Zhang. Coolstreaming:Design, Theory, and Practice [J]. IEEE Transactions on Multimedia,2007,9(8):1661-1671.
    [22]N. Magharei, R. Rejaie. PRIME:Peer-to-peer receiver-driven mesh-based streaming [J]. IEEE/ACM Transactions on Networking,2009,17(4):1052-1065.
    [23]M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, A. Singh. SplitStream:high-bandwidth multicast in cooperative environments [J]. ACM SIGOPS Operating Systems Review,2003,37(5):298-313.
    [24]J. Li, P. A. Chou, C. Zhang. Mutualcast:an efficient mechanism for one-to-many content distribution [C]. Proc. ACM Sigcomm Asia Workshop,2005.
    [25]M. Zhang, L. Sun, Y. Fang, S. Yang. iGridMedia:The system to provide low delay peer-to-peer live streaming service over internet [J]. Peer-to-Peer Networking and Applications,2010,3(3):175-185.
    [26]M. Hefeeda, A. Habib, B. Botev, D. Xu, B. Bhargava. PROMISE:peer-to-peer media streaming using CollectCast [C]. Proc. the 11th ACM international conference on Multimedia,2003,45-54.
    [27]A. Vlavianos, M. Iliofotou, M. Faloutsos. BiToS:Enhancing BitTorrent for supporting streaming applications [C]. Proc. IEEE INFOCOM 2006,2006,1-6.
    [28]Swarmplayer [OL]. http://swarmplayer.p2p-next.org/
    [29]PPLive [OL]. http://www.pptv.com/
    [30]BitTorrent Specification [OL]. http://www.bittorrent.org/beps/bep_0003.html
    [31]B. Cohen. Incentives build robustness in BitTorrent [C], Proc. the 1st Workshop on Economics of Peer-to-Peer Systems,2003,68-72.
    [32]D. Qiu, R. Srikant. Modeling and performance analysis of BitTorrent-like peer-to-peer networks [J]. Computer Communication Review,2004,34(4): 367-377.
    [33]A. Al Hamra, A. Legout, C. Barakat. Understanding the properties of the bittorrent overlay [R]. Technical Report, INRIA, Sophia Antipolis,2007.
    [34]C. Dale, J. Liu, J. Peters, B. Li. Evolution and enhancement of BitTorrent network topologies [C]. Proc. the 16th International Workshop on Quality of Service,2008,3-12.
    [35]G. Urvoy-Keller, P. Michiardi. Impact of inner parameters and overlay structure on the performance of BitTorrent [C]. Proc. IEEE INFOCOM 2006,2006,1-6.
    [36]A. Al-Hamra, N. Liogkas, A. Legout, C. Barakat. Swarming Overlay Construction Strategies [C]. Proc. IEEE ICCCN 2009,2009,1-6.
    [37]D. Wu, P. Dhungel, X. Hei, C. Zhang, K. Ross. Understanding Peer Exchange in BitTorrent Systems [C]. Proc. IEEE P2P'10,2010,1-8.
    [38]A. Legout, N. Liogkas, E. Kohler, L. Zhang. Clustering and Sharing Incentives in BitTorrent Systems [J]. ACM SIGMETRICS Performance Evaluation Review, 2007,35(1):301-312.
    [39]A. Legout, G. Urvoy-keller, P. Michiardi. Rarest First and Choke Algorithms Are Enough [C]. Proc. the 6th ACM SIGCOMM conference on Internet measurement,2006,203-216.
    [40]M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, A. Venkataramani. Do Incentives Build Robustness in BitTorrent [C]. Proc. NSDI'07,2007.
    [41]D. Carra, G. Neglia, P. Michiardi. On the Impact of Greedy Strategies in BitTorrent Networks:the Case of BitTyrant [C]. Proc. IEEE P2P'08,2008, 311-320.
    [42]X. Chen, S. A. Jarvis. Analysing BitTorrent's Seeding Strategies [C]. Proc. International Conference on IEEE CSE'09,2009,2:140-149.
    [43]Z. J. Chen, Y. Chen, C. Lin, V. Nivargi, P. Cao. Experimental analysis of super-seeding in BitTorrent [C]. Proc. IEEE ICC'08,2008,65-69.
