氧化锑生产智能控制系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锑(三氧化二锑)又名锑白,是一种高附加值的阻燃新材料,其主要生产装置是锑白炉,锑白炉最主要的控制参数是炉温。由于生产高纯度、超细颗粒、高白度的氧化锑需要对锑白炉熔锑液位和炉膛温度等进行精确控制。而迄今为止,国内氧化锑生产过程的控制技术仍较落后,无法满足高端氧化锑生产要求,因此改造国内现有的锑白炉控制系统有重大的现实意义。
     本文通过对广西华锑科技有限公司锑白炉实际技改项目的深入分析,在控制系统选择,参数整定,最优反应条件,控制系统硬件设计及人机界面设计等五个方面进行了探讨。对控制系统中常见的单回路和串级控制系统进行了仿真研究,发现串级控制系统可有效改善被控对象的动态特性,提高系统抗一次干扰和二次干扰的能力,对副回路参数变化有一定的自适应控制能力。对工业过程控制中应用广泛的PID控制器参数的多种整定方法,进行了比较和研究。
     锑白炉化学反应控制是实现锑白炉炉温优化控制的基础,而化学反应控制的核心是空锑比控制。影响空锑比的因素很多,通过对锑白炉生产过程的分析,可以确定锑锭熔融吸收的热量、高温气态氧化锑与空气带走的热量、炉子的自然状况及生产中的异常情况等四个方面是影响空锑比的主要因素。在上述分析的基础上,本文采用串级控制和变步长自寻优相结合的方案实现了对空锑比的控制,使得过剩空气系数始终保持在最佳值。
     最后,使用组态软件(组态王6.53)设计了锑白炉自动控制系统,并为用户提供了良好的人机界面。
Antimony oxide (antimony trioxide),also called antimony white, is a high value-added flame-retardant material, whose main production equipment is the antimony white furnace, whose most important control parameter is the temperature in the furnace. Since the precision control of the liquid level and the temperature in the furnace is needed to produce highly pure, ultra-fine grain and highly white antimony oxide, and up to now, the control technology of the production process of antimony oxide has been laggard so that it does not satisfy the requirement of the production of high quality of antimony oxide, it is of important realistic significance to reconstruct the control system of the production process of antimony oxide at home.
     On the basis of the deep analysis of the practical reconstruction project of Guangxi China Antimony Science and Technology Co. Ltd., the researches of the choice of control system, the calibration of controller parameters, the determination of the optimal reaction condition, the design of the hardware and the design of a human-computer interface in the control system are made. The simulations of the single-loop control system and the cascaded-control system are performed, and it is shown that the cascaded-control system can effectively improve the dynamic characteristics of the plant, increase the ability to resist disturbances and has the ability of the self-adaptive control to the changes of the subsidiary loop parameters. In addition, the comparison and study of the several methods of the parameter calibration of PID controllers in the process control in industry are made.
     The control of the chemical reaction is the basic of the optimal control of the temperature in antimony white furnace, and the key to the control of the chemical reaction is the control of the ratio of air to antimony. There are many factors to affect on that. By analyzing the production process of antimony oxide, the quantity of heat taken in by the eutectic antimony, the quantity of heat got rid of by the high temperature mixture of the antimony and the air, the operation state of the furnace and the disfunctional case of the production process are the main factors to affect on the ratio of air to antimony can be determined. On the basis of the analysis above, the scheme of the combination of the cascaded-control with self search of the optimal point by the variant-step mode is utilized to implement the control of that, thus making the coefficient of the surplus air sustain the optimal value forever.
     Finally, the design of the automation system by the utilization of configuration software (kingview 6.53) is performed and a friendly human-machine interface is supplied with the user.
引文
[1]叶有明.低铅砷含量超细锑白产品的研制[J].中国有色金属,2004,5:16-18.
    [2]赵天丛.锑[M].北京:冶金工业出版社,1987:50-56.
    [3]关于用高新技术和先进适用技术改造提升传统产业的实施意见.国家经贸委,2002.
