大厂老尾矿综合回收关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于国家十五重点科技攻关项目“铜、铅、锌、锡尾矿开发利用产业化关键技术研究”(编号2003 BA612A-18),该专题目的是综合回收尾矿中的有价成分。
     广西大厂的锡石-多金属硫化矿石属于典型的复杂难选硫化矿,目前,大厂多金属硫化矿产生的尾矿已堆积近三千万吨,内含丰富的锡、铅、锌、锑金属及硫、砷。由于受当时技术水平和生产条件的限制,回收的金属技术指标较低。很多金属特别是细粒级金属在尾矿中损失严重,尾矿中还有许多有用矿物没有得到回收。这些尾矿的流失既造成资源的浪费,又构成了污染大厂矿山外部环境的隐患。随着大厂资源日益贫化,大规模生产不断进行,在开采原生矿的同时,对尾矿进行二次开发利用,综合回收其中的多种有价元素,可产生极为可观的经济效益和社会效益,具有重要意义和价值。
     本研究针对大厂矿区多金属硫化矿尾矿的综合回收,详尽考察了脆硫锑铅矿、铁闪锌矿、黄铁矿和毒砂的浮选性能,通过吸附量测定、ξ电位测定及红外光谱分析检测矿物表面成分,探讨了四种矿物浮选分离机理,在对大厂老尾矿进行工艺矿物学研究的基础上,应用了新型高效设备,进行了小型试验及连选试验。提出了适合该矿区尾矿综合回收有价元素的高效、经济的工艺流程。取得以下成果:
     (1)预选抛尾技术:利用跳汰、离子型螺旋溜槽进行分级预选抛尾,可抛弃产率49.57%的尾矿,大大减轻了矿泥和碳质物的有害影响,降低了能耗和不必要的磨碎,提高入选品位,铅、锑、锌、锡、硫、砷品位分别由0.22%、0.15%、3.27%、0.57%、5.70%和0.87%提高到0.33%、0.237%、4.971%、0.878%、8.944%和1.474%。
     (2)铅锑的分选技术:预选抛尾后,大厂尾矿中的铅锑入选品位提高到含Pb0.33%,Sb0.237%。用ZnSO_4、NaCN和Na_2S_2O_3为组合抑制剂,用HN-1和YC-1作组合捕收剂,一次浮选富集得到含Pb7.47%、Sb4.96%的铅锑粗精矿;在用浮选进行精选很难提高指标的情况下,采用新型高效重选设备“离子波形摇床”,即通过“浮-重”联合工艺成功实现了大厂尾矿中的铅锑的有效分选,该技术是实现尾矿综合回收取得成功的关键之一。
     (3)锌硫砷分离技术:由于硫、砷的可浮性都比较好,所以锌与硫砷间的分离及硫砷分离都是选矿难题。该项目中,要浮锌抑硫砷,选用了高效组合抑制剂CS-2+腐植酸钠选择性抑制硫砷,实现了锌与硫砷的分离;硫砷分离时,根据硫砷被氧化剂强化氧化的难易程度不同,再采用K_2Cr_2O_7强制抑制砷浮选硫,可得到品位为36.17%,回收率为52.00%的合格硫精矿。但活化选砷时,选硫尾矿中残留的部分硫也会随着砷被活化进入砷的浮选精矿中,这样再用浮选法精选砷,难度很大。利用矿物间的密度差异,本研究采用“离子波形摇床”进行精选,即采用“浮-重”联合工艺,可获得品位为35.32%,回收率为55.97%砷精矿。
     (4)微细粒矿回收技术:该项目的研究过程中,采用了我们自行研制的特别适合细粒级矿物分选的新型设备---离子波型摇床。该设备床面上刷了我们研制的专用涂料,是在重力、磁力、电力、机械力诸多力作用的复合力场作用下利用矿物的电性、磁力及比重的不同进行流膜选矿,分选效果优于普通摇床,特别是细粒、微细粒的分选效果更佳,在“浮-重”联合流程中,铅锑粗精矿、砷粗精矿的精选、浮选最终尾矿选锡,都属于细粒、微细粒的重选,采用离子波型摇床均取得了很好的分选效果。
     (5)ZnSO_4+NaCN+Na_2S_2O_3是铁闪锌矿的优良组合抑制剂。组合抑制剂ZnSO_4+NaCN+Na_2S_2O_3的作用机理主要是在矿物表面形成亲水性膜或胶粒和溶解矿物表面捕收剂疏水膜等作用同时发生,相互补充达到强化抑制的效果。
     (6)YC-1的捕收能力大于HN-1,而HN-1的选择性优于YC-1,YC-1+HN-1是脆硫锑铅矿的良好捕收剂。二者组合使用的机理应为产生共吸附,增加捕收剂在矿物表面的吸附层密度。矿物表面的不同区域具有不同的活性,活性不同的HN-1和YC-1进行组合使用时,其中活性小的HN-1可吸附在活性大的矿物表面区,而活性比较小的矿物表面,适于活性大的YC-1固着,其结果为捕收剂的吸附量增加,使矿物表面吸附的药剂更加均匀。红外光谱显示,组合捕收剂HN-1+YC-1在脆硫锑铅矿表面的主要吸附产物是Pb(DTC)_2、Pb(DTP)_2、(DTC)_2和(DTP)_2。其中,Pb(DTC)_2和Pb(DTP)_2为金属四元环螯合物。生成的螯合物稳定且疏水性强,化学吸附在矿物表面,引起矿物的可浮性提高。(DTC)_2和(DTP)_2均为吸附过程中产生的捕收剂复分子,具有良好的疏水性,以分子间作用力物理吸附在矿物表面造成矿物疏水。
     (7)氧化剂CS-2、腐植酸钠可作为黄铁矿和毒砂的良好抑制剂,二者在不同组合形式下,可以实现选择性抑制黄铁矿和毒砂的目的。从浮选试验结果、吸附量及电位测定可以看出,CS-2存在下,ξ电位对于带电负性的黄药捕收剂并不起重要作用,硫化矿受抑制,其主要原因并不是由于CS-2与黄药产生竞争而使黄药在矿物表面吸附量减少,而可能是矿物表面因氧化形成了亲水性的氧化膜。腐钠可络合排除黄铁矿和毒砂表面的活性离子,不仅降低捕收剂的吸附,还可掩盖已吸附捕收剂的疏水性,达到抑制矿物的目的。从黄铁矿和毒砂的红外光谱知,经CS-2和腐钠作用后,二者表面均产生氧化物,但所得氧化产物有所不同。且毒砂被氧化的程度远比黄铁矿深。毒砂表面主要以FeAsO_4为主;而黄铁矿更接近于FeS_2O_3,随着氧化反应的进行,黄铁矿可被继续氧化生成FeSO_4。
     整个研究中,不仅采用了离子波形摇床新设备,还提出了预选抛尾工艺、“浮-重”结合选别铅锑、浮锌抑硫砷、“浮-重”结合除砷工艺、离子波形摇床回收锡石等新工艺,成功实现了对大厂老尾矿中有价矿物的回收。浮选过程中,通过研究不同的浮选药剂对矿物可浮性影响及作用机理,合理组合并使用浮选药剂,有效解决了目的矿物浮选难、指标低的问题,是该项目取得成功的关键。另外,本研究的降砷工艺,通过降低尾矿中的砷含量使之满足后续利用“二次”尾矿制造水泥的要求。
The research was derived from the nation's "tenth five" science and technology tackling key subject----the key industrial technologies' research on development and utilization of copper, lead, zinc, tin from tailings (2003 BA612A-18), the aim of the special subject is to recover valued components comprehensively in tailings.
