水稻后期抗旱性遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱尤其是生殖生长阶段干旱胁迫是制约水稻生产的一大障碍,而各种抗旱机制相互重叠影响了水稻后期抗旱性遗传基础的研究,从而使水稻抗旱育种进展缓慢。本研究利用珍汕97/IRAT109重组自交系群体对水稻后期主要抗旱机制的遗传基础进行了分析,并在大阳两种土壤环境下对水稻后期抗旱性的遗传基础进行初步研究的基础上,对水稻大刚后期抗旱性的机制进行了初步分析。主要结果如下:
     1、两亲本比较发现,耐旱性是珍汕97主要的抗旱机制,而早稻亲本IRAT109避旱性(根系、叶片保水能力)强于珍汕97,此外水分分配也是IRAT109适应干旱胁迫的机制之一。
     2、对该重组自交系群体(180个系)构建了遗传连锁图,该图谱包含245个SSR标记,12个连锁群,总长为1530cM,相邻标记间平均间距为6.2cM。
     3、采用分期播种技术,在不同的光温条件下,定位到9个与抽穗期有关的QTL,它们与控制产量QTL的关系以及与环境互作的分析有助于选育早熟高产、对环境不敏感的品种,为逃旱性在水稻生产上的利用打下基础。
     4、用PVC管在孕穗期对RIL群体的各系进行了相同程度的干旱胁迫,将各种可能的抗旱机制加以分离。抗旱系数(相对产量)与抽穗期、地上干物重及大部分根系性状间无显著相关性,说明该试验中逃旱性的影响得到消除,并将避早性的作用加以分离。两年共检测到37个与耐旱性(产量、产量性状的相对值和死叶程度)有关的QTL,与他人定位结果比较也证实了它们主要与耐旱性(渗透调节能力等)有关。对产量、产量性状在对照和干旱胁迫下QTL定位的一致性进行了分析,少数干旱胁迫下表达的QTL与相对值QTL相对应。
     5、两年定位了6个与干旱到卷叶的天数(DLR)有关的QTL,相关分析及QTL比较发现,根系下扎速度及干旱诱导根系深度增加量与干旱到卷叶的天数之间呈正相关,而与植株和根系大小之产呈负相关。另外,用PVC管两年定位了71个与最大扎根深度和深层根分布有关的QTL,以及97个与根粗、根总体积(重量)及根茎比有关的QTL。最大扎根深度和深层根分布等根系性状与根粗、根总体积(重量)和根茎比等根系性状相比对环境条件(年度、水分)更为敏感。
     6、相关分析和QTL位置比较发现,控制耐旱性和避旱性的染色体区域相对独立,说明耐旱性和避旱性的遗传基础不同,可以在抗旱育种上将二者加以聚合。
     7、在错期播种调整抽穗期一致的前提下,分别在粘土和沙土环境下对大田后期
Drought especially late season drought is one of the main abiotic constraints in rice production, and the genetic basis of drought resistance in rice is very complex due to different mechanisms mixed together which resulted in slow progress on drought resistance breeding in rice. In this study, a genetic linkage map was constructed for mapping QTLs for drought escaping (via early heading), drought avoidance (mainly via root traits) and tolerance using a RIL population of 180 lines from a cross between an indica lowland rice and upland japonica rice. Genetic analysis of drought resistance at reproductive stage in field with different types of soil was also conducted to find the possible mechanism of late season drought resistance in rice under field conditions. The main results were as follows:
    1. The comparison of drought resistance between two parents revealed that drought tolerance was the main drought resistance mechanism of the parent Zhenshan 97, whereas for the upland and japonica parent, IRAT109, the ability of drought avoidance (root traits and water keeping ability) was higher than Zhenshan 97, and drought resistance can also be achieved by water distribution in IRAT109.
    2. A genetic linkage map was constructed based on the data of 245 loci assayed on the 180 individuals by Mapmaker analysis. The map covered a total of 1530cM with an average interval of 6.2cM between adjacent loci.
    3. Nine QTLs for heading date were detected under four environments with different day-length and temperature. Their relations with yield and the QTL by environment interactions analysis revealed that it is possible to breed rice varieties with early maturing, high yield and unsensitive to environments, which is very important to drought escaping in rice.
    4. Similar drought stress was applied at same stage (booting to anthesis) on each rice plant grown in PVC pipes on the basis of staggering seeding date in the year 2003 and 2004. Correlation analysis revealed that relative yield (RY, corresponding to drought susceptibility index) had no significant correlation with flowering time, biomass and most of the root traits investigated in two years, suggesting that drought escaping was
引文
1.石庆华,黄英金,李木英,徐益群,谭雪明,张佩莲.水稻根系性状与地上部的相关及根系性状的遗传研究.中国农业科学,1997,30:61-67
    2.刘学义.大豆抗旱性评价方法探讨.中国油料,1986,(4):23-26
    3.刘鸿艳,邹桂花,刘国兰,胡颂平,李明寿,余新桥,梅捍卫.罗利军.水分梯度下水稻CT,LWP和SF的相关及其QTL定位研究.科学通报,50(2):130-138
    4.华金平.汕优63“永久F_2”群体构建及其杂种优势的遗传研究.[博士学位论文].武汉:华中农业大学图书馆,2001
