电解法处理难降解有机废水的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
难降解有机物具有一定的生物抑制性,难以生化降解。采用电化学方法研究对硝基酚废水、焦化废水处理工艺,通过研究发现电化学法处理难降解有机废水具有一定的可行性。
     电极材料是电化学技术的核心内容之一,主要考虑的因素有电催化活性、稳定性、导电性等。本论文采用电沉积法制备不同掺杂电极,研究发现与制备的其他电极相比,Fe掺杂PTFE-PbO2/TiO2-NTs/Ti电极析氧电位、寿命、电催化活性都有较大提高。
     实验中分别改变电流密度、初始浓度、pH、电解质、降解时间等影响因素,以对硝基酚和CODcr浓度为指标,确定Fe掺杂PTFE-PbO2/TiO2-NTs/Ti电极降解对硝基酚废水的最佳反应条件。研究结果表明·OH的产生随着电流密度的增大而增大,因去除率也随着电流密度增大而增大;初始浓度大,扩散增强,但产生的中间产物参与·OH竞争,降解效果不如初始浓度小的好;pH在酸性条件下能抑制析氧反应;当电解质为NaCl时,C1-被氧化为具有去强氧化性的C10",去除效果加强。电解质为Na2S04时,在一定的浓度范围内浓度越高,产生具有氧化性的S2O82-加强氧化。实验最佳的影响因素为电流密度20mA/cm2,初始浓度100mg/L,pH5.1,Na2S04浓度0.02mol/L
     其次以焦化废水为研究对象,与上述模拟废水对比,研究Fe掺杂PTFE-PbO2/TiO2-NTs/Ti对实际废水降解的效果。改变电流密度、pH和电解时间等影响参数发现,电流密度越大,CODc,和NH3-N去除效率越高,同时也发现,在同一条件下氨氮的去除率高于CODcr,NH3-N优先降解;pH酸性时CODc,去除效果比较好,pH碱性时NH3溢出,NH3-N的去除效率较好。焦化废水在电流密度20mA/cm2,pH7,降解30min时即可达标排放。
The refractory organics owns biologic inhibitory and are difficult to biochemical degradation.Nitrophenol wastewater, cooking wastewater treatment process were studied in this paper.The research has found that the electrochemical treatment of refractory organic wasterwater is feasible.
     Electrode material is one of the cores of the electrochemical techniques and the main considerations are the electro-catalytic activity, stability, conductivity, etc. Different anodes were prepared by anodic electrodeposition technique. We found that compared to other anodes, Fe doped PTFE-PbO2/TiO2-NTs/Ti shows better properties such as oxygen evolution potential, service life, electro-catalytic activity.
     Using p-NP and CODcr concentration as an indicator and changing the different values of experimental paramenters about current density, initial concentration, pH supporting electrolyte and degradation time, we were mainly to find out the optium reaction conditions on p-NP degradation over Fe doped PTFE-PbO2/TiO2-NTs/Ti electrode. The generation of·OH increases with the current density, so the removal rate increases with the increase of current density; the larger the initial concentration, the stronger the diffusion. But the intermediates involved in the competition of·OH degradation, so the effect was not so good as the lower initial concentration.It can inhibit the oxygen evolution reaction under the acidic condition. When the electrolyte was NaCl, Cl-was oxided to the strong oxidizing ClO-which can improve the removal effiency; choosing Na2SO4as the electrolyte, in a certain concentration, the higher the concentration of Na2SO4, the more oxidizing S2O82-, which can also strengthen the degradation. Therefore the optimum experimental parameters for the current density was20mA/cm2, the initial concentration was100mg/L, pH was5.1, the concentration of Na2SO4was0.02mol/L.
     Then compared with the above simulated wastewater and making the coking wasterwater as the research object, we were mainly to research the Fe doped PTFE-PbO2/TiO2-NTs/Ti electrode on the actual wasterwater degradation.Changing the experimental parameters of the current density, pH and electrolysis time, we found that the higher the current density, the higher CODcr and NH3-N removal rate and the NH3-N removal efficiency was better than CODcr in the same condition. CODcr removal efficiency was higher in the acidic solution, and NH3removal efficiency was higher in the alkaline solution for NH3can overflow from the solution.In the current density20mA/cm2, pH value7, coking wastewater could be charged after30min degradation.
