微生物絮凝菌的固定化及混合菌种培养
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物絮凝剂(Microbial Flocculant,MBF)是微生物生长过程中产生的一类次生代谢产物,可絮凝,沉淀水体中的悬浮颗粒、菌体细胞及胶体粒子。由于其具有易生物降解、对环境和人类无害等特点,微生物絮凝剂已成为絮凝剂研究的一个新热点。微生物固定化技术具有细胞密度高、反应速度快、稳定性强、耐毒害能力强、微生物流失少、产物分离容易和剩余污泥少等优点,因此在废水处理中受到重视并得到广泛的应用。为了使微生物絮凝剂在实际中能更好的应用,本论文将絮凝菌与微生物固定化技术结合运用,并对混合絮凝菌株产生的微生物絮凝剂进行了研究。
     本文在实验室经过多重筛选和富集,分离出3株高效絮凝剂产生菌株,分别命名为X-1,X-2,X-3,其中X-1的絮凝效率最佳。在最优絮凝条件,即5ml的菌液投加到100ml pH为8.0的5%高岭土中,添加4ml的1%CaCl_2,沉降15min时,其絮凝率可达到83.45%。
     选取X-1作为研究菌株,海藻酸钠、聚乙烯醇(PVA)、海藻酸钠与聚丙烯酰胺的复合物作为固定化载体,以固定化载体的浓度、微生物与载体的重量比、交联时间、交联剂的浓度为影响因素,进行了L_9(3~4)正交实验,以悬浮菌种作为对照试验,寻找出影响因素的重要性顺序及最佳的固定化条件。
     为了进一步提高固定化的菌种颗粒的絮凝性,首先对絮凝菌液用硅藻土或活性碳进行物理吸附,再用固定化载体包埋,然后对成形的固定化颗粒进行化学处理,以增强其机械性能。
     试验还对固定化细胞的絮凝条件进行了研究,找出最佳的絮凝条件;并用电镜观察固定化菌种颗粒的内部结构,以进一步了解不同固定化载体的结构对微生物絮凝剂的影响。
     经过实验证明:海藻酸钠和聚丙烯酰胺(PAM)组成的复合载体固定菌株能取得最佳絮凝性。最佳固定化条件为:2%海藻酸钠和3%PAM,包埋菌种与载体体积比为1∶1,质量分数为4%的CaCl_2作为交联剂,交联剂的pH为6,交联温度为25°C。加入吸附剂活性炭时,其絮凝性提高,当活性碳的量为0.4g/(10ml湿菌种)时,达到最高絮凝率94.23%,比悬浮菌液,海藻酸钠固定菌种,PVA固定菌种的絮凝率分别提高了10.7%,2.46%,6.44%。且最佳絮凝条件为:高岭土的最初pH值为9,沉降时间为15min,最佳助凝剂投加量为4ml/(100ml5%高岭土悬浮液),絮凝菌菌液投加量为1ml/(100ml5%高岭土悬浮液)。
     将筛选出的三种菌种,进行不同方式的搭配混合培养,测混合菌种的絮凝效果。发现X-1+X-2(后称J-1)的絮凝性最佳,要高于各菌种单独发酵所得的发酵液的絮凝效果,絮凝率可达到87.56%。
Microbial flocculants are the product sresulted from the synthesis and secretion of extracellular biopolymeric flocculants(EBFs)by microorganisms. With the properties of high flocculating efficiency,without toxicity and second-pollution,self-degradability and high-produced rate,the research on development and application of bioflocculant has been a focus of the area of biological preparation in recent years.And moreover,the immobilization of microorganisms has been widely used in the applications as a new kind of technology in the wastewater treatment because of the characteristics of high removal efficiency,stability of operation,and less yield of sludge.In order to make microbial flocculants have more efficiency in practice,the immobilization of flocculating bacterium and the flocculant produced by effective microorganisms(EM)were discussed in the paper.
     First of all,three kinds of flocculating microbes with good flocculating ability,namely X-1,X-2 and X-3,were obtained by repetitious enrichment and reselection from three kinds of activated sludge.At the optimum flocculation condition(8.0 for initial pH,4ml/100ml for the dosage of CaCl_2, 5ml/100ml for the dosage of strain,15min for the sedimentation time),X-1 had the best flocculating ability,the efficiency of which could reach 83.45%.