    5.严长杰,顾铭洪.高代回交QTL分析与水稻育种.遗传,2000,22:419-422
    6.严建兵.玉米杂种优势遗传基础及玉米与水稻比较基因组研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    7.余叔文,刘存德,宋迁生.水稻孕穗期和开花期的旱害及其和体内水分分配的关系.作物学报,1963,2:95-102
    8.张玉屏,李全才,黄义德,黄文江.水分胁迫对水稻根系生长和部分生理特性的影响.安徽农业科学,2001,29:58-59
    9.张宪政.作物生理研究法.北京:农业出版社,1990.131-134
    10.张燕之,周毓珩,邹吉承.水稻抗旱性鉴定方法与指标研究,Ⅰ.生理生化方法鉴定稻的抗旱性与水分胁迫下产量关系.辽宁农业科学,1996,(1):10-13
    11.李泽福,周彤,郑天清,罗林广,夏加发,翟虎渠,万建民.水稻抽穗期QTL与环境互作分析.作物学报,2002,28:771-776
    12.杨凯,昌小平,胡荣海,贾继增.干旱胁迫下小麦脯氨酸积累相关基因的染色体定位.作物学报,2001,27:363-366
    13.陈凤梅,程建峰,潘晓云,刘宜柏.杂交稻抗旱性的筛选研究.杂交水稻,2001,16:51-54
    14.陈凤梅,程建峰.籼稻抗旱性状的筛选及其育种应用.江西农业大学学报,2000,22:169-173
    15.罗利军,张启发.栽培稻抗旱性研究的现状与策略.中国水稻科学,2001,15:209-214
    16.金善宝.中国小麦学.北京:中国农业出版社,1996.754-758
    17.信道诠,赵聚.旱地农业水分状况与调控技术.北京:中国农业出版社,1992.43-63
    18.徐云碧,朱立煌.分子数量遗传学.北京:中国农业科技出版社,1994.86-88
    19.徐吉臣,李晶昭,郑先武,邹亮星,朱立煌.苗期根部性状的QTL定位.遗传学报,2001,28:433-438
    20.郭振飞,黎用朝.不同耐旱水稻幼苗对氧化胁迫的反应.植物学报,1997,39:748-752
    21.梁宗锁,李敏,王俊峰.抗旱生理机制研究进展.沙棘,1998,11:8-13
    22.龚明.作物抗旱性鉴定方法与指标及其综合评价.云南农业大学学报,1989,(1):73-81
    23.程旺大.冠层温度在水稻抗旱性基因型筛选中的应用及其测定技术.植物学通报,2001,18:70-75
    24.廖建雄,王根轩.植物的气孔振荡及其应用前景.植物生理学通讯,2000,36:272-276
    25.熊立仲,王石平,刘克德,戴先凯,Saghai M A,胡锦国,张启发.微卫星DNA和AFLP标记在水稻分子标记连图上的分布.植物学报,1998,40:605-614
    26.薛吉全,马国胜,路海东,任建宏.作物抗旱性与作物生产.西安联合大学学报,2001.4:22-26
    27. Ahn S N, Bollich C N, McClung A M, Tanksley S D. RFLP analysis of genomic regions associated with cooked-kernel elongation in rice. Theor Appl Genet, 1993, 87:27-32
    28. Ajay K G, Ju-Kon K, Thomas G O, Anti P R, Yang D C, Leon V K, and Ray J W. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 2002, 99: 15898-15903
    29. Ali M L, Pathan M S, Zhang J, Bat G, Sarkarung S, Nguyen H T. Mapping QTLs for root traits in a recombinant inbred population from two indicaecotypes in rice. Theor Appl Genet, 2000, 101:756-766
    30. Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. Restriction fragment length polymorphisms as genetic markers in soybean, Gl~vcine max (L.) Merrill. Theor Appl Genet, 1988, 75:889-901
    31. Babu R C, Nguyen B D, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh S K, Palchamy A, Sadasivam S, Sarkarung S, Wade L J, and Nguyen H T. Genetic analysis of drought resistance in rice by molecular markers: Association between secondary traits and field performance. Crop Sci, 2003, 43:1457-1469
    32. Babu R C, Shashidhar H E, Lilley J M, Thanh N D, Ray J D, Sadastvam S, Sarkarung S, O'Toole J C and Nguyen H T. Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breed, 2001, 233-238
    33. Babu R C, Zhang Jingxian, Blum A., Ho D T H., Wu R, Nguyen H T. HVAl, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science, 2004, 166:855-862
    34. Barrs H D and Weatherlaey. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci, 1962, 15:415-428
    35. Banziger M and Cooper M. Breeding for low input conditions and consequences for participatory plant breeding: Examples from tropical maize: and wheat. Euphtica, 2001, 122:503-519
    36. Bidinger F R, Mahalakshmi V, Rao G D P. Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. H Estimation of genotypes response to stress. Aus J Agric Res, 1987, 38:49-59
    37. Blum A. Plant breeding for stress environments. CRC Press, Boca Raton, FL, USA. 1988. 208
    38. Blum A. Selection for sustained production in water deficit environments. In: Buxton D R, ShiNes R, Forsberg R A, Blad B L, Asay K H, Paulsen G M, Wilson R F eds., International Crop Science, Vol Ⅰ. Crop Science Society of America, USA, 1993. 343-347
    39. Bolanos J and Edmeades G O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res, 1996, 48: 65-80
    