     Cassiterite-polymetallic sulfide ores of Dachang in Guang Xi, including zinc, sulfur arsenic, lead and antimony, are typical complex refractory sulfide ores. At present, the tailings produced from polymetallic sulfide ores have accumulated about 30 million tons, containing rich tin, lead, zinc, antimony and sulfur, arsenic. Because of the limit of technical level and the condition of production, technical index of recycling metals was lower. A lot of metals, especially fine metals, lossed seriously in tailings. There were many useful minerals not being recovered. The loss of these tailings caused both a waste of resources and the hidden danger of polluting external environment of mines in Dachang. With increasing depleted resources and the ongoing large-scale production in Dachang, when the exploitation of the original ores was carried on, the secondary development and utilization of tailings and comprehensive recovery of a variety of valuable elements can generate very substantial economic and social benefits, be of great significance and value.
     This study aiming at recycling minerals comprehensively from polymetallic sulfide ores' tailings, a detailed study was made about the flotation performance of jamesonite, iron sphalerite, arsenopyrite and pyrite. Through adsorption determination,ξpotential of mineral and spectra analysis for testing the surface composition, the flotation separation mechanisms of four minerals were explored. On the basis of mineralogy study in the old tailings, a new type of efficient equipment was applied, a small-scale pilot test and continuous separation test were made. Efficient and economic process suitable for the comprehensive recovery of valuable elements in the tailings was proposed and the following results were achieved:
     (1) Pre-throwing tailings' technology: Using jig and ionic spiral chute in Pre-throwing tailings, 49.57% of the tailings can discarded, it greatly reduced the harmful effects of the sludge and carbon quality, while reduced energy consumption and unnecessary grinding. At the same time, it enhanced selected grade. The grade of lead, antimony, zinc, tin, sulfur and arsenic increased from 0.22%, 0.15%, 3.27%, 0.57%, 5.70% to 0.87%, 0.33%, 0.237%, 4.971%, 0.878%, 8.944% and 1.474%.
     (2) Separation technology of lead and antimony: After pre-throwing tailings, ZnSO_4, NaCN and Na_2S_2O_3 were used as combined inhibitors, HN-1 and YC-1 were used as combined collector. The lead-antimony crude concentrate of Pb7.47% and Sb4.96% by flotation can be enriched. But it was very difficult to raise the index by flotation further, so the new efficient equipment "Ion Waveform shaker" was used. That is, through the "flotation-weight" joint, the effective separation of lead-antimony minerals in Dachang's tailings was realized successfully. This technology is the key of success in comprehensive recovery from tailings.