    [4]Weng Yuqing.Scientific and Technological Progress of Metallurgical Industry in China at ht beginning of 21~(st)Century[J].Iron and Steel,2004,39(1):1.
    [5]Kenneth R Muske,James W Howse,Glen A Hansen.Hot Blast Stove Process Model and Model-based Controller[J].Iron and Steel Engineer,1999,76(6):56-62.
    [6]傅信.过程计算机控制系统[M].西安:西北工业大学出版社,1995:76-83.
    [7]何克忠,李伟.计算机控制系统[M].北京:清华大学出版社,1998:180-188.
    [8]范昕林,李霞.浅谈自动控制系统发展过程与展望[J].黑龙江科技信息,2008,7:25.
    [9]薛美盛,祁飞,吴刚,等.先进控制与优化应用中的若干问题研究[J].自动化博览,2005,22(6):14-17。
    [10]常可敬.AI人工智能工业调节器在串级均匀控制系统中的应用[J].世界仪表与自动化,2008,12(1):57-58.
    [11]朱海荣,杨奕,姜平,等.一类非线性过程的智能控制方法研究[J].电气传动,2008,38(2):39-42.
    [12]王学来,徐雅斌.化工生产过程计算机仿真控制系统[J].辽宁工程技术大学学报,2008,27(1):100-103.
    [13]吴少华,谭显铂,戴永俊.顶吹法生产锑白新工艺的研究与应用[J].中国有色金属,2006,8(4):23-25.
    [14]陈正.锑白白度影响因素的研究[J].有色金属:冶炼部分,2000,2:38-40.
    [15]符金开,罗晓春,余伦,等.离子体锑白炉生产超细三氧化二锑粉末试验研究[J].湖南有色金属,2003,19(6):35-36.
    [16]朱麟章.过程控制系统及设计[M].北京:机械工业出版社,1995:101-110.
    [17]邵惠鹤.工业过程高级控制[M].上海:上海交通大学出版社,1997.38-56.
    [18]邵裕森,戴先中.过程控制工程(第二版)[M].北京:机械工业出版社,2000:50-67.
    [19]冯品如.过程控制工程[M].北京:中国轻工业出版社,1995:89-96.
    [20]黄己立,雷声,郭玉宝.化学反应生成物浓度预测、控制数学模型的研究[J].大学数学,2005,21(5):30-36.
    [21]杨寅华.均热炉复杂过程混合模糊控制器的建立[J].自动化仪表,2008,29(1):27-29.
    [22]文生平,赵国平,瞿金平,等.精密挤出成型过程中的多变量模糊解耦控制[J].华南理工大学学报,2007,35(12):1-5.
    [23]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002:1-21,23-3.
    [24]任正云,邵惠鹤,张立群.几种特殊动态特性对象的预测PI控制[J].仪器仪表学报,2004,25(5):615-619.
    [25]刘媛媛,张卫东.化工双输入输出时滞过程解耦PID控制器解析设计[J].化工自动化及仪表,2007,34(5):19-23.
    [26]朱海荣,吴晓新,马聪,姬文亮,等.一类大时滞过程的预测PI控制器[J].南通大学学报,2007,6(2):66-69.
    [27]赵永国,贾磊,蔡文剑,等.一种积分过程PID自整定方法[J].山东大学学报,2008,38(1):48-51.
    [28]张松兰.PID控制器参数整定[J].科技情报开发与经济,2007,17(29):220-221.
    [29]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002:1-21,23-3.
    [30]王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355.
    [31]何衍庆,姜捷,等.控制系统分析、设计和应用--MATLAB语言的应用[M].北京:化学工业出版社,2003.23-56.
    [32]黄友良.聚合釜升温过程中温度的控制[J].聚氯乙烯,2008,36(3):18-19.
    [33]梁道君,郑金吾.燃煤热水锅炉节能优化控制研究[J].节能技术,1999,2:5-10.