    40. Boojung H, Fukai S. Effects of soil water deficit at different growth stage on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crop Res, 1996. 48:47-55
    
    41. Botstein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32:314-331
    
    42. Brown L R and Halweil B. China's water shortage could shake world food security. World Watch, 1998,7:3-4
    
    43. Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maizes. Genetics, 1988, 118:519-526
    
    44. Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL X environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103:153-160
    
    45. Causse M A, Fulton T M, Cho Y G, Ann S N, Chunwongse J, Wu K, Xiao J, Yu Z H, Ronald P C, Hamington S E, Second G, Mccouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274
    
    46. Ceccarelli S, Acevedo E and Grando S. Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. Euphytica, 1991, 56:169-185
    
    47. Champoux M C, Wang G, Sarkaruag S, Mackill D J, O'Toole J C, Huang N, McCouch S R. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995,90:969-981
    
    48. Chang T T, Li C C and Vergara B S. Component analysis of duration from seeding to heading in rice by the basic vegetative phase and the photoperiod sensitive phase. Euphytica, 1969, 18:79-91
    
    49. Chittienden L M, Schertz K F, Lin Y, Wing R A, Paterson A H. RFLP mapping of a cross between sorghum bicolor and S. propinquum, suitable for high density mapping, suggests ancestral duplication of sorghum chromosomes. Theor Appl Genet, 1994, 87:925-930
    
    50. Cooper M, Rajatasereekul S, Immark S, Fukai S, and Basnayake J. Rainfed lowland rice breeding strategies for Northeast Thailand. I. Genotypic variation and genotype×environment interactions for grain yield. Field Crops Res, 1999a, 64:131 -151
    
    51. Cooper M. Concept and strategies for plant adaptation research in rainfed lowland rice. Field Crop Res, 1999b, 64:13-34
    
    52. Courtois B, McLaren G, Sinhua P K, Prasad K, Yadav R, Shen L. Mapping QTLs associated drought avoidance in upland rice. Mol Breed, 6:55-66
    
    53. Crasta O R, Xu W W, Rosenow D T, Mullet J, Nguyen H T. Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet, 1999, 262:579-588
    
    54. Cruz R T, O'Toole J C. Dry land rice response to an irrigation gradient at flowering stage. Agron J, 1984,76: 178-183
    
    55. Cutler J M, Shahan K W, Steponkus P L. Influence of water deficit and osmotic adjustment on leaf elongation in rice. Crop Sci, 1980, 20:314-318
    
    56. DeVicente M C, Tanksley S D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 1993, 134:585-596
    
    57. Doebley J, Stoc A, Gustus C. Teosinte branched L and the origin of maize evidence for epistasis and the evolution of dominance. Genetics, 1995, 141:333-346
    
    58. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936
    
    59. Edwards M D, Stuber C W, Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116:113-125
    
    60. Edwards M D, Helentiaris T, Wright S, Stuber C W. Molecular-marker-facilitated investigations of quantitative trait loci in maize. Theor Appl Genet, 1992, 83:765-774
    
    61. Ehanayake I J, Garrity D, Masajo T. Root pulling resistance in rice: inheritance and association with drought tolerance. Euphytica, 1985a, 34:905-913
    
    62. Ehanayake 1 J, O'Toole J C, Garrity D. Inheritance of root characters and their relations to drought resistance in rice. Crop Sci, 1985b, 25:927-933
    
    63. Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use-efficiency of wheat genotypes. Aust J Plant Physiol, 1984, 11:539-552
    
    64. Fischer K S, Edmeades G O and Johnson E C. Selection for the improvement of maize yield under moisture-deficits. Field Crop Res, 1989, 22: 227-243
    
    65. Fischer R A and Maurer R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust JAgric Res, 1978, 29: 897-916
    
    66. Frova C, Krajewski P, di Fonozo N, Villa M, Sari-Gorla M. Genetic analysis of drought tolerance in maize by molecular markers. 1. Yield components. Theor Appl Genet, 1999, 99:280-288
    