    [44]Z. Chen, C. Lin, Y. Chen, V. Nivargi, P. Cao. An analytical and experimental study of super-seeding in BitTorrent-like P2P networks [J]. IEICE Transactions on Communications,2008,91(12):3842-3850.
    [45]P. Marciniak, N. Liogkas, A. Legout, E. Kohler. Small is not always beautiful [C]. Proc. IPTPS'08,2008.
    [46]B. Fan, J. Lui, D. Chiu. The design trade-offs of BitTorrent-like file sharing protocols [J]. IEEE/ACM Transactions on Networking,2009,17(2):365-376.
    [47]D. DeFigueiredo, B. Venkatachalam, S. F. Wu. Bounds on the performance of P2P networks using tit-for-tat strategies [C]. Proc. IEEE P2P'07,2007,11-18.
    [48]Q. Lian, Y. Peng, M. Yang, Z. Zhang, Y. Dai, X. Li. Robust incentives via multi-level Tit-for-Tat [J]. Concurrency and Computation-Practice & Experience, 2008,20(2):167-178
    [49]R. Rahman, M. Meulpolder, D. Hales, J. Pouwelse, D. Epema, H. Sips. Improving efficiency and fairness in P2P systems with effort-based incentives [C], Proc. IEEE ICC'10,2010,1-5.
    [50]K. G. Anagnostakis, M. B. Greenwald. Exchange-based incentive mechanisms for peer-to-peer file sharing [C]. Proc.24th IEEE International Conference on Distributed Computing Systems,2004,524-533.
    [51]P. Antoniadis, C. Courcoubetis, R. Mason. Comparing economic incentives in peer-to-peer networks [J]. Computer Networks,2004,46(1):133-146.
    [52]D. Levin, K. LaCurts. N. Spring, B. Bhattacharjee. BitTorrent is an auction: analyzing and improving BitTorrent's incentives [J]. Computer Communication Review,2008,38(4):243-254.
    [53]X. Chen, X. Chu, X. Chang. Incentive framework using Shapley value for BitTorrent-like systems [C]. Proc.7th IEEE International Conference on Information, Communications and Signal Processing,2009,1-5.
    [54]R. Ma, S. Lee, J. Lui, D. Yau. Incentive and service differentiation in P2P networks:A game theoretic approach [J]. IEEE/ACM Transactions on Networking,2006,14(5):978-991.
    [55]H. Wang, J. Liu, K. Xu. Measurement and enhancement of BitTorrent-based video file swarming [J]. Peer-to-Peer Networking and Applications,2010,3(3): 237-253.
    [56]S. Tewari, L. Kleinrock. Analytical model for BitTorrent-based live video streaming [C]. Proc. IEEE NIME 2007,2007.
    [57]J. Mol, J. A. Pouwelse, M. Meulpolder, D. Epema, H. Sips. Give-to-get: Free-riding-resilient video-on-demand in P2P systems [C]. Proc. Electronic Imaging 2008,681804-681804.
    [58]P. Shah, J. F. Paris. Peer-to-peer multimedia streaming using BitTorrent [C]. Proc. IEEE IPCCC 2007,2007,340-347.
    [59]L. D'Acunto, N. Andrade, J. Pouwelse, H. Sips. Peer selection strategies for improved QoS in heterogeneous BitTorrent-like VoD systems [C]. Proc.2010 IEEE International Symposium on Multimedia,2010,89-96.
    [60]T. H. Hsu, Y. S. Liang, M. S. Chiang. A bittorrent-based dynamic bandwidth adaptation algorithm for video streaming [J]. Communications in Computer and Information Science,2010,75:51-62.
    [61]S. Wang, J. Zhao, X. Wang. Is Network Coding Helpful for BitTorrent:From a Practitioner's Perspective [C]. Proc. IEEE ICCCN 2010,2010,1-6.
    [62]X. Y. Yang, G. de Veciana. Performance of peer-to-peer networks:service capacity and role of resource sharing policies [J]. Performance Evaluation,2006, 63(3):175-194.
    [63]X. Y. Yang, G. de Veciana. Service capacity of peer to peer networks [C]. Proc. IEEE INFOCOM 2004,2004,2242-2252.