     (3) separation technology between zinc, sulfur and arsenic: As sulfur, arsenic can be floated better, the separation between zinc, arsenic and sulfur was mineral processing problems. In the project, it is necessary to depress sulfur and arsenic in order to float zinc. To depress sulfur and arsenic selectively, using combined inhibitors CS-2 and sodium humate efficiently can realize separation of zinc with sulfur and arsenic, and separation of sulfur and arsenic. According to the difference of oxidation degrees between sulfur and arsenic, it can strengthen further inhibition on arsenic by K_2Cr_2O_7 to float sulfur. Qualified sulphur concentrate was attained with the grade of 36.17% and the recovery of 52.00%. However, when activing and electing arsenic, residual sulphur in the tailings will be activated with arsenic into the flotation concentrate. Thus it was very difficult to separate arsenic by flotation still. According to the specific gravity difference in minerals, "Ion waveform shaker " was used to cleaning arsenic in this study. That the combined technology of flotation and gravity separation was attained arsenic concentrate with grade of 35.32% and recovery of 55.97%.
     (4) Fine-grained mineral recovery technology: During the study course of the project, we used a self-developed particularly suitable for separation of fine-grained minerals equipment - a new type of Ion waveform shaker. The surface of the equipment had been brushed a special coating that we developed. The flow film processing occurred, according to different electric, magnetic and weight of minerals under the composite field of gravity, magnetic, electrical, mechanical force and so on. Separation results were better than ordinary shaker, particularly fine-grained, micro-fine particles. In flotation and gravity separation process, the cleaning of rough concentrate of lead and antimony, the cleaning of arsenic rough concentrate and the election of tin from the ultimate flotation tailings all belonged to fine, fine-grained particles' re-election. Good separation effects were achieved by ion-wave shaker.
     (5) ZnSO_4+NaCN+Na_2S_2O_3 were the fine combined depressants of marmatite. The mechanism of combined depressants, ZnSO_4+NaCN+Na_2S_2O_3,was mainly the formation of hydrophilic membrane or particles on mineral surface and dissolution of hydrophobic collector's membrane on minerals surface, these functions complemented each other to enhance the inhibitory effect.
     (6)The collecting capacity of YC-1 was greater than HN-1 , and the selectivity of HN-1 was superior to YC-1. YC-1 + HN-1 were the good collectors of jamesonite. The mechanism of combined collectors was coadsorption, increasing density of collector's adsorption layer on mineral surface. The surface of the minerals in different regions had different activity. When combining and using HN-1 with YC-1, HN-1 with small activity can adsorb on the high active surface of minerals, however the mineral surface with low activity was relatively suitable for fixation of YC-1 with high activity. The results were the collector's adsorption capacity increased. The Pharmacies adsorbed on mineral surface were more homogeneously distributed. IR spectra showed that the main adsorption