    [34]戴绪愚.自寻最优控制[M].北京:科学出版社,1986:58-69.
    [35]宝山钢铁股份有限公司.热轧加热炉炉温动态设定控制方法[J].热加工工艺,2008,37(4):41.
    [36]吴敏,雷琪,曹卫华,等.基于多工况分析的焦炉加热过程火道温度模糊控制[J].中南大学学报,2008,39(1):155-161.
    [37]张静,李凡长.非线性动态模糊系统过程控制与稳定性分析[J].计算机应用与软件,2008,25(2):80-83.
    [38]马姝姝,陈夕松.前馈-内模控制在温度过程控制中的应用[J].电气自动化,2008,30(1):6-8.
    [39]杨巧玲,张海平,刘恒胜,等.氯乙烯聚合反应过程的智能优化控制[J].化工自动化及仪表,2007,34(2):66-68.
    [40]李吉夫.通过结晶器保护渣的结晶控制传热的机理[J].连铸,2008,1:37-37.
    [41]薛福珍,刘涛,尹君,梁远,刘洪卫,梁国杰,等.电厂锅炉燃烧过程控制改进方案及实现[J].控制工程,2008,15(2):124-126.
    [42]何占伟,张立文,裴继斌,王明伟,郑泽花,等.常规热处理全程计算机管理与控制的设计与实现[J].金属热处理,2008,33(3):105-107.
    [43]郭一楠,程健,朱晏,等.过程控制系统远程虚拟仿真平台研制[J].电气电子教学学报,2008,30(1):71-74.
    [44]燕芳,任晓颖.加热炉过程自动控制系统设计[J].中小企业管理与科技,2008,1:114-115.
    [45]How to update ADAM5510EKW/TP IP address[Z].研华(中国)科技有限公司.
    [46]ADAM-5510EKW/TP系列PC-based软逻辑控制器用户手册[K].研华(中国)科技有限公司.
    [47]何衍庆,黎冰.可编程控制器编程语言及应用[M].北京:电子工业出版社,2006,4:125-127.
    [48]组态王6.53使用手册[K].北京亚控科技发展有限公司.
    [49]潘爱民.COM原理与应用[M].北京:清华大学出版社,1999:150-187.
    [50]苏金明,黄国明,刘波.MATLAB与外部程序接口[M].北京:电子工业出版社,2004.72-76.
    [51]张烨林,陈德海.浅议OPC技术应用[J].科技信息,2008,2:66.
    [52]林晟.OPC XML-DA规范在啤酒生产过程综合自动化中的应用研究[D].杭州:浙江大学,2005.
    [53]阳宪惠.开放工控系统的中间件-OPC技术[J].自动化博览,2002,19(2):6-8.
    [54]OPC Technical Overview.Http://www.opcfoundation.org/
    [55]OPC XML-DA Specification Version 1.0,OPC Foundation,2003.
    [56]OPC Access Custom Interface Standard Version 2.05A,OPC Foundation,2002.
    [57]Astrom K J,Hagglund Automatic Tuning of PID Controllers.Research Triangle Park,North Carolina:Instrument Society of America,1988.
    [58]Liu,G.P and Daley,(2001)Optimal-tuning PHA control for industrial systems.Control Engineering Pracfce,9(11):1185-1194.
    [59]Michael A Johnson,Mohammad H Moradi,J Crowe.PID control:New Identification and Design Methods.New York:Springer.2005.
    [60]Fleming,P.J.,"Computer-Aided Control System Design of Regulators using a Multi-objective Optimization Approach",Proc.IFAC Control Applications of Nonlinear Prog.And Optim.Capri,Italy,1985:47-52.
    [61]Lakshmanan N M,Arkun Y.Estimation and model predictive control of non-linear batch processes using linear parameter varying model[J].N T.J.CONTROL,1999,72(7/8):659-675.
    [62]MUTHARK,CLUETWR,PENLDISA.Non-linear Model-based Predictive Control of Non-affine Systems[J].Automatic,1997,33(5):903-913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700