输电线路保护新原理及实现技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路的继电保护水平对于维护电力系统的安全稳定运行,提高经济效益有着至关重要的意义。而随着我国互联大电网规模的不断扩大与发展,系统容量越来越大,电压等级越来越高,电容电流及TA饱和问题日益突出,保护动作速度却更快的要求,输电线路保护可靠性与安全性的矛盾进一步加剧。因此,研究与改善输电线路保护原理与性能以适应新形式下电力系统的发展尤为迫切。为此,本论文主要围绕电容电流补偿、TA饱和及提高保护动作速度等现代大电网中输电线路保护应用时的难点问题展开相关理论及技术研究,极具现实意义及工程价值。
     提出了输电线路复合差动保护新方案,有效解决了相量差动保护易受TA饱和的影响,而采样值差动保护灵敏度稍显不足的问题。复合差动保护方案依靠采样值差动原理在1个工频周期内可靠切除大多数较严重的故障,通过相量差动保护原理对轻微内部故障作出反应,同时引入制动电流判据,在严重外部故障时自适应增加200ms延时来克服电流互感器(TA)饱和对相量差动的影响。该方案无需配置复杂的TA饱和检测元件,保护判据成熟可靠。仿真及试验结果表明,该方案的可靠性、灵敏性以及抗TA饱和性能均优于单一原理的差动保护。
     提出了在输电线路贝瑞隆模型的基础上构造采样值差动保护的新方法。基于相量的电容电流补偿方法无法适用于采样值差动,而基于贝瑞隆模型的采样值差动保护不仅在原理上从时域完全消除了电容电流的影啊,并同样具有传统采样值差动动作速度快、抗TA饱和能力强的特点,较好地解决了采样值差动这一性能优良的保护原理应用于超高压输电长线时的关键技术难题。
     提出了相位自适应差动保护的新原理,在不影响内部故障灵敏度的情况下,大大提高了差动保护的安全性。TA饱和是一直困扰相量差动保护的难点问题。利用电流相位比电流幅值相对受TA饱和影响较小的特点,引入自适应技术,根据电流的相位信息来自适应调整相量差动保护中的制动系数。内部故障时两侧电流相位差小,则制动系数小,保护灵敏度高。外部故障时两侧电流相位差大,则制动系数相应增大,相位自适应差动保护的抗TA饱和能力得到了显著的提高。
     提出了基于“阻抗收敛”的反时限距离保护新方法,该方法根据实时测量阻抗收敛的情况自适应选择保护算法的数据窗长,测量阻抗收敛越快,保护算法的数据窗长越短,保护动作越快。进一步与“阶梯型”反时限距离保护配合构成的自适应变数据窗距离保护方案性能更佳,在整个距离I段保护范围内的动作速度都得到了明显改善。
     论文对高性能成套高压线路保护装置的研制展开了实用化研究,系统阐述了了保护方案的整体配置、硬件结构设计、软件结构设计等重要技术环节。并提出了基于IEEEC37.94标准的实用采样时刻调整法,有效解决了光纤纵联差动保护中的双端数据同步的关键技术问题。动模试验结果表明,保护性能满足设计要求,达到了预期设计目标。
     论文的最后,对全文进行了系统总结,并指出了下一步需要进行的工作。
Relay protection for transmission line is very significance for maintaining safe stabilize work of power system and increasing economic benefits. With the expand and development of interconnected huge electric power grid in China, power system capability is more and more large and electric voltage level is more and more high, which causing the problems of distributed capacitance current and current transformer saturation, thus the contradiction between relay dependability and relay security is further aggravated. Obviously, it is quite urgent to study and improve relay protection criterion and performance to meet the demand of power system development. Thus, the study work is valuable and important in theory and application to solve several difficult problems of transmission line protection applied in large scale power grid such as capacitance current compensation, current transformer saturation and trip speed and so on.
     Transmission line multi differential protection new scheme is proposed according to shortcomings of single principle such as phasor value based differential protection and sampled value based differential protection. In the proposed scheme, the sampled value based differential protection is used to clean most comparative serious internal faults in one cycle reliably and the slight internal fault can be detected by phasor value based differential protection; at the same time, a restraint current criterion is led into the proposed protection to overcome the impact of current transformer saturation on phasor value based differential protection by means of adaptively inserting the time-delay of 200ms while serious external fault occur. As for the proposed protection scheme, its protective criteria are ripe and reliable, and it is not necessary to configure complex detecting element for current transformer saturation. Simulation results show that the reliability, sensitivity trip speed and immunity to current transformer saturation are better than those of the single principle based differential protections.