products of combination collectors HN-1 + YC-1 on jamesonite surface were: Pb(DTC)_2, Pb(DTP)_2, (DTC)_2 and (DTP)_2. Pb(DTC)_2 and Pb(DTP)_2 were Four-ring metal chelates. The chelates were stable and highly hydrophobic, they can adsorb on the surface of minerals by chemical adsorption and can improve minerals floating. (DTC)_2 and (DTP)_2 are collector's bimolecular generated in the process of adsorption, they had good drainage too, and they can adsorb on the surface of minerals with physical adsorption by intermolecular force so that causing mineral hydrophobic.
     (7)oxidant CS-2 and sodium humate can be as good depressors of arsenopyrite and pyrite, they can achieve selective inhibition of pyrite and arsenopyrite in different combinations and dosage forms. As the flotation test results and the adsorption capacity of potential as can be seen, CS-2 can oxide pyrite and arsenopyrite, so that they have a hydrophilic surface of the oxide film. Sodium Humate can complex and eliminate active ions on the surface of arsenopyrite and pyrite. It not only reduced the collector adsorption, but also covered the hydrophobic collector absorbed, thus it attained the purpose of depressing mineral. With the presence of inhibitors,ξpotential did not play an important role for the xanthate collector charged negative. The main reason that sulphide ore was depressed was not competition between oxidants and xanthate, was rather not xanthate's adsorption capacity reduction on the mineral surface. That may be due to oxidation on surface and the formation of a hydrophilic oxide film. From the infrared spectra of pyrite and arsenopyrite we know, when CS-2 and sodium humate existed, there were oxides both on the two mines' surface. But the oxidation products were different. The oxidation degree of arsenopyrite was more deep than pyrite. The oxidation product on arsenopyrite surface was mainly FeAsO_4 and that of pyrite was mainly more closer FeS_2O_3.With the oxidation reaction, pyrite can be oxided and generated to FeSO_4 further.
     During the whole study, not only the new equipment ion-wave shaker was used but also pre-throwing tailings technology was raised. flotation and gravity separation combined technology separating lead and antimony, technology of depressing sulfur and arsenic to float zinc, gravity separation combined technology to exclude arsenic and recovering cassiterite by Ion Waveform shaker were raised and got successful recovery of the valuable minerals from the old tailings in Dachang. By studying the impact and mechanism of different flotation reagents for minerals, rational combination and use of flotation pharmacy can be as an effective solution method to solute the problem of mineral that is difficult to float and be low index. This was the key to get success in the project. In addition, the technology study of lowing down arsenic could reduce the quantity of arsenic in tailings so as to meet requirements of the following use for manufacturing cement.
引文
[1]刘维阁.加强矿产资源综合利用促进矿业可持续发展[J].世界有色金属,2000(9):19
    