    [64]E. W. Biersack, P. Rodriguez, P. Felber. Performance analysis of peer-to-peer networks for file distribution [C], Proc.5th International Workshop on Quality of Future Internet Services,2004,1-10.
    [65]P. Garbacki, A. Iosup, D. Epema, M. van Steen.2Fast:collaborative downloads in P2P networks [C]. Proc. IEEE P2P'06,2006,23-30.
    [66]P. Garbacki, D. Epema, M. Steen. An amortized tit-for-tat protocol for exchanging bandwidth instead of content in P2P networks [C]. Proc.1st IEEE International Conference on Self-Adaptive and Self-Organizing Systems,2007, 119-128.
    [67]J. Wang, C. Yeo, V. Prabhakaran, K. Ramch. On the role of helpers in peer-to-peer file download systems:Design, analysis and simulation [C]. Proc. 6th International Workshop on Peer-to-Peer Systems,2007.
    [68]K. Xu, Y. Yang, T. Chen. Improving Bittorrent network's performance via deploying helpers [C]. Proc. the 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing,2008,507-512.
    [69]G. Wu, T. Chiueh. How efficient is BitTorrent [C]. Proc.2006 SPIE Multimedia Computing and Networking Conference,2006,0710-0710.
    [70]J. Mundinger, R. Weber, G. Weiss. Optimal scheduling of peer-to-peer file dissemination [J]. Journal of Scheduling,2008,11(2) 1094-6136.
    [71]J. Mundinger, R. Weber, G. Weiss. Analysis of peer-to-peer file dissemination [J]. Performance Evaluation Review,2006,34(3):12-14.
    [72]M. Mehyar, W. Gu, S.H. Low, M. Effros, T. Ho. Optimal strategies for efficient peer-to-peer file sharing [C]. Proc.32nd IEEE International Conference on Acoustics, Speech and Signal Processing,2007,1337-1340.
    [73]R. Kumar, K. Ross. Optimal peer-assisted file distribution:single and multi-class problems [C]. Proc.1st IEEE Workshop on Hot Topics in Web Systems and Technologies,2006,20-30.
    [74]G. M. Ezovski, T. Ao, L. Andrew. Minimizing average finish time in P2P networks [C]. Proc. IEEE INFOCOM 2009,2009,594-602.
    [75]C. Wen, R. Lin. Towards minimizing average finish time of P2P file delivery under peer leaving [C]. Proc.2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing,2010,55-62.
    [76]M. Zhang, Y. Xiong, Q. Zhang, L. Sun, S. Yang. Optimizing the throughput of data-driven peer-to-peer streaming [J]. IEEE Transactions on Parallel and Distributed Systems,2009,20(1):97-110.
    [77]M. Zhang, Y. Xiong, Q. Zhang, S. Yang. On the optimal scheduling for media streaming in data-driven overlay networks [C]. Proc. IEEE Globecom 2006, 2006.
    [78]M. Zhang, Q. Zhang, L. Sun, S. Yang. Understanding the power of pull-based streaming protocol:can we do better [J]. IEEE Journal on Selected Areas in Communications,2007,25(9):1678-1694.
    [79]N. Magharei, R. Rejaie. Understanding mesh-based peer-to-peer streaming [C]. Proc. the 2006 ACM International Workshop on Network and Operating Systems Support for Digital Audio and Video,2006,10.
    [80]N. Magharei, R. Rejaie, G Yang. Mesh or multiple-tree:a comparative study of live P2P streaming approaches [C]. Proc. IEEE INFOCOM 2007,2007, 1424-1432.
    [81]F. Clevenot-Perronnin, P. Nain, K. Ross. Multiclass P2P networks:static resource allocation for service differentiation and bandwidth diversity [J]. Performance Evaluation,2005,62(1):32-49.
    [82]W. Liao, F. Papadopoulos, K. Psounis. Performance analysis of BitTorrent-like systems with heterogeneous users [J]. Performance Evaluation,2007,64(9): 876-891.
    [83]V. Vazirani. The Steiner tree problem and its generalizations [J]. Approximation Algorithms for Combinatiorial Optimization,1998,33-38.
    [84]P. A. Chou, K. Jain. A comparison of network coding and tree packing [C]. Proc. IEEE International Symposium on Information Theory 2004,2004.