     The new method of transmission line Bergeron model based sampled value differential protection is proposed to solve the problem that phasor based capacitance current compensation methods are not suitable for sampled value differential protection. The proposed method can not only compensate capacitance current in time domain completely, but also inherits the merits of traditional sampled value differential protection such as fast trip speed and well immunity ability to current transformer saturation, the vital technology puzzle of high performance sampled value differential protection applied in high voltage long transmission line is solved well.
     The new principle of phase angle based self adaptive differential protection is proposed, which increases largely the security of differential protection and not influent the sensitiveness to interal fault. The proposed principle uses the fact that current phase angle error caused by current transformer saturation is smaller than current amplitude, and the self adaptive technology is introduced that the restraint coefficient of differential protection is adjust with current phase angle. When internal fault occurs, the phase angle difference of two end currents is small and the restraint coefficient is small, so the sensitiveness of relay is high. On the contrary, when external fault occurs, the phase angle difference of two end currents is large and the restraint coefficient is large, so the immunity ability to current transformer saturation of the proposed principle is increased significantly.
     The new method of measured impedance convergence based inverse time distance protection is proposed, which decides data window length according to real-time measured impedance convergence result. The convergence speed of measured impedance is faster, the data window length of protective algorithm is shorter and the trip speed is faster. Especially, the comprehensive self adaptive variable data window distance protection has better performance to improve trip speed of the first zone of distance protection, which composes measured impedance convergence based inverse time distance protection with step mode based inverse time distance protection.
     The dissertation represents the some importance technology such as protection configuration, hardware architecture and software design and so on during developing high performance complete set of protection device for high voltage transmission line. The IEEE C37.94 standard based sampled time adjust method is proposed to solve efficiently data synchronize of optical fibre based differential protection. The dynamic simulation experiment results show that protective performance can meet the design necessity and agree with prospective design goal.
     At last, the dissertation gives the systematical summarize and points out the further work.
引文
[1]赵庆波,张正陵,白建华.能源资源格局与“一特三大”电力发展战略.能源基地建设,2007,40(12):1-5
    [2]范越,房喜,丁永福,等.750kV输变电示范工程1500MVA满负荷试验综述.电网技术,2007,31(11):17-20