    [2]唐宝彬,张丽霞.矿山尾矿等二次资源的综合利用问题探索[J].湿法冶金,2005(6):69-72.
    
    [3]张德明,杜国银.矿山二次资源综合利用与法制建设问题探索[J].国土资源情报.2005,(1):39-43.
    
    [4]王志云.二次资源尾矿砂的综合利用[J].马钢技术,2002,(4):34-37.
    
    [5]Gordon.M, Ritcey. Tailings Management in Gold Plants[J].Hydrometallu -rgy, 2005, 78(1-2):3-20.
    
    [6]王宏伟,左玉明,柴新新.尾矿资源回收与利用[J].Nonferrous MetalsRecycling and Utilization,2006(6):32-35.
    
    [7]张锦瑞等.金属矿山尾矿综合利用与资源化.北京:冶金工业出版社,2002.
    
    [8]阳正熙.矿区酸性废水的成因及其治理.世界采矿快报,1999,15(10):42-45.
    
    [9]杨志洪.金锑钨尾矿资源综合回收试验研究及生产实践[J].有色金属(选矿部分),2002,(1):13-16.
    
    [10]L.R.P. de Andrade Lima, L.A. Bernardez, L.A.D. Barbosa. Characterization and treatment of artisanal gold mine tailings.Journal of Hazardous Materials,2008,150(3):747-753.
    
    [11]张锦瑞,徐晖.循环经济与尾矿综合利用[J].金属矿山,2004,增刊:434-437.
    
    [12]朱家骥等.我国铁矿选矿技术[M].北京:冶金工业出版社,1994.
    
    [13]Sanghoon Lee.Geochemistry and partitioning of trace metals in paddy soils affected bymetal mine tailings in Korea. Geoderma, 2006,135(10):26-37.
    
    [14]Aparajita Bhattacharya, Joyanto Routh, Gunnar Jacks,etal.Environmental assessmentof abandoned mine tailings in AdaK, Vasterbotten district (northern Sweden).AppliedGeochemistry, 2006,21(10):1760-1780.
    
    [15]Luis Moreno and Ivars Neretnieks. Long-term environmental impact of tailingsdeposits.Hydrometallurgy,2006,83(1-4):176-183.
    
    [16]倪师军,张成江,腾彦国等.矿业环境影响的地球化学研究[J].矿物岩石,??2001,21(3):190-193.
    
    [17] M. Rico, G Benito, A.R. Salgueiro, A. Diez-Herrero,etal. Reported tailings damfailures: A review of the European incidents in the worldwide context.Journal of HazardousMaterials, In Press, Corrected Proof, Available online 22 July 2007.
    
    [18]Matthew R. Lee, Juan A. Correa, Ray Seed. A sediment quality triad assessment of theimpact of copper mine tailings disposal on the littoral sedimentary environment in theAtacama region of northern Chile. Marine Pollution Bulletin, 2006,52(11): 1389-1395.
    
    [19]Hector M. Conesa, Angel Faz, Raquel Arnaldos. Heavy metal accumulation andtolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district(SE Spain).Science of The Total Environment,2006,366(1):1-11.
    
    [20]Azcue J M, Mudroch A, Rosa F. Trace elements in water, sediments, porewater,and biota polluted by tailings from an abandoned gold mine in British Columbia, Canada.Journal of Geochemical Exploration, 1995, 52(1-2):25-34.
    
    [21]檀竹红,郑水林.石棉尾矿现状及资源化利用研究进展[J].中国非金属矿工业导刊,2007(3):55-58.
    
    [22]Me Dermott R K. Sibley J M. Aznalcollar tailings dam accident a case study [J].Mineral Resources Engineering, 2000,9(1): 101-118.
    
    [23]Kemper T, Sommer S. Estimate of heavy metal contamination in soils after a miningaccident using reflectance spectroscopy[J]. Environmental Science and Technology,2002,36(12): 2742-2747.
    
    [24]Blight GE. Destructive mudflows as a consequence of tailings Dyke failures[J].Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 1997,125(1):9-18.
    
    [25]Chandler R J, Tosatti G. Stava tailings dams failure, Italy,July,1985[J].Proceeding ofthe Institution of Civil Engineers Geotechnical Engineering,1995,113(2):67-79.
    
    [26]Fourie A B, Blight G E, Papageorgiou G. Static liquefaction as a possible explanationfor the Merriespruit tailings dam Failure[J].Canadian Geotechnical Journal,2001,37(4):707-719.
    
    [27]Vick SG. Tailings dam failure at Omai in Guyana[J]. Mining Engineering, 1996,48(11):34-37.
    [28]D.B. Donato, 0. Nichols, H. Possingham, etal.A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife.Environment International, 2007, 33(7): 974 -984.
    
    [29]Babaeyan-Koopaei K, Valentine E M, Ervine D A. Case stuay on hydraulic performance of brent reservoir siphon spillway[J]. Journal of Hydraulic Engineering, 2002,128(6):562-567.
    
    [30]Harder L F J, Stewart J P. Failure of Tapo Canyon tailings dam[J]. Journal of Performance of Constructed Facilities, 1996,10(3): 109-114.
    
    [31]Marcus W A, Meyer G A, Nimmo D R. Geomorphic control of Persistent mine impacts in a Yellowstone Park stream and implications for the recovery of fluvial systems [J]. Geology, 2001,29(4)355-358.
    