     X-1 was separately imbedded in the imbedding beads including Sodium Alginate(SA),PVA and SA and polyacrylamide(PAM)composite gel to research the prime immobilizing conditions and the optimal flocculating conditions,using the free bacterium as comparison.
     Aiming to find out the optimal immobilization condition,L9(3~4) orthogonal experiments were carried out for each imbedding material to research the influence of the concentration of imbedding material,the volume rate between microbe and imbedding material,the crossing time and the concentration of additives.
     To enhance the flocculating rate,free bacteria was absorbed by kieselgur or activated carbon before imbedded in the immobilized beads.Then the imbedded beads were treated by chemical method to improve their mechanical characteristics.
     For the purpose of obtaining the highest flocculating rate of immobilized bacteria,some experiments were carried out to find the optimal flocculating condition.Then,the structure of imbedding bead and distribution of immobilized microbial were observed and analyzed by electron microscope.
     The highest flocculation was obtained when X-1 was imbedded in SA and polyacrylamide(PAM)composite gel beads.An optimal immobilization condition was achieved when the imbedded beads were composed of 2%SA and 3%PAM,the strains and imbedded material mixed as the volume ratio of 1:1,4%CaCl_2 as additives,pH 6 of additives,the reaction time of 24h,25℃in the temperature of additives.And the highest of the flocculating rate was gotten when 10ml flocculating bacteria were absorbed by 0.4g activated carbon with the efficiency(up to 94.23%),which was enhanced 10.7%, 2.46%and 6.44%compared to free bacteria,immobilized bacteria in SA beads and PVA beads respectively.The optimum flocculation condition were 9.0 for initial pH,4ml/100ml for the dosage of CaCl_2,1ml/100ml for the dosage of strain,15min for the sedimentation time.
     The complex microbial flocculant was developed by inexpensive substrate through fermentation.When the flocculating efficiency was determined by mixed fermentation of the three chosen flocculating strains (X-1,X-2 and X-3)in different combinatorial ways,the best efficiency(up to 87.56%)was found out when X-1 and X-2 were combined.The mixed fermentation produce of X-1 and X-2 had more efficiency than the one of single strain.
引文
[1]陈坚,任洪强,堵国成等.环境生物技术应用与发展[M].北京中国轻工业出版社,2001.
    [2]吴键,戴桂馥.微生物细胞的絮凝剂与微生物絮凝剂[J].环境污染与防治,1994,(6):27-32.
    [3]傅旭庆,汪大(?),徐新华.微生物絮凝剂及其絮凝机理[J].污染防治技术,1998,1(1):6-9.
    [4]Smit G.,Kijine J.W.,et al..Flocculence of Saccharomyces Cerevisiae Cells is Induced by Nutrient Limitation,with Cell Surface Hydrophobicity as a Major Determinant[J].Applied and Environmental Microbiology,1992,53(11):3709-3714
    [5]Levy N.Physico-chemical aspects in flocculation to nitesuspensions by a cyanobacterial bioflocculat[J].Waterresearc,1992,26(2):239-254.
    [6]ZHEN Wang.Screening of flocculant-producing microorganisms and some characteristics of flocculants[J].Biotechnology techniques,1994,8(11):831-836.
    [7]SHAOQing(邵青).Study of high-effective decolor flocculants.flocculation mechanism and application(高效脱色絮凝剂脱色絮凝机理浅探与其应用)[J].Watertreatmentofindustry(工业水处理),2000,20(2):831-836.
    [8]WUDao-ji(武道吉).Study of turbulence flocclulation kinetics(紊流絮凝动力学初探)[J].Watertreatmentofindustry(工业水处理),1999,19(6):6-7.
    [9]Levin S.Friesen W T,Flocculation of colloid particles by water soluble polymers.[In].Attia YA,editor,Flocculation in biotechnology and separation systems,Amsterdam:Elsevier,1987.3-20.
    [10]Kurane R,Nohata Y.Microbial flocculation of waste liquids and oil emulsion by a bioflocculant from Alcaligenesla tus[J].Agric Biol Chem,1991,55:1127-1129.
    [11]Nakamura J,Miyashiro S,Hirose Y.Conditions of production of microbial cell flocculant by Aspergillus sojae AJ-7002[J].Agric Biol Chem,1976a,40:1341-1347.