    67. Fukai S and Cooper M. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res, 1995, 40:67-86
    
    68. Fukai S. Pantuwan G. Jongdee B and Cooper M. Screening for drought resistance in rainfed lowland rice. Field Crops Res, 1999a, 64: 61-74
    
    69. Fukai S. Phenology in rainfed lowland rice. Field Crop Res, 1999b, 64:51-60
    
    70. Fukai S and Cooper M. Development of drought resistant cultivars for rainfed lowland rice-experience from northeast Thailand and surrounding areas. In: Cow P, Chhay R eds., The Impact of Agricultural Research for Development in Southeast Asia. Proceedings of the International Conference Held at the Cambodian Agricultural Research and Development Institute, Phnon Penh, Cambodia. 2001, 185-194
    
    71. Fulton T M, Berk-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis of an advanced backcross of lycoperslcan peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet, 1997, 95:881-894
    
    72. Garrity D P and O'Toole J C. Screening rice for drought resistance at the reproductive phase. Field Crop Res, 1994, 39: 99-110
    
    73. Garrity D P and O'Toole J C. Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron J. 1995, 87: 773-779
    
    74. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Khush G S, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148: 479-494
    
    75. Hayama R, Yokoi S, Tamaki S, Yano M and Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003, 422:719-722
    
    76. Hayes P M, Liu B H, Knapp S J, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich S E, Wesenberg D, Kleinhofs A. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Apple Genet, 1993,87:392-401
    
    77. Hittalmani S, Foolad M R, Mew T, Rodriguez R L, Huang N. Development of a PCR-based marker to identify rice blast resistance gene, pi-2 (t), in a segregating population. Theor Appl Genet, 1995,91:9-14
    
    78. Hittalmani Shailaja, Huang N, Courtois B, Venuprasad R, Shashidhar H E, Zhuang JY, Zheng KL, Liu G-F, Wang GC, Sidhu J S, Srivantaneeyakul S, Singh V P, Bagali P G, Prasanna H C, McLaren G and Khush G S. Identification of QTL for growth-and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet, 2003, 107:679-690
    
    79. Holmstrom K, Mantyla E, Welin B. Drought tolerance in tobacco. Nature, 1995, 379: 683-684
    
    80. Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162:1885-1895
    
    81. Huang Z, He G, Shu L, Li X, Zhang Q. Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet, 2001, 102:929-934
    
    82. Ishii T, Brar D S, Multani D S, Khush G S. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza autraliensis into cultivated rice O. sativa. Genome, 1994,37:217-221
    
    83. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2002, 27:325-333
    
    84. Izawa T, Oikawa T, Tokutomi S, Okuno K and Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J, 2000, 22: 391-399
    
    85. Izawa Takeshi, Takahashi Yuji and Yano Masahiro. Comparative biology comes in bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Cur Opin in Plant Biol, 2003, 6:113-120
    
    86. Jongdee B, Fukai S and Cooper M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crop Res, 2002, 76: 153-163
    
    87. Kamoshita A, Wade L J, Ali M L, Pathan M S, Zhang J, Sarkarung S, Nguyen H T. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet, 2002, 104:880-893
    
    88. Karsai I, Meszaros K, Bedo Z, Hayes P M, Pan A and Chen F. Genetic analysis of the components of winterhardiness in barley (Hordeum vulgar L.). Acta Biol Hung, 1997, 48:67-76
    
    89. Katiyar S K, Tan Y, Zhang Y, Huang B, Xu Y, Zhao L, Huang N, Khush G S, Bennett J. Identification of RAPD marker linked to the gene controlling gall midge resistance against all biotype in China. Rice Genet Newsl, 1994, 11:128-131
    
    90. Khush G S and Kinoshita T. Rice karyotype, maker genes and linkage groups. In: Khush G S and Toenniesien GH eds., Rice biotechnology. Wallingford: CAB International, 1991. 83-108
    
    91. Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1991, 8: 2-37
    
    92. Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1993, 10: 7-39
    
    93. Koester R P, Sisco P H and Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci, 1993, 33:1209-1216
    
    94. Koeyer D L, Tinker N A, Wight C P, Deyl J, Burrows V D, O'Donoughue L S, Lybaert A, Molnar S J, Armstrong K C, Fedak G, Wesenberg D M, Rossnagel B G, McElroy A R. A molecular linkage map with associated QTLs from a hulless×covered spring oat population. Theor Appl Genet, 2004, 108: 1285-1298
    
    95. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T and Yano M. Hd3a, a rice ortholog of the arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 2002, 43. 1096-1105
    
    96. Kurata N. Nagamura Y, Yamamoto K. Harushima Y, Sue N. Wu J, Antoni B A, Shomura A. Shimizu T, Lin S Y, Inoue T. Fukuta A, Shimano T, Kuboki Y. Toyama T, Miyamoto Y. Kirihara T, Hayasaka K, Miyao A, Monna L. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994. 8:365-376
    