引文
[1]李杰,难降解有机物的生物处理技术进展[J]。环境科学与技术,2005,(28):187-189
    [2]高湘,杜娜,王国栋等,印染废水处理工艺改造研究[J]。中国给水排水,2011,27:77-79
    [3]Eloy Isarain-Cha'vez, Rosa Mari'a Rodri'guez, Pere Llui's Cabot,et al. Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector[J]. water research,2011,45:4119-4130.
    [4]Li-Choung Chiang, Juu-En Chang, and Chou-Te Chung. Electrochemical Oxidation Combined with Physical-Chemical Pretreatment Processes for the Treatment of Refractory Landfill Leachate[J]. Environmental Engineering Science.2001,18(6):369-379.
    [5]Francois Zaviska, Patrick Drogui, Jean-Francois Blais, et al. Experimental design methodology applied to electrochemical oxidation of the herbicide atrazine using Ti/IrO2 and Ti/SnO2 circular anode electrodes[J]. Journal of Hazardous Materials 185 (2011) 1499-1507.
    [6]徐璇,基于难降解有机污染物特性的光催化-生化废水处理技术[M]。重庆大学,2010年4月
    [7]何苗,有毒难降解有机物的污染及防治对策[J]。世界环境,1997,1(14):34-36.
    [8]钱易,汤鸿霄,文湘华,水体颗粒物和难降解有机物的特性与控制技术原理下卷·难降解有机物[M]。北京:中国环境科学出版社.2000,2-65.
    [9]冯孝庭,吸附分离技术[M]。北京:化学工业出版社。2000,3-4
    [10]宋建刚,岳东北,聂永丰等,717树脂吸附渗滤液中有机物的荧光特性研究[J]。光谱学与光谱分析,2010,30(12):3264-3267
    [11]贾金平,李侃,方海军等,活性炭及活性炭纤维对CS2的吸附行为研究及其方法探讨[J]。 环境化学,2011,30(1):351-356
    [12]孔泳,王志良,倪玿华等,凹凸棒土应用于重金属离子吸附剂的研究[J]。分析测试学报,2010,29(12):1224-1227
    [13]张则光,马岩龙,叶世超,膜分散萃取法处理含酚废水的实验研究[J]。现代化工,2011,31(3):37-39
    [14]张莹,张勇,霍莹等,萃取法处理萘磺酸废水的研究[J]。工业水处理,2011,31(2):46-49
    [15]姚培芬,张更,张巧生,难降解有机物的高级化学氧化技术[J]。河北化工,2007,30(10):24-26
    [16]魏令勇,郭绍辉,阎光绪,高级氧化法提高难降解有机污水生物降解性能的研究进展[J]。水处理技术,2011,3(1):14-19
    [17]韩庆利,王承智,李锐,难降解毒性有机物污水的高级氧化处理[J]。辽宁城乡环境科技,2006,26(1):18-20
    [18]张娟,赵地顺,杨洁等,芬顿试剂光氧化二苯并噻吩的研究[J]。现代化工,2011,31(4):56-58
    [19]Ying-Shih Ma. Improvement in carbofuran degradation by different Fenton's reagent dosing processes[J]. Toxicology and Industrial Health 2011,27(10) 934-944
    [20]Sergi Garcia-Seguraa, Lucio Cesar Almeidab, Nerilso Bocchib, et al.Solar photoelectron-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology[J]. Journal of Hazardous Materials 194 (2011) 109-118.
    [21]叶向德,白平,王竞博,废水处理中的TiO2光催化氧化技术[J]。甘肃科技,2011,27(2):61-63
    [22]Despina Dimitrakopoulou, Irene Rethemiotaki, Zacharias Frontistis. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis[J]. Journal of Environmental Management 98 (2012) 168-174
    [23]张凌,楚红英,常志显等,超声波光催化协同降解对甲基苯磺酸水溶液的机理研究[J]。环境工程学报,2011,5(4):819-924.
