网络蠕虫传播与控制模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代信息网络中,网络蠕虫凭借自我复制的能力,以网络为传播媒介,成为目前互联网上最严重的安全威胁之一。为了有效防御网络蠕虫,降低其造成的危害,网络蠕虫传播机理及控制策略成为研究热点。目前,随着计算机网络技术的进步,网络蠕虫呈现出种类繁多、传播途径多样化等新的特点,简单套用传染病传播模型,泛泛地研究网络蠕虫,不具有针对性,很难反映蠕虫的传播特征。同时网络拓扑结构和用户行为等是蠕虫传播所依赖的关键因素,为了能更真实的反应蠕虫的传播机制,必须将这些因素考虑到特定蠕虫的传播模型中。因此如何刻画网络拓扑、用户行为对蠕虫的传播速度、范围及控制效果的影响是非常有意义且值得深入研究的。为此本文以email蠕虫、P2P蠕虫及随机扫描蠕虫为研究对象,根据其不同传播特征,建立相应蠕虫的动力学模型,并分析其传播动力学行为,得到蠕虫传播的关键阈值条件,为网络蠕虫的预防和控制提供理论依据。具体研究内容如下:
     针对email蠕虫传播所依赖的网络的特殊性,通过网络语言的抽象与刻画,建立了email蠕虫传播的离散模型,并将其转化为连续常微分动力系统,分析了系统的动力学性态,进一步通过构造Liapunov函数,估计出了平衡态的吸引域,为email蠕虫的控制提供了依据。
     针对P2P网络的无标度特性,利用良性蠕虫主动防御的特点,考虑P2P网络上的良性-恶意蠕虫对抗过程,建立了复杂网络模型,得到了蠕虫传播的有效再生数,证明了网络拓扑结构在蠕虫传播过程中的关键作用,分析了不同参数对恶意蠕虫控制的影响,比较了良性蠕虫不同投放策略的控制效果,并提出了可行的控制恶意蠕虫传播策略。
     针对用户行为与蠕虫传播之间相互作用、相互影响的特点,依据用户保护力度将脆弱主机进行划分,建立了耦合用户自适应保护行为的动力学模型,得到了用户行为修正的基本再生数,发现模型会出现后向分支等复杂的动力学性态,从而刻画了用户行为在蠕虫传播中的重要作用,并针对不同情况提出了合理的蠕虫控制策略。
In the modern information and network security, internet worms have become one of the most serious security threats to the Internet. Internet worms take the network as a transmission medium and have self-replication capability. In order to effectively defense the internet worm attack and reduce the damage caused by them, the propagation mechanism and control strategies of internet worms have become active research topics. However, with the rapid development of the computer and network technologies, the internet worms have new characteristics such as wide varieties, multiple transmission routes. As a result, only utilizing the disease transmission model simply to analyze the internet worms has no pertinence. Meanwhile, it will be hard to reflect the transmission characteristics of the worms if do not consider the network topology and user behavior. Thus, this dissertation takes the email worms, P2P worms and random scanning worms as the research objects, and study the transmission and control model of the internet worms according to their different network topological structure and possible user behavior. By analyzing the transmission dynamic behaviors of the relative worms, the critical threshold condition which determines whether the worm can survive or not are given. This may contribute to defense and control the propagation of the internet worms. The detailed contents are as follows:
     Because the special characters of the logical network along which email worms spread,a discrete model of email worms spread are established utilizing the network terminology to abstract and characterize the logical network. By transforming the model to a continuous ordinary differential dynamical system, the dynamical features are analyzed. On the basis of the Liapunov function, the domains of attraction of equilibria are estimated, which provided theoretical guidance for the control of the email worms spread.
     Due to the scale-free characters of the P2P network and the active defense characters of the benign worms, a complex network model was proposed by analyzing the interactions between benign worms and malicious worms and the network node's state transition process. Based on the dynamical analysis of the model, the effective reproduction number was obtained, which demonstrate the pivotal role of the network topological structure on the propagation of P2P worms. At the same time, the influences of the related parameters of network topology and worm propagation for the control of malicious worms' propagation are studied. These results are confirmed by simulation experiment, further more we compared the control effect of different strategies of releasing benign worms and provided feasible control strategies of the worm propagation.