    [12]Kurane R,Toeda K,Takeda Ks,Suzuki T.Culture condition forproduction of microbial flocculant by Rhodococcus erythropolis[J].Agric Biol Chem,1986a,50: 2309-2323.
    [13]T.Endo,K.Nakamura,H.Takahasni.Pronase-susceptiple floc-forming bacteria:relationship between flocculation and calcium iron[J].Agri.Biol.Chem.,1976a,40:2289-2295
    [14]H.Takagi,K.Kadowki.Poly galactosamine produced by a microorganism[J].Chitin.Nat.Technol,1985,3:121-128.
    [15]程金平,郑敏,张兰英.影响微生物絮凝剂产生的因素研究[J].环境科学与技术,2001,95(3):28-31.
    [16]郑克威.微生物絮凝剂高产菌株的筛选及培养条件的研究[J].环境科学与技术,2006,29(4):25-28.
    [17]刘松,张兰英.微生物絮凝剂诱变菌最佳培养条件及化学成分[J],环境科学与技术,2006,29(1):18-20.
    [18]郑怀礼.生物絮凝剂与絮凝技术[M].北京:化学工业出版社,2004:106-204.
    [19]邓述波,胡筱敏,罗茜.高效生物絮凝剂的培养条件及特性[J].东北大学学报(自然科学版),1999,20(5):525-528.
    [20]胡筱敏,邓述波,罗茜.酱油曲霉絮凝特性的研究[J].中国有色金属学报,1998,8(增刊2):529-532.
    [21]张本兰.新型高效、无毒水处理剂──微生物絮凝剂的开发与应用[J].工业水处理,1996,16(1):7-8.
    [22]陶涛,德昊,芦秀青等.普鲁兰预处理高浓度味精废水试验研究[J].给水排水,2001,27(1):39-42.
    [23]杨麒,李小明.固定化微生物技术及其在生物脱氮中的应用[J].江苏环境科学,2002,15(1):19-21.
    [24]王新,李培军,巩宗强.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(2):120-122.
    [25]王家玲.环境微生物学[M].北京.高等教育出版社,1988.
    [26]陈陶声.固定化酶理论与应用[M].北京,轻工业出版社,1987.
    [27]齐水冰,罗建中.固定化微生物技术处理废水[J].上海环境科学,2002,21 (3):185-188.
    [28]Joshi N T..Immobilization of activated sludge for the degradation of phenol[J].Environ.Sci.Health,1999,34(8):1689-1700.
    [29]全向春,施汉昌,王建龙等.固定化氯酚降解菌强化SBR系统治理氯酚废水[J].中国环境科学,2002,22(2):132-136.
    [30]周定,侯文华.固定化微生物法处理含酚废水的研究[J].环境科学,1990,11(1):2-5.
    [31]Anselmo A M..Degradation of phenol by immobilized mycelium of Fusarium Flocciferum in continuous culture[J].Water Science Technology,1992,25(1):161-168.
    [32]Pai S.L.Continous degradation of phenol by R.bodoccus sp.Immobilized on granular activeated carbon and incaccium alginate[J].Bioresource Technol,1995,51:37-42.
    [33]刘和,王晓云,陈英旭.固定化微生物技术处理含酚废水[J].中国给水排水,2003,19(5):53-55.
    [34]Wu,Amanda K Y,et al.Cell immobilization using PVA crosslinked with boric acid[J].Biotechnol and Bioeng 1992,39:447-449.
    [35]张志刚,徐德强,李光明等.固定化优势菌种降解2,6-二叔丁基酚[J].中国环境利学,2005,25(1):57-60.
    [36]Luke A.K.,Burton S.G.A novel application for Neurospora crassa:Progress from batch culture to a membrane bioreactor for the bioremediation of phenols[J].Enzyme and Microbial Technology,2001,29(6-7):348-356.
    [37]Elena Ionata,Paola de Blasio,Franceaco La Cara.Microbiological degradation of pentane by immobilized cells of Arthrobacter sp[J].Biodegradation,2005,16(1):1-9.
    [38]Lin J E,Wang H Y,Hickey R F.Use of coimmobolized biological systems to degrade toxic organic compounds[J].Biotechnol and Bioengin,1991,38:227-242.