    [24]王君,马腾,张朝红,纳米金红石TiO2的转晶及声催化降解偶氮品红的研究[J]。环境科学学报,2006,26(8):1271-1277
    [25]Juan-Juan Ya,Michael R. Hoffmann, Nai-Yun Gao. Sonolytic degradation of dimethoate: Kinetics, mechanisms and toxic intermediates controlling[J]. Water Research,2011,45: 5886-5894
    [26]戴勇,邵荣,催化湿式氧化法处理高浓度唑螨酯生产废水的研究[J]。环境工程学报,2008,2,(11):1511-1515
    [27]董俊明,陈晓阳,催化湿式氧化乐果农药废水及催化剂的研究[J]。环境工程,2009,27(6):31-34
    [28]张希衡,水污染控制工程[M]。北京:冶金工业出版社,1993.04
    [29]曾凤,霍守亮,席北斗等,猪场废水厌氧消化液后处理过程中DOM变化特征[J]。环境科学,2011,32(6):1687-1695
    [30]杨居川,杨健,生物强化技术在废水处理中的研究进展[J]。中国资源综合利用,2006,24(10):24-26
    [31]全向春,刘佐才,范广裕等,生物强化技术及其在废水治理中的应用[J]。环境科学研究,1999,12(3):23-28
    [32]Yong Lu, Lianhe Yan, YingWang,et al. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium[J]. Journal of Hazardous Materials,2009,165:1091-1097
    [33]M.Shahvali, M.M.Assadi, K.Rostami. Effect of environmental parameters on decolorization of textile wastewater using Phanerochaete chrysosporium[J].Bioprocess engineering,2000,23:721-726
    [34]应传友,电催化氧化技术的研究进展[J]。化学工程与装备,2010,8:140-142
    [35]王晓淼,胡锋平,罗健文等,电催化氧化技术中高效催化电极的研究进展[J]。中原工学院学报,2009,20(1):15-18
    [36]Marco Panizza, Giacomo Cerisola. Electrochemical Oxidation as a Final Treatment of Synthetic Tannery Wastewater[J]. Environ. Sci. Technol.2004,38,5470-5475
    [37]矫彩山,孙艳,门雪燕等,电催化氧化技术处理难生化有机废水的研究现状及进展[J]。环境科学与管理,2007,32(1):106-109
    [38]Carlos A. Marti'nez-Huitle, Sergio Ferro. Electrochemical oxidation of organic pollutants for the wastewater treatment:direct and indirect processes[J]. Chemical Society Reviews,2006, 35:1324-1340
    [39]N. Mohan, N. Balasubramanian,C. Ahmed Basha. Electrochemical oxidation of textile wastewater and its reuse[J]. Journal of Hazardous Materials,2007,147:644-651
    [40]A.G. Vlyssides, M. Loizidou, P.K. Karlis et al. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode[J]. Journal of Hazardous Materials 1999,B70:41-52
    [41]王晓淼,胡锋平,罗健文等,电催化氧化技术中高效催化电极的研究进展[J]。中原工学院学报,2009,20(1):15-18
    [42]Yuan Liu, Huiling Liu. Comparative studies on the electro-catalytic p roperties ofmodified PbO2 anodes[J]. Electrochimica Acta,2008,53:5077-5083
    [43]杨岩,张建民,Pb02和掺杂的Fe-PbO2电极的制备及电催化性能研究[J]。环境工程学报,2009,3(10):1893-1896
    [44]孙凤梅,潘建跃,罗启富,含铂中间层二氧化铅阳极的制备及其性能[J]。材料保护,2006,1:53-55
    [45]Minghua Zhou, Qizhou Dai. Lecheng Lei, et al.Long Life Modified Lead Dioxide Anode for Organic Wastewater Treatment:Electrochemical Characteristics and Degradation Mechanism [J]. Environ. Sci. Technol.2005,39,363-370.
    [1]徐亮,赵芳,农佳莹等,二氧化铅电极的制备、表征及其电催化性能研究[J]。环境工程学报,2008,2(7):959-964
    [2]Chao Tan, Bo Xiang, Yijiu Li,et al. Preparation and characteristics of a nano-Pb02 anode for organic wastewater treatment[J]. Chemical Engineering Journal 2011,166:15-21
    [3]胡玥, 曹华珍, 唐谊平等,TiO2纳米管阵列的制备与填充研究进展[J]。电镀与精饰,2011,33 (8):9-14
    [4]李荐,罗佳,彭振文等,不同阳极氧化条件下Ti02纳米管阵列的制备及表征[J]。无机材料学报,2010,25(5):490-494
    [5]周成凤,王志义,电解液性质对Ti02纳米管阵列形貌及生长机理的影响[J]。无机材料学报,2009,26(4):1125-1131
    [6]Guohua Zhao,Yonggang Zhang,Yanzhu Lei,et al. Fabrication and Electrochemical Treatment application of A Novel Lead Dioxide Anode with Superhydrophobic Surfaces, High Oxygen Evolution Potential, and Oxidation Capability[J]. Environ. Sci. Technol,2010,44,1754-1759
    [7]Guohua Zhao,Xiao Cui, Meichuan Liu, et al. Electrochemical Degradation of Refractory Pollutant Using a Novel Microstructured TiO2 Nanotubes/Sb-Doped SnO2 Electrode[J]. Environ. Sci. Technol.2009,43,1480-1486
    [8]肖宁。钛基纳米管的制备工艺及光催化性能研究[M]。哈尔滨工业大学,2009年6月
    [9]Kyung Joong Kim, Dae Won Moon, Sun Kyung Lee, et al. Formation of a highly oriented FeO thin film by phase transition of Fe3O4 and Fe nanocrystallines[J]. Thin Solid Films 2000,360:118-121.