    [3]赵兴勇,张秀彬.特高压输电技术在我国的实施及展望.能源技术,2007,28(1):52-54
    [4]朱声石.高压电网继电保护原理与技术第三版.北京:中国电力工业出版社,2005
    [5]王梅义.电网继电保护应用.北京:中国电力出版社,1999
    [6]陈德树.计算机继电保护原理与技术.北京:水利电力出版社,1992
    [7]华中工学院编.电力系统继电保护原理与运行.北京:水利电力出版社,1981
    [8]葛耀中.新型继电保护与故障测距的原理与技术第2版.西安:西安交通大学出版社,2007
    [9]贺家李.电力系统继电保护原理第三版.北京:水利电力出版社,1994
    [10]杨奇逊,黄少锋.微型机继电保护基础第二版.北京:中国电力出版社,2005
    [11]陈德树.大电网安全保护技术初探.电网技术,2004,28(9):14-17
    [12]甘肃电力局,许昌继电器研究所,西安交大.输电线路各相电流差动微波保护(科研阶段报告)西安交通大学科技报告,1979,7
    [13]葛耀中等.输电线路各相电流差动微波保护.中国电机工程学会第二次继电保护及自动装置学术讨论会论文,1979,7
    [14]王绪昭,伍叶凯,杨奇逊.一种适用于双端系统微机微波电流差动保护跳闸判据研究.继电器,1991,19(4):2-8
    [15]张新国,杨维娜,杨明玉,等.数字式微波零序电流差动保护判据的研究.继电器,1993,21(2):2-6
    [16]马师模,张红,王开斌.短线路光纤纵差保护的研究.电力系统自动化,1987,11(3):26-33
    [17]田晓玫,陈德树等.数字式光纤纵差保护研究.第五届继电保护学术研讨会论文集,1993
    [18]J.D.H juddleston等.继电保护光纤通道的研究:实践与经验.许昌继电器研究所.1995年国外继电保护译文集,1995
    [19]李清波,刘沛.光纤纵差保护的应用及灵敏度的提高.电力自动化设备,2002,22(4):21-24
    [20]罗姗姗,彭鹏,毛亚胜,等.基于光纤通信的多端线路电流差动保护装置.电力系统自动化,2006,30(9):50-55
    [21]伍叶凯,邹东霞.电容电流对差动保护的影响及补偿方案.继电器,1997,25(4):4-8
    [22]文明浩,陈德树,尹项根.超高压长线相量差动保护的研究.电力系统自动化,24(20),2000:37-40
    [23]李 岩,陈德树,张哲,等.超高压长线电容电流对差动保护德影响及补偿对策仿真分析.继电器,2001,29(6):6-9
    [24]丁蕾,房鑫炎,基于电容电流半补偿的高压电力电缆分相电流差动保护研究.电网技术,2005,29(4):45-49
    [25]毕天姝,于艳莉,黄少锋,等.超高压线路差动保护电容电流的精确补偿方法.电力系统自动化,2005,29(15):30-34
    [26]索南加乐,张怿宁,齐军,等.Π模型时域电容电流补偿的电流差动保护研究.中国电机工程学报,2006,26(5):12-18
    [27]郭征,贺家李.输电线路纵联差动保护的新原理.电力系统自动化,2004,28(11):1-5
    [28]郭征,特高压长线路分相电流差动保护新原理.天津大学博士学位论文,2004
    [29]郑玉平,吴通华,丁琰,等.基于贝瑞隆模型的线路差动保护实用判据.电力系统自动化,2004,28(23):50-55
    [30]吴通华,郑玉平,朱晓彤.基于暂态电容电流补偿的线路差动保护.电力系统自动化,2005,29(12):61-67
    [31]苏斌,董新洲,孙元章.适用于特高压线路的差动保护分布电容电流补偿算法.电力系统自动化,2005,29(8):36-40
    [32]文明浩,陈德树,尹项根.远距离输电线路的能量平衡保护.中国电机工程学报,2001,21(2):74-79
    [33]文明浩,陈德树,陈继东,等.输电线路分布参数频率特性对能量平衡保护的影响.电网技术,2006,30(9):35-39
    [34]杨磊,文明浩,陈卫.基于线路参数在线校正的能量平衡保护.电力系统自动化,2008,32(10):66-70
    [35]文明浩.基于虚拟电容式电压互感器的能量平衡保护.中国电机工程学报,2007,27(24):11-16
    [36]程利军,龙翔,杨奇逊.基于采样值的CT饱和检测方案的研究.继电器,2000,28(8):19-21
    [37]李岩,陈德树,张哲,等.鉴别TA饱和的改进时差法研究.继电器,2001,29(11):1-4
    [38]沈全荣,严伟,梁乾兵,等.异步法电流互感器饱和判别新原理及其应用.电力系统自动化,2005,29(16):84-86
    [39]丁琰,郑玉平,唐国庆,等启适应短数据窗抗电流互感器饱和线路差动保护算法.电力系统自动化,2005,29(21):67-73.
    [40]赵永彬,陆于平.一种基于异步法的母线保护中电流互感器饱和判据.电网技术,2006,30(5):86-90
    [41]文明浩,陈德树.一种特高压3/2接线纵差保护抗电流互感器饱和措施.电力系统自动化,2006,30(10):61-63
    [42]王志鸿,郑玉平,贺家李.通过计算谐波比确定母线保护中电流互感器的饱和.电力系统及其自动化学报,2000,12(5):19-24
    [43]李丽,都洪基,刘林兴,等.计算谐波比确定母线保护中电流互感器的饱和.电力自动化设备,2003,23(7):69-72
    [44]李瑞生,路光辉,王强.用于线路差动保护的电流互感器饱和判据.电力自动化设备,2004,24(4):70-73
    [45]Cesareo Fernandez.An Impedance-Based CT Saturation Detection Algorithm for Bus-Bar Differential Protection.IEEE Trans on Power Delivery,2001,16(4):468-472
    [46]Yong-Cheol Kang,Seung-Hun Ok,Sang-Hee Kang.A CT Saturation Detection Algorithm.IEEE Trans on Power Delivery,2004,19(1):78-85
    [47]Nicholas Villamagna,Peter A.Crossley.A CT Saturation Detection Algorithm Using Symmetrical Components for Current Differential Protection.IEEE Trans on Power Delivery,2006,21(1):38-45
    [48]袁荣湘,陈德树,张哲.高压输电线路新型差动保护的研究.中国电机工程学报,2000,20(4):9-13.