    [39]赵军,曹亚莉,骆海鹏等.固定化甲烷八叠球菌处理高浓度有机废水的研究[J].可再生能源,2002,104(4):10-13.
    [40]Wang J L,Quan X,Han L P,et al.Microbial degradation of qninolinc by immobilied cells of Burkholderia picketti[J].Water Research,2002,36(9):2288-2296.
    [41]黄霞,陈钱.固定化优势菌种处理焦化废水中几种难降解有机物的试验研究[J].中国环境科学,1995,15(1):1-4.
    [42]Lee S T.Biodegradation of pyridine by freely and suspended immobilized Pimelobactersp.[J].Appl Microbiol Biotechnol,1994,41:652-657.
    [43]宋志文,陈冠雄,马放等.微生物固定化处理甲醇废水的实验研究[J].微生物学杂志,2000,20(4):30-41.
    [44]杨意东,赵丽君.高浓度有机废水固定化生物处理技术的研究[J].工业给排水,2000,26(1):43-48.
    [45]罗志腾,刘美侠.固定化混菌厌氧膨胀床处理造纸中段污水[J].天津城市建设学院学报,1995,1(4):1-5.
    [46]张小荷,罗启芳,甘泳江.固定化微生物小球对水胺硫磷好氧降解的耐受性研究[J].同济医科大学学报,1996,25(4):294-300.
    [47]沈耀良,王宝贞.废水生物处理新技术─理论与应用[M].北京:中国环境科学出版社,1999,5-20.
    [48]冯本秀,赖子尼,余煌棉.固定化微生物技术去除水体中氨氮的研究进展[J].广东化工,2005,10:9-10.
    [49]曹国民,赵庆样,龚剑丽.新型固定化细胞膜反应器脱氮研究[J],环境科学学报,2001,21(2):189-193.
    [50]李谷,黄正,龙华等.养殖水体氨氮去除的固定化微生物技术[J].大连水产学院学报,2001,16(4):262-268.
    [51]Cao G M,Zhao Q X,Sun X B,et al.Characterization of nitrifying and denitrifying bacteriacoimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J].Enzyme and Microbial Technology,2002,30:49-55.
    [52]Wijffels P H,Forster C F.Nitrification by immobilized cells[J].Appl.Microbiol.Biotechnol,1990,34(4):399-404.
    [53]Etsuo K.Simultaneously by polylectrlyte complex-coimmobililzed Nitrosomonas europare and Pseudomonas denitrificans cells[J].Biotechnology and Bioengineering, 1988,31(4):382-384.
    [54]安立超,孙静,薛涛等.混合固定细菌单级生物脱氮技术[J].污染防治技术,2003,16(3):58.
    [55]谭佑铭,罗启芳,王琳等.固定化反硝化菌对富营养化水体脱氮的试验研究[J].中国卫生工程学,2003,2(2):65-68.
    [56]Tam N F Y.Effect of immobilized microalgal bead concentrations on wastewater nutrient Removal[J].Environmental pollution,2000,107:145-151.
    [57]郑耀通,吴小平,高树芳.固定化菌藻系统去除氨氮影响[J].江西农业大学学报,2003,25(1):99-102.
    [58]赵兴利,兰淑澄.固定化硝化菌去除废水中氨氮工艺的研究[J].坏境科学,1999,20:39-42.
    [59]王翠红,辛晓芸,徐建红.固定化藻细胞去除氨氮的研究[J].河南科学,1999,17:103-107.
    [60]徐虹,朱建良,朱颖等.利用固定化脲酶处理尿素废水[J].南京化工大学学报,1998,20(1):32-35.
    [61]徐容,汤岳琴,王建华等.固定化产黄青霉废菌体吸附铅与脱附平衡[J].环境科学,1998,19(4):72-75.
    [62]吴乾菁,李昕,李福德等.固定化酵母菌细胞去除Cd~(2+)的研究[J].重庆坏境科学,1996,18(3):16-19.
    [63]Veglio F,Beolchini F.,Toro L..Kinetic modeling of copper biosorption by immobilized bimass[J].Industrial & Engineering Chemistry Research,1998,37(3):1107-1111.
    [64]A.C.Humplwics,K P Nott,L D Hall,et al.Continuous removal of Cr(VI)from aqueous solution catalyscd by palladised biomass of Desulfcvibrio vulgaris[J].Biotechnology Letters,2004,26(19):1529-1532.