    [10]杨岩,张建民,Pb02和掺杂的Fe-PbO2电极的制备及电催化性能研究[J]。环境工程学报,2009,3:1893-1896.
    [11]A.B. Velichenko,D.V. Girenko,S.V. Kovalyov,et al. Lead dioxide electrodeposition and its application:influence of fluoride and iron ions[J]. Journal of Electroanalytical Chemistry 1998,454:203-208
    [12]Minghua Zhou, Qizhou Dai, Lecheng Lei, et al.Long Life Modified Lead Dioxide Anode for Organic Wastewater Treatment:Electrochemical Characteristics and Degradation Mechanism [J]. Environ. Sci. Technol.2005,39,363-370.
    [1]Xiuping Zhu, Shaoyuan Shi, Junjun Wei, et al. Electrochemical Oxidation Characteristics of p-Substituted Phenols Using a Boron-Doped Diamond Electrode[J]. Environ. Sci. Technol. 2007,41,6541-6546
    [2]Kashyap P. Mishra, Parag R. Gogate. Intensification of sonophotocatalytic degradation of p-nitrophenol at pilot scale capacity[J]. Ultrasonics Sonochemistry 2011,18:739-744
    [3]Binoy Sarkar, Mallavarapu Megharaj, Yunfei Xi,et al. Surface charge characteristics of organo-palygorskites and adsorption of p-nitrophenol in flow-through reactor system[J]. Chemical engineering Journal,2010
    [4]Mehmta. Oturan, Josepeiroten,Pascalchchartin,et al. Complete Destruction ofp-Nitrophenol in Aqueous Medium by Electro-Fenton Method[J]. Environ. Sci. Technol,2000,34,3474-347
    [5]刘国杰,邓桂春,张渝阳等,分光光度法测定药厂废水中对硝基酚的含量。渤海大学学报(自然科学版)[J]。2006,27(1):14-17.
    [6]高丽丽,亚森江·库那洪,魏琳等,紫外可见光谱谱峰归一校正法检测对硝基苯酚[J]。环境科学与技术,2011,34(2):111-114.
    [7]Sangchul Hwang, Scott G. Huling, Saebom Ko. Fenton-like degradation of MTBE:Effects of iron counter anion and radical scavengers[J]. Chemosphere 2010,78:563-568
    [8]Di Wu, Miao Liu, Deming Dong, et al. Effects of some factors during electrochemical degradation of phenol by hydroxyl radicals[J]. Microchemical Journal 2007,85:250-256.
    [9]Ying Wang, Zhenyao Shen, Xiaochun Chen. Effects of experimental parameters on 4-dichlorphenol degradation over Er-chitosan-PbO2 electrode[J]. Journal of Hazardous Materials,2010,178:867-874.
    [10]Comninellisc,Pulgarinc.Anodic oxidation of phenol for wastewater treatment[J]. Jo urnal of Applied Electrochemistry,1991,21(8):703-708.
    [11]蔡国君,沈钢,王波燕等,Ti/SnO2-Sb2O5/PbO2阳极电化学氧化降解苯甲酸研究[J]。环境科学与技术,2011,34(7):17-20.
    [12]M. Panizza, G. Cerisola. Application of diamond electrodes to electrochemical processes[J]. Electrochimica Acta,2005,51:191-199
    [1]朱立, 赵玉明,陈飞,离子膜辅助电催化氧化法预处理焦化废水的研究[J]。环境科学与技术,2009,32(12):9-12
    [2]段爱民,张垒,刘尚超等,电化学氧化耦合絮凝技术深度处理焦化废水影响因素分析[J]。工业用水与废水,2010,41(6):46-48
    [3]Xiuping Zhu, Jinren Ni, Peng Lai, Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water research,2009,43:4347-4355
    [4]李国艳,电化学氧化法处理城市垃圾渗滤液研究[J]。西安:长安大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700