    [49]袁荣湘,陈德树,马天皓,等.基于相关分析的暂态电流差动保护的原理与性能研究.电网技术,2000,24(4):40-42
    [50]李岩,陈德树,袁荣湘,等.基于相关分析的暂态差动保护原理改进及仿真研究.继电器,2003,31(2):64-68
    [51]陈德树,马天皓,刘沛.采样值电流差动微机保护的一些问题.电力自动化设备,1996,16(4):3-8
    [52]陈德树,尹项根,张哲.再谈采样值差动保护的一些问题.电力自动化设备,2000,20(4):1-3
    [53]胡玉峰,陈德树,尹项根.采样值差动及其应用.电力系统自动化.2000,24(10):40-44.
    [54]袁荣湘,陈德树,马天皓,等.基于故障分量的采样值差动保护的研究-原理分析.继电器,2000,28(3):9-14
    [55]袁荣湘,陈德树,马天皓,等.基于故障分量的采样值差动保护的研究-整定方法.继电器,2000,28(4):20-22
    [56]杨经超,尹项根,陈德树,等.采样值差动保护动作特性研究.中国电机工程学报,2003,23(9):71-77
    [57]高厚磊,江世芳.负荷电流对电流差动保护动作性能影响的分析.继电器,1999,27(1):14-16
    [58]尹项根,陈德树,张哲,等.故障分量差动保护.电力系统自动化,1999,23(11):13-17
    [59]高厚磊,江世芳.T接线路电流纵差保护新判据研究.继电器,2001,29(9):6-9
    [60]李岩,尹项根,马天皓,等.T接短线路微机纵差保护原理研究.电力自动化设备,1999,19(2):21-23
    [61]林湘宁,刘沛.全电流与故障分量电流比例差动判据的比较研究.中国电机工程学报,2004,24(10):27-31
    [62]陈德树,尹项根,张哲,等.故障分量差动保护与故障变化量差动保护.电力系统自动化,2008,32(9):39-41
    [63]索南加乐,张健康,刘辉,等.故障分量提取及故障选相的新方法.电力系统自动化,2003,27(16):58-61
    [64]索南加乐,张健康,宋国兵.基于故障类型的故障分量提取算法.电力系统自动化,2005,29(3):13-16
    [65]梁振锋,康小宁,索南加乐.基于故障类型的同杆双回线故障分量提取算法.电力系统自动化,2005,29(20):50-54
    [66]梁振锋,康小宁,索南加乐,等.适用手发展性故障的故障分量提取算法.电力系统自动化,2007,31(6):44-46
    [67]高厚磊,江世芳,贺家李.数字电流差动保护中几种采样同步方法.电力系统自动化,1996,20(9):46-49
    [68]Gao Houlei,Jiang Shifang,He Jiali.Development of GPS Synchronized Digital Current Differential Protection.Power System Technology Proceedings,1998:1177-1182
    [69]H.Y.Li,E.P.Southern,P.A.Crossley,et al.A new Type of differential Feeder protection Relay Using the Global positioning System for Data Synchronization.IEEE Trans on Power Delivery,1997,120):1090-1099
    [70]E.P.Southern,H.Y.Li,P.A.Crossley,et al.GPS Synchronised Current Differential Protection.IEE Sixth International Conference on Development of Power System Protection.UK,25-27,March 1997:342-345
    [71]Wang Gang,Yun Baoji,He Jiali,et al.Implementation of Adaptive Despersed Phase Current Differntial Protection for Transmission Lines.Proceedings of the 5~(th)International Conference on Advances in Power System Control,Operation and Management.Hong Kong,October 2000:64-69
    [72]王尔寒,王强,文明浩,等.光纤纵差保护中数据同步的误差分析及补偿方法.继电器,2003,31(8):43-45
    [73]曹团结,尹项根,张哲,等.通过插值实现光纤差动保护数据同步的研究.继电器,2006,34(18):4-8
    [74]张怿宁,索南加乐,焦在滨.光纤自愈环网电流纵差保护的数据同步方法.电力系统自动化,2006,30(9):44-49
    [75]H.J.Koglin,M.Albert,M.Igel,et al.Differential Protection of Multi-terminal Lines without Synchronization.IEEE Power Engineering Society Summer Meeting,July 2001:133-130
    [76]索南加乐,张怿宁,粟小华,等.基于故障分量的分相阻抗差动保护新原理.电力系统自动化,2008,32(4):41-45
    [77]钱国明,何奔腾.一种改进的高压线路保护选相元件.电力自动化设备,1999,19(4):28-30
    [78]D.W.P Thomas,M.S.Jones,C.Christopoulos.Phase selection based on superimposed components.Proc.IEE,Gen.Transm.Distrib.143(3) May 1996:295-299
    [79]M.S.Jones,D.W.P Thomas,C.Christopoulos.A Non-Pilot Phase Selector Based on Superimposed Components for Protection of Double Circuit Lines.IEEE Trans on Power Delivery,1997,12(4):1439-1444