    97. Lafitte R, Blum A and Atlin G. Using secondary traits to help identify drought-tolerant genotypes. In: K S Fischer, R Lafitte, S Fukai, G Atlin. and B Hardy, eds., Breeding rice for drought-prone environments. Los Banos (Philippines), IRRI, 2003. 37-48
    
    98. Lanceras J C, Pantuwan G, Jongdee B, and Toojinda T. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology, 2004, 135: 384-399
    
    99. Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traitsusing RFLP linkage maps. Genetics, 1989. 121:185-198
    
    100. Lebowitz R L, Soller M, Beckmann J S. Trait-based analysis for the detection of linkage between marker loci and quantitative trail loci in cross between in bred lines. Theor Appl Genet, 1987, 73: 556-562
    
    101. Lebreton C, Lazic-Janic V, Steed A. Pekic S. Quarrie S A. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot, 1995. 46:853-865
    
    102. Lemieux B. Overview of DNA chip technology. Mol Breed, 1998, 4:277-289
    
    103. Li Z K, Pinson S R M, Park W D, Paterson A H, Stanse T W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145:453-465
    
    104. Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S and Khush G. S. QTLxenvironment interactions in rice. I. HD and plant height. Theor Appl Genet, 2003, 108:141-153
    
    105. Li Z, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTLs) for heading time and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91: 374-381
    
    106. Lilley J M and Fukai S. Effect of timing and severity of water deficit on four diverse rice cultivars. I. Root pattern and soil water extraction. Field Crops Res, 1994, 37:215-223
    
    107. Lilley J M, Ludlow M, McCouch S, O'Toole J. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot, 1996, 47:1427-1436
    
    108. Lin H X, Ashikari M, Yamanouchi U, Sasaki T and Yano M. Mapping quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci, 2002, 52:35-41
    
    109. Lin H X, Liang Z W, Sasaki T and Yano M. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling HD in rice. Breed Sci, 2003, 53:51-59
    
    110. Lin H X, Yamamoto T, Sasaki T and Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling HD in rice using nearly isogenic lines. Theor Appl Genet, 2000, 101:1021 -1028
    
    111. Lin S Y, Sasaki and Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet, 1998, 96: 997-1003
    
    112. Lin X H, Zhang D P, Xie Y F, Gao H P, Zhang Q. Identifying and mapping a new gene for bacteria blight resistance in rice based on RFLP markers. Phytopathology, 1996, 86:1156-1159
    113. Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, Whitehead Institute, Cambridge, Massachusetts, USA. 1992
    114. Litt M, Luty J A. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet, 1989, 44:399-401
    115. Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q. A genome-wide analysis of wide compatibility in rice and the precise location of the $5 locus in the molecular map. Theor Appl Genet, 1997, 809-814
    116. Ludlow M M, Santamaria J M, Fukai S. Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. Ⅱ. Water stress after anthesis. Aust J Agric Res, 1990, 41:67-78
    117. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet, 2002, 105: 622-628
    118. Martin B, Nienhuis J, King G, Schaeffer A. Restriction fragment length polymorphism associated with water use efficiency in tomato. Science, 1989, 243:1725-1728
    119. McCouch S R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M W. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant tool biol, 1997, 35:89-99
    120. McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, and Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9:199-207
    121. McCouch, S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76:815-829
    122. Mei H W, Luo L J, Ying C S, Wang Y, Yu X Q, Guo L B, Paterson A H and Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet. 2003, 107: 89-101
    123. Mew T W, Parco A R, Hittalmani S, Inukai T, Nelson R, Zeigler R S, Huang N. Fine mapping of major genes for blast resistance in rice. Rice Genet Newsl, 1994, 11: 126-128
    124. Mian M A R, Bailey M A, Ashley D A, Wells R, Carter J T, Parrott W A, Boerma H R. Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci, 1996, 36:1252-1257
    125. Mohan M, Nair S, Bentur J S, Prasada R U. Bennett J. RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype Ⅰ of gall midge (Orseolia oruzae). Theor Appl Genet, t994, 87:782-788
    126. Murray M G, Thompson W F. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res, 1980, 8:4321
    127. Nair S, Kumar A, Srivastava M N, Mohan M. PCR-based DNA markers linked to a gall midge resistance gene, Gm4t, has potential for marker-aided selection in rice. Theor Appl Genet, 1996, 92:660-665
    
    128. Nguyen T T T, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena A C M, Pathan M S. Nguyen H T. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genet, 2004, 272:35-46
    
    129. Nguyen, H T, Babu R C. and Blum A. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci. 1997, 37:1426-1434
    
    130. O'Toole J C and Soemartono. Evaluation of simple technique for characterizing rice root systems in relation to drought resistance. Euphytica, 1981, 30, 283-290
    