     In order to study the interactions between the user behaviors and the worm spread, the vulnerable computers were classified according to the corresponding user's protection behaviors. And then a dynamical model that coupled the user's adaptive protection behaviors was proposed. By analyzing the dynamics of the model, we obtained the basic reproduction number modified by user protection behaviors. It was shown that the model appears some complex dynamics, such as the backward bifurcation. These show that the user behaviors play an important role on the spread of worms rightly. Further more, reasonable control strategies are provided for different situations.
引文
[1]第31次中国互联网络发展状况统计报告,http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201301/t20130115_38508.htm.
    [2]微软安全报告主要结论摘要,2012,14:1-16.
    [3]Symantec Security Response:W32.Stuxnet Dossier, http://www.symantec.com/conne4ct/blogs/w32stuxnet-dossier.
    [4]Kaspersky:Virus News, http://www.kaspersky.com/about/news/virus/2012/kaspersky-lab-publishes-new-research-about-wiper-the-destructive-malware-targeting-computer-systems-in-april-2012.
    [5]R. Pastor-Satorras, A. Vespignani, Epidemics and immunization in scale-free networks [M]. Handbook of Graphs and networks, Bornholdt S., Schuster H.G (eds.), Hoboden: WILEY-VCH,2003.
    [6]Advisory CA-1999-04 Melissa Macro Virus, http://www.cert.org/advisories/CA-1999-04.html.
    [7]M. E. J. Newman, S. Forrest, J. Balthrop. Email networks and the spread of computer viruses [J]. Physical Review E.2002,66(3):035101.
    [8]M. Mirchev, L. Kocarev. Non-poisson Processes of Email Virus Propagation [M]. ICT Innovations 2009.2010:187-196.
    [9]C. C. Zou, D. Towsley, W. Gong. Email virus propagation modeling and analysis [R]. Technical Report:TR-CSE-03-04. University of Massachusetts, Amherst, Mass, USA, 2003.
    [10]J. Xiong. ACT:Attachment chain tracing scheme for email virus detection and control [C]. In proceeding of ACM Worhshop on Rapid Malcode. Washington DC, USA,2004.
    [11]A. Gupta, R. Sekar. An approach for detecting self-propagating email using anomaly detection [R]. Recent advance in intrusion detection, Lecture notes in computer science, 2003,2820:55-72.
    [12]J. Liu, C. Gao, N. Zhong. Virus propagation and immunization strategies in email networks [C]. In Proceedings of the 5th International Conference on Advanced Data Mining and Applications (ADMA'09).2009,5678 of Lecture Notes in Artificial Intelligence:222-233.
    [13]C. Gao, J. Liu, N. Zhong. Network immunization and virus propagation in email net-works:experimental evaluation and analysis [J]. Knowledge and Information Systems. 2011,27(2):253-279.
    [14]王长广,王方傣,张运觊,马建峰.一种无尺度网络上垃圾邮件蠕虫的传播模型[J].计算机科学.2007,34(2):68-70.
    [15]梁志罡.电子邮件病毒传播模型的研究[J].计算机技术与发展.2011,21(1):158-161.
    [16]刘俊,金聪,邓清华.无标度网络环境下E-mail病毒的传播模型[J].计算机工程.2009,35(21):131-137.
    [17]J. Liu, Q. H. Deng, P. H. Xu, X. D. Hu. Email virus spreading model in the scale-free network [J]. IEEE Intelligent Computing and Intelligent systems.2010,3:303-306.
    [18]T. Komninos, Y. C. Stamatiou, G Vavitsas. A worm propagation model based on people's email acquaintance profiles[C]. WINE 2006. LNCS 4286,2006,343-352.
    [19]C. C. Zou, D. Towsley, W. Gong. Modeling and simulation study of the propagation and defense of internet email worm [J]. IEEE transactions on dependable and secure computing.2007,4(2):105-118.
    [20]周翰逊.网络蠕虫传播模型及检测技术研究[D].东北大学博士学位论文,2008.