    [65]Scolt J A.,Kamnjkar A M..Removal heavy metals and orpanics by living microorganism immobilized by activated carbon[J].Hazard and Wastes 1995,27:248-254.
    [66]陈小霞,梁世中,吴振强等.固定化小球藻去除Cr~(6+)的研究[J].海洋通报, 2002.21(5):32-37.
    [67]Bavramoglu G.Dehizh A,Bektass,et al.Entrapment of lentinus sajorcaju into Ca-alginate gel beads for removal of Cd(Ⅱ)ions from aqueous solution:preparation and hiosorption kinetics andysi[J].Microchemical Journal,2002,72(1):63-76
    [68]刘月英,李仁忠.固定化地衣芽抱杆菌RO8吸附Pb~(2+)的研究[J].微生物学报,2002.42(6):700-705.
    [69]张欣华,杨海波,李英敏等.固定化海洋微藻对污水中Ni~(2+)的吸附[J].生物技术,2003,13(5):25-27.
    [70]Perea-Corona T,Madrid-Albarran Y.,Carmra C.,et al..Living organism as an alterative to by phenatcd techniques for metal speciation[J].Spectrochimica Acta Part B,1998,53(2):321-329.
    [71]曹德菊,谷小伟,庞晓坤.固定化枯草杆菌生物吸附去除水中Cd的研究[J].激光生物学报,2005,14(1):17-21.
    [72]Iqbal M.and Edyvean R G J..Biosorption of lead,copper and zinc ions on loofa spongc immobilized biomass of Phanerochaete chrysosporium[J].Miner Eng,2004,17:217-223.
    [73]张利,屠娟.发酵黑根霉对铅离子吸附机理的研究[J].离子交换与吸附,1996,12(4):317-323.
    [74]赵力,张利,也德钦等.明胶包埋黑根霉菌丝体对水中Pb~(2+)吸附性能的研究[J].离子交换与吸附,1990 12(5):418-424.
    [75]王琰,张利,俞耀庭.非活性菌丝体体对水中铅离子的吸附[J].坏境科学,1998,19(3):62-66.
    [76]Arica M.Y,KaCar Y.and Genc O..Entrapmcnt of whiterot fungus Trametes versicolor in Ca-alginate beads[J].Preparation and biosorption kinetic analysis forcadmium removal from an aqucous solution,Bioresource Technol,2001,80(2):121-129.
    [77]Arica M.Y.,Arpa C.,Ergene A.,et al..Ca-alginate as a support for Pb(Ⅱ)and Zn(Ⅱ)biosorption with immobilized Phanerochaete chrysosporium[J].Carbohyd Poly,2003,52:167-174.
    [78]Arica M.Y.,Bayramoglu G,Y ilmazM.,et al..Biosorplion of Hg~(2+),Cd~(2+),and Zn~(2+)by Ca-alginate and immonbilized wood-rotting fungus Funalia trogii[J].Hazard Mater,2004,109:191-199.
    [79]严国安,李益健.固定化小球藻净化污水的初步研究[J].环境科学研究,1994,7(1):39-42.
    [80]谢丹丹,刘月英.固定化啤酒酵母废菌体吸附Pb~(2+)的研究[J].微生物学通报,2003 30(6):29-34.
    [81]Sen S.,Demirer G N..Anaerobic treatment of real textile wastewater with a fluidized bed reacotr[J].Water Research,2003,37(8):1868-1878.
    [82]Metosh-Dickey C A,Divis T M.Me Entire C A,COD,color,and sludge reduction using immobilized microbe bioreactor technology[J].Textile Chemist & Colorist & American Dyestuff Reporter,2000,32(10):28-31.
    [83]梁沈平,王菊思,姜兆春.固定化微生物柱对染料废水的脱色试验[J].环境科学,1998,19(5):10-14.
    [84]刘志陪,杨惠芳.聚乙烯醇固定化混合细菌细胞对印染废水脱色的研究[J].环境科学,1992,13(1):2-6.
    [85]Jo-Shu Chang.Decolorization of azo dyes,with immobilized,Pserudomonasluteola[J].Process Biochemistry,2001,36(9):757-763.