    [85]Y. Wu, K. Jain, S. Y. Kung. A unification of network coding and tree-packing (routing) theorems [J]. IEEE Transactions on Information Theory,2006,52(6): 2398-2409.
    [86]Z. Li, B. Li, L. C. Lau. On achieving maximum multicast throughput in undirected networks [J]. IEEE/ACM Transactions on Networking,2006,14(SI): 2467-2485.
    [87]Z. Li, B. Li, L. C. Lau. A constant bound on throughput improvement of multicast network coding in undirected networks [J]. IEEE Transactions on Information Theory,2009,55(3):1016-1026.
    [88]A. Agarwal, M. Charikar. On the advantage of network coding for improving network throughput [C]. Proc. IEEE Information Theory Workshop 2004,2004, 247-249.
    [89]P. A. Chou, Y. Wu. Network coding for the Internet and wireless networks [J]. IEEE Signal Processing Magazine,2007,24:77-85.
    [90]Y. Zhu, B. Li, J. Guo. Multicast with network coding in application-layer overlay networks [J]. IEEE Journal on Selected Areas in Communications,2004,22(1): 107-120.
    [91]Y. Cui, B. Li, K. Nahrstedt. On achieving optimized capacity utilization in application overlay networks with multiple competing sessions [C]. Proc. the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, 2004,160-169.
    [92]C. Gkantsidis, P. R. Rodriguez. Network coding for large scale content distribution [C]. Proc. IEEE INFOCOM 2005,2005,2235-2245.
    [93]P. A. Chou, Y. Wu, K. Jain. Network coding for the internet [J]. Communication Theory,2004,6:8.
    [94]S. Liu, M. Chiang, S. Senguptaet al. P2P streaming capacity for heterogeneous users with degree bounds [C]. Proc.46th IEEE Annual Allerton Conference on Communication. Control, and Computing,2008,968-976.
    [95]S. Liu, M. Chen, S. Sengupta, M. Chiang, J. Li, P. A. Chou. P2P streaming capacity under node degree bound [C]. Proc. IEEE ICDCS 2010,2010,587-598.
    [96]S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li, P. A. Chou. Peer-to-peer streaming capacity [J]. IEEE Transactions on Information Theory,2011,57(8): 5072-5087.
    [97]M. Chen, M. Chiang, P. A. Chou, J. Li, S. Liu, S. Sengupta. P2P streaming capacity:survey and recent results [C]. Proc.47th IEEE Annual Allerton Conference on Communication, Control, and Computing,2009,378-387.
    [98]M. H. Chen, M. Ponec, S. Sengupta, J. Li, P. A. Chou. Utility maximization in peer-to-peer systems [C]. Proc. SIGMETRICS'08,2008,169-180.
    [99]L. Massoulie, A. Twigg, C. Gkantsidis, et al. Randomized decentralized broadcasting algorithms [C]. Proc. IEEE INFOCOM 2007,2007,1073-1081.
    [100]L. Massoulie, A. Twigg. Rate-optimal schemes for peer-to-peer live streaming [J]. Performance Evaluation,2008,65(11):804-822.
    [101]L. Abeni, C. Kiraly, R. Lo Cigno. On the optimal scheduling of streaming applications in unstructured meshes [J]. NETWORKING,2009,117-130.
    [102]Y. Liu, Y. Guo, C. Liang. A survey on peer-to-peer video streaming systems [J]. Peer-to-Peer Networking and Applications,2008,1(1):18-28.
    [103]Y. Liu. Delay bounds of chunk-based peer-to-peer video streaming [J]. IEEE/ACM Transactions on Networking,2010,18(4):1195-1206.
    [104]Y. Liu. On the minimum delay peer-to-peer video streaming:how realtime can it be [C]. Proc. the 15th ACM International Conference on Multimedia,2007, 127-136.
    [105]G. Bianchi, N. B. Melazzi, L. Bracciale, F. Piccolo, S. Salsano. Fundamental delay bounds in peer-to-peer chunk-based real-time streaming systems [C]. Proc. 21st IEEE International Teletraffic Congress,2009,1-8.
    [106]R. Kumar, Y. Liu, K. Ross. Stochastic fluid theory for P2P streaming systems [C]. Proc. IEEE INFOCOM 2007,2007,919-927.