    [80]林湘宁,刘沛,杨春明,等.基于相关分析的故障序分量选相元件.中国电机工程学报,2002,5(22):16-21
    [81]徐庆强,索南加乐,宋国兵,等.一种电流故障分量高压线路选相元件.电力系统自动化,2003,27(7):50-54
    [82]陈朝晖,黄少锋,陶惠良.新型阻抗选相方法.电力系统自动化,2005,29(3):51-55
    [83]毛鹏,董肖红,杜肖功,等.输电线路复故障情况下选相元件研究.电力系统自动化,2005,29(1):53-56
    [84]俞波,杨奇逊,李营,等.同杆并架双回线选相元件研究.中国电机工程学报,2003,23(4):38-42
    [85]陈福锋,钱国明.基于同杆双回线跨线故障识别的选相方案.电力系统自动化,2008,32(6):66-70
    [86]索南加乐,许庆强,宋国兵,等.电力系统振荡过程中序分量选相元件动作行为分析.电力系统自动化,2003,27(2):52-55
    [87]吴大立,尹项根,胡玉峰,等.高压线路保护实用选相方案.电力系统自动化,2007,31(17):50-54
    [88]A.Mechraoui,D.W.P.Thomas.A New Blocking Principle with Phase and Earth Fault Detection During Fast Power Swings for Distance Protection.IEEE Trans on Power Delivery,1995,10(3):1242-1248
    [89]A.Mechraoui,D.W.P.Thomas.A New Principle for High Resistance Earth Fault Detection During Fast Power Swings for Distance Protection.IEEE Trans on Power Delivery,1997,12(4):1452-1457
    [90]Blumschein.Y,Yelgin.Y.Kereit.M.Proper detection and treatment of power swing to reduce the risk of blackouts.Electric Utility Deregulation and Restructuring and Power Technologies.NanJing,April 2008:2440-2446
    [91]沈国荣,邓绍龙,朱声石.区分振荡与短路的新原理.电力系统自动化,1990,14(1):7-12
    [92]李钢,隋风海,王善祥,等.振荡中不对称故障的判别.电力系统自动化,1997,21(4):17-20
    [93]张艳霞,陈超英.自适应振荡过程的Ucosφ精确算法.电力系统自动化,2003,27(15):63-66
    [94]林湘宁,吴科成,翁汉刑.在功率变化交叉闭锁振荡中对称故障的快速识别方法.中国电机工程学报,2006,26(16):21-26
    [95]朱声石.突变量距离继电器,中国电机工程学会第二次继电保护及自动化装置学术讨论会,1979.10
    [96]沈国荣.突变量阻抗继电器.中国电机工程学会第四次继电保护及自动化装置学术讨论会,1986.10
    [97]Xin Yubao,Sui Fenghai,Zhu Shenshi.Fault Component Reactance Relay.Beijing:Interational Conference on Power System Technology,1991
    [98]隋凤海,陈涛,李钢.论突变量距离继电器.电力系统自动化,1995,19(11):34-37
    [99]叶萍,陈德树.一种能克服I0极化接地距离继电器区外稳态超越问题的新方案.中国电机工程学报,1995,15(3):199-203
    [100]Gang Li,Shengshi Zhu,Fenghai Sui.Adaptive Bowl Impedance Relay.IEEE Trans on Power Delivery,1999,14(1):142-147
    [101]李岩,詹奕,陈德树,等.单相补偿接地距离继电器统一形式的研究.电力系统自动化,2002,26(10):28-31
    [102]刘世明,林湘宁,杨春明.工频变化量距离继电器的统一表达方式.电网技术,2002,26(5):23-27
    [103]胡玉峰,柳焕章.以故障前补偿电压为基准量的距离继电器研究.中国电机工程学报,2006,26(16):27-32
    [104]张之哲,陈德树.自适应式微型机距离保护理论基础的研究(Ⅰ).中国电机工程学报,1986,6(2):48-55
    [105]张之哲,陈德树.自适应式微型机距离保护理论基础的研究(Ⅱ).中国电机工程学报,1986,6(2):56-63
    [106]张之哲.自适应微型机距离保护的研究.华中理工大学博士学位论文,1985
    [107]李岩,陈德树,尹项根,等.新型自适应姆欧继电器的研究.中国电机工程学 报,2003,23(1):80-83
    [108]索南加乐,徐庆强,宋国兵,等.自适应接地距离继电器.电力系统自动化,2005,29(17):54-58
    [109]沈冰,何奔腾,张武军.新型自适应距离继电器.电力系统自动化,2007,31(7):39-44
    [110]Y.Q.Xia,K.K.Li,A.K.David.Adaptive Relay Setting for Stand-alone Digital Distance Protection.IEEE Trans on Power Delivery,1994,9(1):480-491
    [111]A.G.Jongepier,L.van der Sluis.Adaptive Distance Protection of Double-Circuit Line.IEEE Trans on Power Delivery,1994,9(3):1289-1297
    [112]M.M.Eissa.Ground Distance Relay Compensation Based on Fault Resistance Calculation.IEEE Trans on Power Delivery,2006,21(4):1830-1834