    [21]S. Staniford, V. Paxson, N. Weaver. How to own the Internet in your spare time [C]. Pro-ceedings of the 11th USENIX Security Symposium. San Francisco, CA,2002,149-167.
    [22]J. K. K. Lakshminarayanan. Implications of peer-to-peer networks on worm attacks and defenses [R]. Tech. Rep., UCB2003.
    [23]L. Zhou, L. Zhang, F. McSherry, N. Immorlica, S. Chien. A first look at peer-to-peer worms:Threats and defenses [C]. Proceedings of the Peer-to-Peer Systems 4th Internati-onal Workshop, Ithaca, NY, USA,2005,24-35.
    [24]W. Yu. Analyze the worm-based attack in large scale P2P networks[C]. Proceedings of the 8th IEEE International Symposiumon High Assurance Systems Engineering. Tampa, Florida,2004,308-309.
    [25]W. Yu. Analyzing the performance of internet worm attack approaches [C]. Proceedings of the 13 international conference on computer communications and networks. Chicaco, IEEE,2004,1095-2055.
    [26]D. Dmrdtriu, E. Kraghtly, A. Kuzmanovic, I. Stoica, W. Zwaenepoel. Denial-of-service resilience in peer-to-peer file-sharing systems[C]. Proceedings of ACM sigmetrics. Banff, Cnada, ACM,2005.
    [27]R. W. Thommes, M. J. Coates. Modeling virus propagation in peer-to-peer networks [R]. Montreal. Canada, Department of electrical and computer engineering, McGill University, 2005.
    [28]G. Chen, R. S. Gray. Simulating non-scanning worms on peer-to-peer networks[C]. Proceedings of the 1st International confenrence on scalable information systems. Hong Kong, ACM,2006.
    [29]夏春和,石昀平,李肖坚.结构化对等网中的P2P蠕虫传播模型研究[J].计算机学报.2006,29(6):952-959.
    [30]J. Ma, X. M. Chen, G L. Xiang. Modeling passive worm propagation in peer-to-peer system [C]. Proceedings of the international conference on computational intelligence and security. Hong Kong, IEEE,2006,1129-1132.
    [31]王方伟,张运凯,马剑峰.无结构P2P网络中被动型蠕虫传播建模和防治[J].天津大学学报.2008,14(1):66-72.
    [32]王跃武,荆继武,向继,刘琦.Contagion蠕虫传播仿真分析[J].计算机研究与发展.2008,45(2):207-216.
    [33]W. Yu, S. Chellappan, X. Wang, D. Xuan. Peer-to-peer system-based active worm attacks: Modeling, analysis and defense [J]. Computer Communications.2008,31:4005-4017.
    [34]应凌云,冯登国,苏璞睿.基于P2P的僵尸网络及其防御[J].电子学报.2009,37(1):31-37.
    [35]冯朝胜,袁丁,卿昱,秦志光.P2P网络中激发型蠕虫传播动态建模[J].电子学报.2012,40(2):300-307.
    [36]周翰逊,赵宏.主动良性蠕虫和混合良性蠕虫的建模与分析[J].计算机研究与发展.2007,44(6):958-964.
    [37]严博,吴晓平,廖巍,李凤华.基于随机进程代数的P2P网络蠕虫对抗传播特性分析[J].电子学报.2011,40(2):293-299.
    [38]杨峰,段海新,李星.网络蠕虫扩散中蠕虫和良性蠕虫交互过程建模与分析[J].中国科学(E辑).2004,34(8):841-856.
    [39]王佰玲,方滨兴,云晓春,张宏莉,陈博,刘乙璇.基于平衡树的良性蠕虫扩散策略[J].计算机研究与发展.2006,43(9):1593-1602.
    [40]周翰逊,赵宏,闻英友.分而治之的混合型良性蠕虫的建模与分析[J].计算机研究与发展.2009,46(7):1110-1116.
    [41]Y. Yao, L. Q. Wu, F. X. Gao, W. Yang, G. Yu, A WAW Model of P2P-based Anti-worm[C]. IEEE International conference on networking. Sensing and Control,2008. ICNSC,2008, 1132-1136.
    [42]G Streftaris, G. J. Gibson. Statistical inference for stochastic epidemic models[C]. Pro-ceedings of the 17th Int' lWorkshop on Statistical Modelling. Chania,2002,609-616.