    [107]S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, M. Chiang. Performance bounds for peer-assisted live streaming [J]. Performance Evaluation,2008,36(1):313-324.
    [108]G Dan, V. Fodor. Delay asymptotics and scalability for peer-to-peer live streaming [J]. IEEE Transactions on Parallel and Distributed Systems,2009, 20(10):1499-1511.
    [109]G. Dan, V. Fodor. Delay bounds and scalability for overlay multicast [C]. Proc. NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet.2008,227-239.
    [110]G. Dan, V. Fodor, I. Chatzidrossos. On the performance of multiple-tree-based peer-to-peer live streaming [C], Proc. IEEE INFOCOM 2007,2007,2556-2560.
    [111]I. Chatzidrossos, G Dan, V. Fodor. Streaming performance in multiple-tree-based overlays [J]. NETWORKING,2007,617-627.
    [112]G Dan, V. Fodor. Understanding multiple-tree-based overlay multicast [R]. School of Electrical Engineering, KTH, Tech. rep. TRITA-EE,2007.
    [113]R. Karp, C. Schindelhauer, S. Shenker, B. Vocking. Randomized rumor spreading [C]. Proc.41st IEEE Annual Symposium on Foundations of Computer Science,2000,565-574.
    [114]S. Sanghavi, B. Hajek, L. Massoulie. Gossiping with multiple messages [J]. IEEE Transactions on Information Theory,2007,53(12):4640-4654.
    [115]T. Bonald, L. Massoulie, F. Mathieu, D. Perino, A. Twigg. Epidemic live streaming:optimal performance trade-offs [J]. Performance Evaluation Review, 2008,36(1):325-336.
    [116]V. Fodor, I. Chatzidrossos. Playback delay in mesh-based peer-to-peer systems with random packet forwarding [C]. Proc. the Second International Conference on Next Generation Mobile Applications, Services and Technologies,2008, 550-555.
    [117]I. Chatzidrossos, G. Dan, V. Fodor. Delay and playout probability trade-off in mesh-based peer-to-peer streaming with delayed buffer map updates [J]. Peer-to-peer Networking and Applications,2010,3(3SI):1-14.
    [118]C. Feng, B. C. Li, B. Li. Understanding the performance gap between pull-based mesh streaming protocols and fundamental limits [C]. Proc. IEEE INFOCOM 2009,2009,891-899.
    [119]Y. Zhou, D. M. Chiu, J. C. S. Lui. A simple model for a generic class of P2P streaming algorithms [J]. IEEE/ACM Transactions on Networking,2010,19(1): 42-54.
    [120]Y. Zhou, D. M. Chiu, J. C. S. Lui. A simple model for analyzing P2P streaming protocols [C]. Proc. IEEE ICNP 2007,2007,226-235.
    [121]B. Q. Zhao, J. C. S. Lui, D. M. Chiu. Exploring the optimal chunk selection policy for data-driven P2P streaming systems [C]. Proc. IEEE P2P'09,2009, 271-280.
    [122]S. Shakkottai, R. Srikant, L. Ying. The asymptotic behavior of minimum buffer size requirements in large P2P streaming networks [J]. IEEE Journal on Selected Areas in Communications,2011,29(5):928-937.
    [123]BitSim [OL]. http://planete.inria.fr/software/BitSim/
    [124]A. Bharambe, C. Herley, V. Padmanabhan. Understanding and deconstructing BitTorrent performance [R]. Microsoft Corp., Tech. Rep. MSR-TR-2005-03, 2005.
    [125]S. Jun, M. Ahamad. Incentives in BitTorrent induce free riding [C]. Proc. ACM SIGCOMM 2005,2005,116-121.
    [126]C. Liang, Y. Guo, Y. Liu. Is random scheduling sufficient in P2P video streaming [C]. Proc. IEEE ICDCS'08,2008,53-60.
    [127]A. Silva, E. Leonardi, M. Mellia, M. Meo. Chunk distribution in mesh-based large-scale P2P streaming systems:a fluid approach [J]. IEEE Transactions on Parallel and Distributed Systems,2011,22(3):451-463.
    [128]A. Farzad, H. R. Rabiee. Modeling topological characteristics of Bittorrent-like peer-to-peer networks [J]. IEEE Communications Letters,2011,15(8):896-898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700