    [113]Benteng He,Yiquan Li,Zhiqian Q.Bo.An Adaptive Distance Relay Based on Transient Error Estimation of CVT.IEEE Trans on Power Delivery,2006,21(4):1856-1861
    [114]Adly A.Girgis,Elhan B.Makram.Application of Adaptive Kalman Filtering in Fault Classification,Distance Protection,and Fault Location Using Microprocessors.IEEE Trans on Power Systems,1988,3(1):301,309
    [115]Girgis,A.A,Hart,D.G.Implemention of Kalman and Adaptive Kalman Filtering Algorithms for Digital Distance Protection on A Vector Signal Processor.IEEE Trans on Power Delivery,1989,4(1):141-156
    [116]M.S.Sachdev,M.A.Baribeau.A New Algorithm for Digital Impedance Relay.IEEE Trans on Power Apparatus and System,1979,98(6):2232-2240
    [117]张哲,陈德树.递推滤波算法中非周期分量处理方法的探讨.电力系统自动化,1994,18(1):16-20
    [118]杨奇逊.采用有限冲击响应滤波器的快速阻抗继电器.中国电机工程学报,1983,3:20-28
    [119]Hector J,Altuve F,Ismael Diaz,et al.Fourier and Walsh Digital Filtering Algorithms for Distance Protection.IEEE Trans on Power Delivery,1996,11(1):457-462
    [120]Chi-Shan Yu.A Discrete Fourier Transform-Based Adaptive Mimic Phasor Estimator for Distance Relaying Applications.IEEE Trans on Power Delivery,2006,21(4):1836-1846
    [121]Y.Q.Xia,K.K.Li.Development and implementation of a variable-window algorithm for high-speed and accurate digital distance protection,IEE Proc.-Gener.Transm. Distrib.141(4) July 1994:383-389
    [122]Giuscppc Fazio,Vincenzo Lauropoli,Francesco Muzi,et al.Variable-Window Algorithm for Ultra-High-Speed Distance Protection.IEEE Trans on Power Delivery,2003,18(2):412-419
    [123]Ching-Shan Chen,Chih-Wen Liu,Joe-Air Jiang.Application of Combined Adaptive Fourier Filtering Technique and Fault Detector to Fast Distance Protection.IEEE Trans on Power Delivery,2006,21(2):619-626
    [124]毛鹏,白日昶,杨威.反时限距离保护原理的改进.电力系统自动化,2008,32(6):71-75
    [125]陈朝晖,黄少锋,陶惠良,等.一种新的基于转矩大小的距离保护Ⅰ段反时限实现方法.电力系统自动化,2003,27(20):54-56
    [126]Omar A.S.Youssef.New Algorithm to Phase Selection Based on Wavelet Transforms.IEEE Trans on Power Delivery,2002,17(4):908-914
    [127]Chi-Kong Wong,Chi-Wai Lam,Kuok-Cheong Lei,et al.Novel Wavelet Approach to Current Differential Pilot Relay Protection.IEEE Trans on Power Delivery,2003,18(1):20-25
    [128]Wei Chen,O.P.Malik,Xianggen Yin et al.Study of Wavelet-Based Ultra High Speed Directional Transmission Line Protection.IEEE Trans on Power Delivery,2003,18(4):1134-1139
    [129]A.H.Osman,O.P.Malik.Protection of Parrallel Transmission Lines Using Wavelet Transform.IEEE Trans on Power Delivery,2004,19(1):49-55
    [130]A.H.Osman,O.P.Malik.Transmission Line Distance Protection Based on Wavelet Transform.IEEE Trans on Power Delivery,2004,19(2):515-523
    [131]Feng Liang,B.Jeyasurya.Transmission Line Distance Protection Using Wavelet Transform Algorithm.IEEE Trans on Power Delivery,2004,19(2):545-553