    [43]J. C. Frauenthal. Mathematical modeling in epidemiology [M]. Springer-Verlag,1980.
    [44]C. C. Zou, W. Gong, D. Towsley. Code red worm propagation modeling and analysis [C]. Proceedings of the 9th ACM conference on Computer and communications security. New York, NY, USA,2002,138-147.
    [45]J. O. Kephart, S. R. White. Directed-graph epidemiological models of computer viruses [C]. IEEE Symposium on Security and Privacy. Oakland,1991,343-361.
    [46]J. R. C. Piqueira, V. O. Araujo. A modified epidemiological model for computer viruses [J]. Applied Mathematics and Computation.2009,213:355-360.
    [47]L. S. Han, H. Liu. Baffour Kojo Asiedu, Analytic Model for Network Viruses [C]. ICNC 2005. LNCS 3612,2005:903-910.
    [48]Y. Yao, X. W. Xie, H. Guo, G. Yu, F. X. Gao, X. J. Tong. Hopf bifurcation in internet worm propagation model with time delay in quarantine [J]. Mathematical and computer modeling.2013,57(11/12):2635-2646.
    [49]L. P. Feng, X. F. Liao, H. Q. Li, Q. Han. Hopf bifurcation of a delayed viral infection model in computer networks [J]. Mathematical and computer modeling.2012,56(7/8): 167-179.
    [50]Y. Yao, L. Guo, H. Guo, G. Yu, F. Gao, X. Tong. Pulse quarantine strategy of internet worm propagation:Modeling and analysis[J]. Computers and Electrical Engineering. 2012,38(5):1047-1061.
    [51]B. K. Mishra, S. K. Pandey. Dynamic model of worms with vertical transmission in computer network [J]. Applied Mathematics and Computation.2011,217:8438-8446.
    [52]J. G. Ren, X. F. Yang, Q. Y. Zhu, L. X. Yang, C. M. Zhang. A novel computer virus model and its dynamics [J]. Nonlinear Analysis:Real World Applications.2012,13:376-384.
    [53]Q. Zhu, X. Yang, J. Ren. Modeling and analysis of the spread of computer virus[J]. Communications in Nonlinear Science and Numerical Simulation.2012,17:5117-5124.
    [54]L. Song, X. Han, D. Liu, Z. Jin. Adaptive human behavior in a two-worm interaction model [J]. Discrete Dynamics in Nature and Society.2012, doi:10.1155/2012/828246.
    [55]L. Song, Z. Jin, G. Sun, J. Zhang, X. Han. Influence of removable devices on computer worms:Dynamic analysis and control strategies [J]. Computers and Mathematics with Applications.2011,61:1823-1829.
    [56]J. Brunner. The Shockwave rider [M]. Canada, Delrey Books,1975.
    [57]J. F. Shoch. J. Hupp. The worm progams-early experiments with a distributed compu-tation [J]. Communications of the ACM.1982,22:172-180.
    [58]E. H. Spafford. The internet worm program:an analysis [J]. ACM SIGCOMM Computer Communication Review.1989,19:17-57.
    [59]N. Weaver, V. Paxson, S. Stanniford. A taxonomy of computer worms [C]. Proceedings of the 2003 ACM Workshop on Rapid Malcode. Washington DC, USA,2003:11-18.
    [60]文伟平,卿斯汉,蒋建春等.网络蠕虫研究与进展[J].软件学报.2004,15:1208-1219.
    [61]D. M. Kienzle, M. C. Elder. Recent worms:a survey and trends [C]. Proceedings of the 2003 ACM Workshop on Rapid Malcode. Washington DC, USA,2003:1-10.
    [62]周翰逊.网络蠕虫传播模型及检测技术研究[D].东北大学博士学位论文,2008.
    [63]C. C. Zou, L. X. Gao, W. B. Gong, D. Towsley, Monitoring and early warning for Internet worms[C]. Proceedings of the 10th ACM conference on computer and communication security,2003.
    [64]解春燕,马海滨,梁伟.网络蠕虫的分类及其传播模型研究[J].电脑知识与技术.2009,5(27):7635-7637,7647.