    [32]B.M. Petrunic and T.A. Al Mineral/water interactions in tailings from a tungsten mine, Mount Pleasant, New Brunswick. Geochimica et Cosmochimica Acta,2005,69 (10):2469 -2483.
    
    [33]MarisolM, Carlos A, CristinaD, et al. The impact of the Aznalcollar mine tailing spill on groundwater[J]. The Science of the Total Environment, 1999,242: 189-209.
    
    [34] Wayne D M, Warwick J J, Lechler P J, et al. Mercury contamination in the Carson River, Nevada: A preliminary study of the impact of mining wastes[J]. Water, Air and Soil Pollution, 1996,92(3-4):391-408.
    
    [35] Hudson-Edwards K A, Macklin M G, Miller J R, et al. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia[J]. Journal of Ceoehemieal Exploration, 2001,72(3):229-250.
    
    [36] Di G F, Massoli - Novelli R. Geological impact of some tailings Dams in Sardinia, Italy[J]. Environmental Geology and Water Sciences, 1992,19(3):147-153.
    
    [37] L.R.P. de Andrade Lima, L.A. Bernardez and L.A.D. Barbosa. Characterization and treatment of artisanal gold mine tailingsJournal of Hazardous Materials, 2008, 150(3): 747-753.
    
    [38] H. Kasaini, K. Kasongo, N. Naude and J. Katabua. Enhanced leachability of gold and silver in cyanide media: Effect of alkaline pre-treatment of jarosite mineral -s.Minerals Engineering, In Press, Corrected Proof, Available online 28 January 2008.
    
    
    [39]K. Hari Krishnan, D.B. Mohanty and K.D. Sharma .The effect of microwaveirradiations on the leaching of zinc from bulk sulphide concentrates produced fromRampura-Agucha tailings.Hydrometallurgy, 2007,89 (3-4):332-336.
    
    [40]C.M.F. Hernandez, A.N. Banza and E. Gock .Recovery of metals from Cuban nickeltailings by leaching with organic acids followed by precipitation and magneticseparation.Journal of Hazardous Materials, 2007, 139(1):25-30.
    
    [41] Metin Ucurum, Volkan Arslan, Huseyin Vapur,etal. Recovery of unburned carbon fromlime calcination process using statistical technique. Fuel Processing Technology,2006,87(12):1117 -1121.
    
    [42]Hughes HE.Warm Springs Ponds: Superfound success[J].Mining Engineering,1996,48(11):27-30.
    
    [43]Moxon S. Tail end of and era?[J]. International Water Power and Dam Construction,1997,49(11):30-31.
    
    [44]Jung S J, Biswas, Kousick. Review of current high density paste fill and itstechnology[J]. Mineral Nesources Engineering,2002,11(2):162-182.
    
    [45]A.冈尼,T.阿特马卡.从Karagedik铬铁矿选矿厂的尾矿中回收细粒铬铁矿,国外选矿快报,1998,6):13-15.
    
    [46]英国(采矿杂志)编辑部.南非尾矿处理的经验.国外金属矿山,1998(1):42-46.
    
    [47]Yang Z Y, Yuan J G, Xin G R, et al. Cermination, growth, and nodulation of Sesbania rostrata grown in Pb/Zn mine tailing[J]. Environmental Management, 1997,1(4): 617-622.
    
    [48]加拿大试验从油砂尾矿中回收钛锆.世界有色金属,2004(12):74-75.
    
    [49] Devaraj, V. G., BGML Centenary Souvenir, 1980:104-106.
    
    [50]Ganapathi Prabhu, K. in National Seminar on Recent Development in Exploration,Exploitation of Minerals in India,Mining, Geological and Metallurgical Institute of India,1990:165-166.
    
    [51]Chaphekar, S. B. and Bhavanishankar,V., Final Report of work from 1982 to 1986,Hindustan Zinc Ltd, Udaipur,1987.
    
    [52] Chenik, D., J. S. Afr. Inst. Min. Metall.,1960, 60, 525-555.
    
    [53]Bradshaw, A. D. and Chadwick, M. J.,The Restoration of Land, Blackwell ScientificPubl, Oxford, 1981.
    
    [54]杜计划.从尾矿中综合回收铜、铁资源的技术与实践[J].金属矿山,1997(6):18-20.
    