    [86]Walker G M,Weatherley L R..Biological activated carbon treatment of industrial wastewater in stirred tank reactors[T].Chemical Engineering Journal,1999,75(3):201-206.
    [87]沈耀良,黄勇.固定化微生物污水处理技术[M].北京:化学工业出版社,2002.10-15.
    [88]黄惠莉,林文銮,陈少欣.固定化混合脱色菌处理印染废水[J].华侨大学学报,2000,21(2):190-194.
    [89]李浩然,冯雅丽.深海锰结核作生物固定化载体处理染料废水[J].北京科技大学学报2002,24(1):11-14.
    [90]程永刚,张丽娜,王世明.自固定化微生物降解工业废水中的2-氯苯甲酸[J].环境污染与防治,2005,27(1):60-63.
    [91]李海波,李培军,张轶等.固定化微球菌技术修复受污染地表水[J].中国给 水排水,2005,21(2):6-10.
    [92]Helia Radianingtyas,Phillip C Wright.2-Propanol degradation by Sulfolobus solfa-taricus[J].Biotechnology Letters,2003,25(7):579-583.
    [93]杨云龙,薛嵘,吴国庆.固定化PSB处理亚硫酸钠造纸废水[J].中国环境科学,2001,21(4):351-354.
    [94]Zhong-er Long,Yunhong Huang,Zhaoling Cai,et al..Bioosidation of ferrous iron by immobilizea Acidithiobacillus ferrooxidans in poly(vinyl alcoholcryogel carriers[J].Biotechnology Letters,2003,25(3):245-249.
    [95]徐桂芹,姜女玺,张英民.假单孢菌固定化除硫化氢臭气的试验研究[J].给水排水,2005,30(2):41-43.
    [96]闫艳春,姚良同,宋晓妍等.工程菌及其固定化细胞对有机磷农药的降解[J].中国坏境科学,2001,21(5):412-416.
    [97]艾育明,秦文娟,余惠生等.固定化白腐菌处理氯漂碱抽提段废水的研究──驯化预处理的影响[J].纤维素科学与技术,1999,7(2):27-32.
    [98]刘双江,杨惠芳,周培瑾等.固定化光合细菌处理豆制品废水产氢研究[J].环境科学,1995,16(1):43-46.
    [99]纪树兰,刘丽霞,朱安娜等.固定化细胞降解LAS废水的抑制型动力学方程的研究[J].环境科学学报,2000,20(增刊):85-88.
    [100]严艳春,乔传令,周晓涛.一种工程菌的高酶活及其固定化细胞对农药的降解[J].中国环境科学,1999,19(5):461-465.
    [101]马放,刘俊良,李淑更等.复合型微生物絮凝剂的开发.中国给水排水[J].2001.19(4):1-4.
    [102]Mukerjee-DharG,Shimura M,Kimbara K.Degradation of polychlorinaled biphenyl by cells of Rhodococcus opacus strain TSP203 immobilized in alginate and solution.[J].Enzyme Microbial Technology,1998,23:34-41.
    [103]纪树兰,吕晓猛,张增.固定化细胞降解含表面活性剂废水的研究[J].北京工业大学学报1995,21(4):116-121.
    [104]孙艳,谭立扬.利用固定化细胞法降解含酚废水的研究[J].北京工业大学学报,1997,23(1):62-67.
    [105]沈小兵.微生物絮凝剂的研究及其在水处理中的应用[J].环境科学与技术,2006,29,(增刊):26-29.
    [106]石璐,唐受印,刘忠义.一株青霉产微生物絮凝剂的培养条件研究[J].湘潭大学社会科学学报,2003,27(5),23-225.
    [107]王里奥,崔志刚,袁辉等.固定化生物处理甲醇废水的包埋条件优化选择[J].重庆大学学报(自然科学版),2005,6(28):113-11.
    [108]张志强,林波,李昌花.复合菌群的构建及其所产MBF絮凝活性的影响因素研究[J].江西科学,2006,24(2):17-21.
    [109]比嘉昭夫著,冯雨润译.拯救地球大变革[M].北京:中国农业大学出版社,1997.
    [110]邵青.EM对生活污水中常见污染物的去除效果[J].中国给水排水,2001,17(3):74-76.
    [111]朱亮,王超.EM在污水生物降解中的试验研究[J].环境工程,2001,19(6):15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700