    [65]王跃武,荆继武,向继,刘琦.拓扑相关蠕虫仿真分析[J].软件学报.2008,19(6): 1508-1518.
    [66]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].清华大学出版社,2006.
    [67]郭雷,许晓鸣.复杂网络[M].上海科技教育出版社,2006.
    [68]S. H. Strogatz. Exploring complex networks [J]. Nature.2001,410:268-276.
    [69]P. Erdos, A. Renyi. On the evolution of random graphs [J]. Publ. Math. Inst. Hung. Acad. Aci.1960,5:17-61.
    [70]S. Milgram. The small-world problem [J]. Psychology Today.1967,2:60-67.
    [71]D. J. Watts, S. H. Strogatz. Collective dynamics of "small-world" networks [J]. Nature. 1998,393:440-442.
    [72]A. L. Barabasi, R. Albert. Emergence of scaling in random networks [J]. Science.1999, 286(5439):509-512.
    [73]倪顺江.基于复杂网络理论的传染病动力学建模与研究[D].清华大学博士学位论文,2009.
    [74]W. H. Hamer. Epidemic disease in England-the evidence of variabilityand of persistency of type [J]. Lancet.1906,1:733-739.
    [75]汪小帆,李翔,陈关荣.网络科学导论[M].高等教育出版社,2012.
    [76]B. Bollobas. Degree sequences of random graphs [J]. Discrete Mathematics.1981,33(1): 1-19.
    [77]A. L. Barabasi. Scale-free networks:A decade and beyond [J]. Science.2009,329(5939): 412-413.
    [78]R. Pastor-Satorras, A. Vespignani. Epidemic spreading in scale-free networks [J]. Physi-cal Review Letters.2001,86:3200-3203.
    [79]R. Pastor-Satorras, A. Vespignani. Epidemic dynamics and endemic states in complex networks [J]. Physical Review E.2001,63:066117.
    [80]P. van den Driessche, J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission [J]. Mathematical Bioscien-ces.2002,180:29-48.
    [81]R. M. May, R. M. Anderson. Spatial heterogeneity and the design of immunizati-on programs [J]. Mathematical Biosciences.1984,72:83-111.
    [82]C. Jin, J. Liu, and Q. H. Deng. Network virus propagation model based on effects of removing time and user vigilance [J]. International Journal of Network Security.2009,9: 156-163.
    [83]Virus Bulletin, http://www.virusbtn.com.
    [84]国家计算机病毒应急处理中心:中国计算机病毒流行列表,http://www.antivirus-china.org.cn/head/liebiao.htm.
    [85]J. R. C. Piqueira, B.F. Navarro, and L.H.A. Monteiro, Epidemiological models applied to virus in computer networks [J]. Journal of Computer Science.2005,1:31-34.
    [86]B. K. Mishra and D. Saini. Dynamical model of worm propagation in computer network [J]. Applied Mathematical Modelling.2013, xxx:xxx-xxx.
    [87]Y. Hayashi, M. Minoura, and J. Matsukubo. Oscillatory epidemic prevalence in growing scale-free networks [J]. Physical Review E.2004,69:016112.
    [88]J. Carr. Applications of centre manifold theory [M]. vol.35 of Applied Mathematical S ciences. Springer, NewYork, NY, USA,1981.
    [89]L. Perko. Differential equations and dynamical systems [M]. vol.7 of Texts in Applied Mathematics. Springer, New York, NY, USA,3rd edition,2001.
    [90]S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos [M]. vol.2 of Texts in Applied Mathematics. Springer, Berlin, Germany,1990.
    [91]A. A. Andronov, E. A. Leontovich,1.1. Gordon, and A. G. Maier. Qualitative theory of second-order dynamic systems [M]. John Wiley & Sons. New York, NY, USA,1973.
    [92]J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and bifur-cations of vector fields [M]. vol.42 of Applied Mathematical Sciences. Springer, New York, NY, USA,1983.
    [93]Z. Zhang, J. Wu, Y. Suo, and X. Song. The domain of attraction for the endemic equilibrium of an SIRS epidemic model [J]. Mathematics and Computers in Simulation. 2011,81(9):1697-1706.