    131. O'Toole J C and Namuco O S. Role of panicle exsertion in water stress induced sterility [Rice, Oryza sativa]. Crop Sci, 1983,23: 1093-1097
    
    132. Okumoto Y, Yoshimura A, Tanisaka T, Yamagata H. Analysis of a rice variety Taichung 65 and its isogenic early heading lines for late-heading genes El, E2 and E3. Japan J Breed. 1992, 42: 415-429
    
    133. Pantuwan G, Fukai S, Cooper M, Rajatasereekul S and O'Toole J C. Yield response of rice (Oryza Sativa L.) genotypes to different types of drought under rainfed lowlands. 1. Grain yield and yield components. Field Crops Research, 2002a, 73: 153-168
    
    134. Pantuwan G, Fukai S, Cooper M, Rajatasereekul S and O'Toole J C. Yield response of rice (Oryza Sativa L.) genotypes to different types of drought under rainfed lowlands. 3. Plant factors contributing to drought resistance. Field Crops Res, 2002b, 73:181 -200
    
    135. Pantuwan G, Fukai S, Cooper M, Rajatasereekul S and O'Toole J C. Yield response of rice (Oryza Sativa L.) genotypes to drought under rainfed lowlands 2. Selection of drought resistant genotype. Field Crops Res, 2002c, 73: 169-180.
    
    136. Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce using near-isogenic lines. Genetics, 1997, 34:1021-1027
    
    137. Paterson A H, Damon S, Hewitt J D, Zamir D and Rabinowitch H D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127:181-197
    
    138. Paterson A H, Landre E S, Hewitt J D, et al. Resolutuion of quantitative traits into Mendelian factors by using a comlete linkage map of restriction fragment length polymorphisms. Nature, 1988,335:721-726
    
    139. Pereira M G and Lee M. Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet, 1995,90:380-388
    
    140. Pflieger S, Lefebvre V and Mathilde C. The candidate gene approach in plant genetics: a review. Mol Breed, 2001, 7:275-291
    141. Poonyaritt M, Mackill D J, Vergara B S. Genetics of photoperiod sensitivity and critical daylength in rice. Crop Sci, 1989, 29: 647-652
    
    142. Price A H, and Tomos A D. Genetic dissection of root growth in rice (Oryza stativa L.). II. Mapping quantitative trait loci using molecular markers. Theor Appl Genet, 1997b, 95: 143-152
    
    143. Price A H, Cairms J E, Horton P, Jones H G, Griffiths H. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and messophyll responses. J Exp Bot, 2002c, 53:989-1044
    
    144. Price A H, Hill Cairns, Rarhkanda Khowaja. Towards understanding root growth QTLs in rice: expression in the field, environmental stability, contribution to drought avoidance and underlying genetic mechanisms. Abstract, Proceedings of an International Workshop on progress toward developing resilient crops for drought-prone areas. 2002a, IRRI, Los Banos, Philippines
    
    145. Price A H, Steele K A, Moore B J, Barraclough P B, Clark L J. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet, 2000, 100:49-56
    
    146. Price A H, Steele KA, Moore BJ, Jones RGW. Upland rice grown in soil-filled chambers and exposed to contrasting water deficit regimes. II. Mapping quantitative trait loci for root morphology and distribution. Field Crop Res, 2002d, 76:25-43
    
    147. Price A H, Townend J, Jones M P, Audebert A, Courtois B. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol, 2002b, 48: 683-695
    
    148. Price A H, Young E M, Tomos A D. Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza stativa L.). New Phytol, 1997a, 137:83-91
    
    149. Price A. and Courtios B. Mapping QTLs associated with drought resistance in rice: Progress, problems and prospects. Plant Growth Regulation, 1999, 29: 123-133
    
    150. Puckridge D W and O'Tool J C. Dry matter and grain production of rice, using a line source sprinkler in drought studies. Field Crops Res, 1981, 3:303-319
    
    151. Quarrie S A, Laurie D A, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C. QTLanalysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparison across cereals. Plant Mol Biol, 1997, 35:155-165
    
    152. Quarrie, S A. Gulli M, Calestani C. Steed A. Marmiroli N. Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet. 1994. 89:794-800
    
    153. Ray J D, Yu L, McCouch S R, Champoux M C, Wang G, Ngugen H T. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627-636
    
    154. Redona E D, Mackill D J. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet, 1998,96:957-963
    
    155. Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades G O, Hoisington DA. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet, 1997, 94:887-896
    
    156. Robin S, Coutois B, Pathan M S. Marker assisted back cross breeding for improvement of drought tolerance in indica and japonica rice. Abstract, Proceedings of an international workshop on progress toward developing resilient crops for drought-prone areas. 2002. IRRI. Los Banos. Laguna Philippines
    