    [132]Ashraf I.Megahed,A.Monem Moussa,A.E.Bayoumy.Usage of Wavelet Transform in the Protection of Series-Compensated Transmission Lines.IEEE Trans on Power Delivery,2006,21(3):1213-1221
    [133]林湘宁,刘沛,刘世明,等.电力系统超高速保护的形态学-小波综合滤波算法.中国电机工程学报,2002,22(9):19-24
    [134]林湘宁,刘沛,高艳.基于数学形态学的电流互感器饱和识别判据.中国电机工程学报,2005,25(5):44-48
    [135]Li Zou,Qingchun Zhao,Xiangning Lin,et al.Improved Phase Selector for Unbalanced Faults During Power Swings Using Morphological Technique.IEEE Trans on Power Delivery,2006,21(4):1847-1855
    [136]林湘宁,刘海峰,鲁文军,等.基于广义多分辨形态学梯度的自适应单相重合闸方案.中国电机工程学报,2006,26(7):101-106
    [137]J.C.Tan,P.A.Crosley,P.G.McLaren et al.Sequential Tripping Strategy for a Transmission Network Back-Up Protection Expert System.IEEE Trans on Power Delivery,2002,17(1):68 -74
    [138]Khalil El-Arroudi,Geza Joos,Donald T.McGillis,et al.The Performance Specification of Transmission Line Protection Using a Knowledge-Based Approach.IEEE Trans on Power Delivery,2004,19(3):1049-1056
    [139]Francisco Martin,Jose A.Aguado.Wavelet-Based ANN Approach for Transmission Line Protection.IEEE Trans on Power Delivery,2003,18(4):1572-1574
    [140]A.H.Osman,Tamer Abdelazim,O.P.Malik.Transmission Line Distance Relaying Using On-Line Trained Neural Networks.IEEE Trans on Power Delivery,2005,20(2):1257-1264
    [141]Biswarup Das,J.Vittal Reddy.Fuzzy-Logic-Based Fault Classification Scheme for Digital Distance Protection.IEEE Trans on Power Delivery,2005,20(2):609-616
    [142]A.T.Johns,R.K.Aggarwal,Z.Q.Bo.Non-unit protection technique for EHV transmission systems based on fault-generated noise Part 1:Signal measurement.IEE Proc.-Gener.Transm.Distrib.141(2) March 1994:133-140
    [143]R.K.Aggarwal,A.T.Johns,Z.Q.Bo.Non-unit protection technique for EHV transmission systems based on fault-generated noise Part 2:Signal processing.IEE Proc.-Gener.Transm.Distrib.141(2) March 1994:141-147
    [144]Z.Q.Bo,R.K.Aggarwal,A.T.Johns.A New Approach to Phase Selection Using Fault Generated High Frequency Noise and Neural Networks.IEEE Trans on Power Delivery,1997,12(1):106-115
    [145]J.A.S.B Jayasinghe,R.K.Aggarwal,A.T.Johns ecal.A Novel Non-unit Protection for Series Compensated EHV Transmission lines Based on Fault Generated High Frequency Voltage Signals,IEEE Trans on Power Delivery,1998,13(2):405-413
    [146]哈恒旭.超高压输电线路边界保护的研究.西安交通大学博士学位论文,2002
    [147]E.H.Shehab-Eldin,P.G.McLaren.Travelling wave Distance Protection-Problem Area and Solutions.IEEE Trans on Power Delivery,1988,3(3):894-902
    [148]Dong-Jiang Zhang,Q.Henry Wu,Zhiqian Q.Bo,et al.Transient Positional Protection of Transmission Lines Using Complex Wavelets Analysis.IEEE Trans on Power Delivery,2003,18(3):705-710
    [149]王志华.超高压线路故障行波定位及高压变频技术研究.华中科技大学博士学位论文,2004
    [150]王钢,李志铿,李海锋.±800kV特高压直流线路暂态保护.电力系统自动化,2007,31(21):40-43
    [151]T.Sawa.Development of Optical Instrument Transformers.IEEE Trans on Power Delivery,1997,5(2):884-890.