    [94]H. K. Khalil. Nonlinear systems [M]. New York. NY, USA,1992.
    [95]S. Balint. Considerations concerning the manoeuvring of some physical systems [J]. Analele Universittii din Timisoara, Seria Stiinte Matematice.1985,23(1-2):8-16.
    [96]L. Hormander. An introduction to complex analysis in several variables [M]. North-Ho-lland Princeton. NJ, USA,1973.
    [97]S. Balint, A. Balint, and V. Negru. The optimal Liapunov function in diagonalizable case [J]. Analele Universittii din Timisoara, Seria Stiinte Matematice.1986,24(1-2):1-7.
    [98]E. Kaslik, A. M. Balint, and S. Balint. Methods for determination and approximation of the domain of attraction [J]. Nonlinear Analysis.2005,60(4):703-717.
    [99]J. LaSalle and S. Lefschetz. Stability by Liapunov's Direct Method, with Applications [M]. vol.4 of Mathematics in Science and Engineering. Academic Press, New York, NY, USA,1961.
    [100]O. Hachicho. A novel LMI-based optimization algorithm for the guaranteed esti-mation of the domain of attraction using rational Lyapunov functions [J]. Journal of the Franklin Institute.2007,344(5):535-552.
    [101]J. B. Lasserre. Global optimization with polynomials and the problem of moments [J]. SIAM Journal on Optimization.2001,11(3):796-817.
    [102]J. B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 programs [J]. SIAM Journal on Optimization.2002,12(3):756-769.
    [103]M. Fan, M. Y. Li, and K. Wang. Global stability of an SEIS epidemic model with recruitment and avarying total population size [J]. Mathematical Biosciences.2001, 170(2):199-208.
    [104]Peerto Peer(P2P)综述, http://docs.huihoo.eom/p2p/1/index.html.
    [105]S. Hatahet, A. Bouabdallah, C. Yacine. A new worm propagation threat in bittorrent: modeling and analysis [J]. Telecommunication Systems.2010,45(2-3):95-109.
    [106]冯朝胜,秦志光,劳伦斯·库珀特等.P2P网络中沉默型蠕虫传播建模与分析[J].计算机研究与发展.2010,47(3):500-507.
    [107]孙长华,刘斌.分布式拒绝服务攻击研究新进展综述[J].电子学报.2009,37(7):1562-1570.
    [108]柴胜,胡亮,梁波.一种P2P Botnet在线检测方法研究[J].电子学报.2011,39(4):906-912.
    [109]王佰玲.基于良性蠕虫的网络蠕虫主动遏制技术研究[D].哈尔滨工业大学,2006.
    [110]H. X. Zhou, Y. Y. Wen, H. Zhao. Passive worm propagation modeling and analysis [C]. Proceedings of the international multi-conference on computing in the global infor-mation technology. ICCGI,2007:32-42.
    [111]罗卫敏,刘井波,范成瑜.基于良性蠕虫对抗P2P蠕虫的策略研究[J].计算机应用研究.2009,26(12):4764-4767.
    [112]W. Yang, G. R. Chang, Y. Yao, X. M. Shen. Stability analysis of P2P worm propa-gation model with dynamic quarantine defense [J]. Journal of networks.2011,6(1): 153-162.
    [113]X. Tang, R. C. Wang, X. Shao. Modeling and analysis of anti-orm in P2P network [J]. The journal of china universities of posts and telecommunications,2012,19(1):112-118.
    [114]F. Wang, Y. Moreno, Y. Sun. The structure of Peer-to-Peer social networks [J]. Physi-cal Review E.2006,73:036123.
    [115]O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz. On the definition and the computa-tion of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations [J]. Journal of Mathematical Biology.1990,28(4):365-382.
    [116]L. Arriola, J. Hyman. Forward and adjoint sensitivity analysis with applications in dynamical systems[J]. Lecture Notes in Linear Algebra and Optimization.2005.
    [117]A. Zeitoun, S. Jamin. Rapid exploration of internet live addressspace using optimal discovery path[C]. In proceedings of IEEE Globalecom(Next Generation Networks and Internet). San Francisco, CA,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700