    157. Robin S, Pathan M S, Courtois B. Lafitte R, Carandang S, Lanceras S, Amante M. Nguyen H T. Li Z. Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet, 2003, 107:1288-1296
    
    158. Rohila J S, Jain R K, Wu R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Science, 2002, 163: 525-532
    
    159. Saghai Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population, and population dynamics. Proc Natl Acad Sci USA, 1984, 81:8014-8018
    
    160. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant J, 2000, 23: 319-327
    
    161.Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. A proteomic approach to analyzing drought-and salt-responsiveness in rice. Field Crops Res, 2002, 76: 199-219
    
    162. Samson B K, Hasan M, Wade L J. Penetration of hardpans by rice lines in the rainfed lowlands. Field Crops Res, 2002, 76:175-188
    
    163. Sanchez A C, Subudhi P K, Rosenow D T, and Nguyen. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolorh. Moench). Plant Mol Biol, 2002, 48: 713-726
    
    164. Sanguineti M C, Tuberosa R, Stafenelli S, Noli E, Blake T K, Hayes P M. Utilization of a recombinant inbred population to localize QTLs for abscisic acid content in leaves of drought stressed barley (Hordeum vulgare L.). Rus J Plant Physiol, 1994, 41:572-576
    
    165. Sarma R N, Gill B S, Sasaki T, Galiba G, Sutka J, Laurie D A, Snape J W. Comparative mapping of the wheat chromosome 5 A Vrn-A 1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet, 1998,97: 103-109
    
    166. SAS institute Inc. SAS users guide: statistics. SAS Institute, Cary, North Carolina. 1996
    
    167. Sato Y I and Hayashi K. The genetic control of the basic vegetative phase in early maturing native rice varieties. Japan J Breed, 1985, 35:160-166
    
    168. Shen L, Courtois B, McNally K L, Robin S, Li Z. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet, 2001, 103:75-83
    169. Snape J W. The detection and estimation of linkage using double haploid of single seed descent populations. Theor Appl Genet, 1988,76:125-128
    
    170. Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci, 2004, 166:941-948
    
    171. Takahashi Y, Shomura A, Sasaki T and Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001,98:7922-7927
    
    172. Tan Y F, Sun M, Xing Y Z, Hua J P, Sun X L, Zhang Q F, Corke H. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2001, 103:1037-1045
    
    173. Tan Y F, Xing Y Z, Li J X, Yu S B, Xu C G, Zhang Q F. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet, 2000, 101:823-829
    
    174. Tanksley S D, Ganai M W, Prince J C, Devicente M C, Bonierbale M W, Brown P, Fulton T M, Giovannoni J J, Grandillo S, Martin G B, Messeguer R, Miiler J C, Miller L, Paterson A H, Pinedo O, Roder M S, Wing R A, Wu W, Young N D. High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics, 1992, 132:1141-1160
    
    175. Tanksley S D, Nelson J C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Thoer Appl Genet, 1996, 92:191 -203
    
    176. Temnykh S, DeCklerck G, Lukashova A, Lipovich L, Cartinhiur S, McCouch S. Computaional and Experimental Analysis of Microsatellites in Rice (Oryza sativa L.): Frequency, Length, Variation, Transpon Associations, and Genetic Marker Potential. Genome Res, 2001, 11:1441-1452
    
    177. Temnykh W D, Park N, Ayres S, Cartinhour N, Hauck L, Lipovich Y G, Cho T, Ishii S R. McCouch. Mapping and genome organization of microsatellite sequencesin rice (Oryza sativa L.). Theor Appl Genet, 2000,100:697-712
    
    178. Tenaillon M I, Sawkins M C, Long A D, Gaut R L, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphism along chromosome l of maize (Zea mays). Proc Natl Acad Sci USA. 2002,98:9161-9166
    
    179. Teulat B, Merah O, Sirault X. Borries C. Waugh R. This D. QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet. 2002, 106:118-126
    
    180. Teulat B, This D. Khairallah M, Borries C. Ragot C, Sourdille P, Leroy P. Monneveux P. Charrier A. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet, 1998, 96: 688-698
    
    181.Toorchi M, Shashidhar H E, Gireesha T M, and Hittalmani S. Performance of backcrosses involving transgressant doubled haploid lines in rice under contrasting moisture regimes: yield components and marker heterozygosity. Crop Sci, 2003, 43: 1448-1456
    182. Tripathy J N, Zhang J, Robin S, Nguyen. QTLs for cell-membrane stability mapped in rice (Oryza saliva L.) under drought stress. Theor Appl Genet, 2000, 100: 1197-1202
    183.Tuberosa, R, Sanguineti M C, Landi P, Salvi S, Casarini E, Conti S. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought stressed maize (Zea mays L.). Theor Appl Genet, 1998,97:744-655
    
    184. Tuinstra MR, Ejeta G and Goldsbrough P B. Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci, 1998, 38: 835-842
    
    185. Turner N C. Drought resistance and adaptation to water deficits in crop plants. In: Harry Mussall ed., Stress Physiology in Crop Plants. New York: Johin Willey and Sons, 1979. 343-372
    