    [152]韩小涛.光电传感数字化及其继电保护技术研究.华中科技大学博士学位论文,2004
    [153]Kezunovie M,Kojovic L J,Fromen C W,et al.Experimental evaluation of EMTP-based current transformer models for protective relay transient study.IEEE Trans on Power Delivery,1994,9(1):405-413
    [154]束洪春,林敏.电流互感器暂态数学建模及其仿真的比较研究.电网技术,2003,27(4):11-14
    [155]Tziouvaras D A,McLaren P,Alexander G,et al.Mathematical models for current,voltage,and coupling capacitor voltage transformers.IEEE Trans on Power Delivery,2000,15(1):62-72
    [156]杨赢,邰能灵,郁惟庸.基于复小波的快速相差保护研究.中国电机工程学报,2005,25(11):12-16
    [157]曾祥君.电力线路故障检测与定位新原理及其信息融合实现研究.华中理工大学博士学位论文,2000
    [158]SACHDEV M S,SIDHU T S,GILL H S.A busbar protection technique and its performance during CT saturation and CT raito-mismatch.IEEE Trans.On power Delivery,2000,15(3):895 -901
    [159]马文龙,郭效军,王文雄,兰金波.一种超高压输电线路自适应分相电流差动保护新原理研究.电力自动化设备.2004,24(12):12-15
    [160]陈德树,陈卫,尹项根,等.差动保护动作行为动作特性的相量分析.继电器,2002,30(4):1-3
    [161]罗四倍,段建东,张保会.基于暂态量的EHV/UHV输电线路超高速保护研究现状 与展望.电网技术,2006,30(22):32-41
    [162]索南加乐,刘文涛,张健康,等.基于波形系数的自适应距离保护.电力系统自动化,2005,29(5):38-44
    [163]张哲.高性能微机距离保护的综合研究.华中理工大学博士学位论文,1992
    [164]张哲,K.K Li,陈德树,尹项根.变数据窗阻抗算法的频域分析方法研究.华中科技大学学报,2001,29(2):3-6
    [165]张哲,陈德树.递推最小二乘算法在微机距离保护中的应用研究.1991,Z1:31-40
    [166]GE Power Management.L90 Line Differential Relay-URSeries Instruction Manual.2001
    [167]文明浩,陈德树.小矢量算法浅析.电力系统自动化,2003,27(3):42-44
    [168]邰能灵,朱佳杰.小矢量算法在发电机继电保护中的应用分析.电力系统自动化,2006,30(13):51-54
    [169]张哲,陈德树.超高压输电线路故障暂态噪声特性的研究.华中理工大学学报,1995,23(10):8-12
    [170]黄瀛,何奔腾,王文雄,马文龙.基于噪声估计的自适应快速距离保护.电力系统自动化,2004,28(14):6-8
    [171]李岩.超高压线路高性能继电保护新原理与新技术的研究.华中科技大学博士学位论文,2003
    [172]胡玉峰.串联补偿电网故障仿真及超高压线路保护研究.华中科技大学博士学位论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700