    186. Turner N C. Further progress in crop water relations. Adv Agron, 1997, 58: 293-339
    
    187. Turner NC. Crop water deficit: a decade of progress. Adv Agron, 1986, 39, 1-51
    
    188. Venuprasad R, Shashidhar H E, Hittalmani S, Hemamalini G S. Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica, 2002, 128:293-300
    
    189. Vergara B S, Purranavhavung S, Lilis R. Factors determining the growth duration of rice varieties. Phyton, 1965,22: 177-185
    
    190. Walulu R S, Rosenow D T, Wester D B, Nguyen H T. Inheritance of the stay green trait in sorghum. Crop Sci, 1994, 34:970-972
    
    191. Wang D L, Zhu J, Li Z K and Paterson A H. Mapping QTLs with epistatic effects and QTLxenvironment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99:1255-1264
    
    192. Wang G L, Mackill D J, Bonman J M, McCouch S R., Champous M C and Nelson R J. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994, 136:1421-1434
    
    193. Williams J G K, Kubelic A R, Livak K J, Rafalsci J A, Tingey S V. DNA polyorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res, 1990, 18:6531-6535
    
    194. Wopereis M C S, Kropff M J, Maligaya A R, Tuong T P. Drought-stress responses of two lowland rice cultivars to soil water status. Field Crop Res, 1996, 46:21-39
    
    195. Wu K S and Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet, 1993,241: 225-235.
    
    196. Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140:745-754
    
    197. Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs in the genetic basis of yield traits in rice, Theor Appl Genet, 2002, 105: 248-257
    
    198. Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110:249-257
    199. Xu W W, Subudhi P K, Crasta O R, Rosenow D T, Mullet J E, Nguyen H T. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome, 2000, 43:461-469
    200. Xu Y. Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev, 1997, 15:85-139
    201. Yadav R, Courtois B, Huang N, McLaren G. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice.Theor Appl Genet, 1997, 94:619-632
    202. Yamamoto T, Lin H X, Sasaki T and Yano M. Identification of HD quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154:885-891
    203. Yah L, Loukoianov A, Tranquilli G, Helguera M, Fahima T and Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100:6263-6268
    204. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y and Sasaki T. Identification of quantitative trait loci controlling HD in rice using a high-density linkage map. Theor Appl Genet, 1997, 95:1025-1032
    205. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, and Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, 12:2473-2483
    206. Yoshida S, Hesegawa S. The rice root system: its development and function. In: Drought Resistance in Crop with Emphasis on Rice. IRRI, Los Banos, Philippines, 1982.97-114
    207. Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science, 2002b, 296:79-92
    208. Yu L, Ray J D, O'Toole J C, Nguyen H T. Using of wax-petrolatum layers to simulate compacted soil for screening rice (Oryza sativa L.) root penetration ability. Crop Sci, 1995, 35:684-687
    209. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid Proc Natl Acad Sci USA, 1997.94:9226-9231
    210. Yu S B. Li J X, Xu C G, Tan Y F, Li X H and Zhang Q F. Identification of quantitative trait loci and epistatic interactions for plant height and HD in rice. Theor Appl Genet, 2002a. 104:619—625
    211. Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. Patent Application World intellectual Property Organization, 06239.1993-09-03
    212. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468
    213. Zhang J, Nguyen H T, Blum A. Genetic analysis of osmotic adjustment in crop plants. J Exp Bot, 1999, 50:291-302
    214. Zhang J, Zheng H G, Aarti A, Pantuwan G, Nguyen T T, Tripathy J N, Sarial A K, Robin S, Babu RC, Nguyen B D, Sarkarung S, Blum A, Nguyen H T. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet, 2001 a, 103:19-29
    
    215. Zhang Q F, Shen B Z, Dai X K, Mei M H, Saghai Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photo-sensitive genic male sterility in rice. Proc Natl Acad Sci USA, 1994, 91:8675-8679
    
    216. Zhang Q, Lin S C, Zhao B Y, Wang C L, Yang W C, Zhou Y 1, Li D Y, Chen C B, Zhu L H. Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. Oryzae) from O rufipogon. Rice Genet Newsl, 1998, 15:138-142
    
    217. Zhang W P, Shen X Y, Wu P, Hu B, Liao C Y. QTLs and epistasis for seminal root length under a different water supply in rice (Oryza sativa L.). Theor Appl Genet, 2001b, 103:118-123
    
    218. Zheng B S, Yang L, Zhang W P, Mao C Z, Wu Y R, Yi K K, Liu F Y, Wu P. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet, 2003, 107:1505-1515
    
    219. Zheng H G, Babu R C, Pathan M S, Ali L, Huang N, Courtois B, Nguyen H T. Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome, 2000, 43:53-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700