    [55]秦宁昌.从钼精选尾矿中综合回收铜[J].中国钼业,1997,21(1):46-47.
    
    [56]吴礼杰,黄国宝.铜绿山矿资源的综合回收与利用[J].矿业研究与开发,1999,19(3):13-15.
    
    [57]王占岐,朱明,郭秉文.某铜浮选尾矿中锌的综合利用研究[J].矿产综合利用,1998(4):27-29.
    
    [58]刘任红,臧志林.新疆钢铁公司选烧厂尾矿综合利用实践[J].粉煤灰综合利用,1997(3):72-74.
    
    [59]吕宪俊,陈丙辰.某尾矿中稀土的赋存状态及其综合回收研究[J].矿产保护与利用,1998(4):22-24.
    
    [60]郭宏,杨广军,张景和.天水金精矿氰化尾渣综合回收铜铅的试验研究[J].黄金,1999,20(11):35-38.
    
    [61]艾满乾.陕南月河流域砂金选厂尾矿的综合利用[J].有色矿山,1998(3):46-48.
    
    [62]邵治国,邵磊.湘西金矿1~#尾矿库老尾矿综合回收金、锑、钨的研究[J].金属矿山,1997(6):35-37.
    
    [63]潘项绒.银铜坡金矿尾矿资源综合回收的研究与应用[J].矿业快报,2000(1):21-22.
    
    [64]杨斌清.钨尾矿综合回收铋钼新工艺的研究[J].矿产保护与利用,1997(5):51-53.
    
    [65]雷贵春.选铜老尾矿综合利用实验研究[J].矿产保护与利用,1996(1):47-49.
    
    [66] Sanjay Kumar, Rakesh Kumar, Amitava Bandopadhyay. Innovative methodolo -gies for the utilisation of wastes from metallurgical and allied industries. Resources, Conservation and Recycling,2006,48(4):301-314.
    
    [67]王志方,吕波,李玉亮.有色矿山固态废弃物的应用与治理[J].有色矿山,2000,(4):12-15.
    
    [68]朱维根.矿产资源开发与可持续发展[J].中国矿业,2004,13(9):44-46.
    
    [69]郭永忠.从选矿尾砂中回收铜和钨的探索试验[J].湖南有色金属.1997(1):20-23.
    
    [70]朱申红.矿业固体废物-尾矿的资源化.环境与开发.1999,14(1):24-25.
    
    [71]阮华东 蒋传生 赵金奎.武山铜矿老尾矿资源回收的试验研究[J].矿业快报,2004(12):30-31.
    
    [72]韦奇,王大伟,张术根.尾矿综合利用新途径-玻璃陶瓷的研制[J].中国矿业,1999,8(1):22.
    
    [73]沈水发,陈耐生,陈柽生等.利用高岭土制备聚合氯化铝净水剂[J].无机盐工业,1999(5):33.
    
    [74]徐惠忠.黄金尾矿用于生产建筑材料与技术和经济可行性研究[J].黄金,1996,17(10):17-18.
    
    [75]Cheng-jun LIU, Pei-yang SHI, Da-yong ZHANG, etal. Development of Glass Ceramics Made From Ferrous Tailings and Slag in China.Journal of Iron and Steel Research, International, 2007,14(2):73-78.
    
    [76]邢军,宋守志.金矿尾矿微晶玻璃的制备.中国有色金属报,2001,11(2):319-323.
    
    [77]张焕祥.黑色尾砂微晶玻璃的熔制.中国非金属矿工业导刊,2001(1):31-33.
    
    [78]袁世伦.金属矿山固体废弃物综合利用与处置的途径和任务[J].矿业快报,2004,(9):1-4.
    
    [79]谢开维,何哲祥.张马屯铁矿全尾砂胶结充填的试验研究[J].矿业研究与开发,1998,18(4):8-10.
    
    [80]何哲祥等.全尾充填的研究与实践[J].中国有色金属学报,1998,8(4):739-744.
    
    [81]扬小聪,贯鸿林.全尾砂高水固化充填及底柱采场充填接顶试验研究[J].矿冶,1997,6(4):1-4.
    
    [82]吴伯增.大厂贫锡多金属硫化矿选矿关键技术研究及应用[博士论文].长沙:中南大学,2005.
    
    [83]#12
    
    [84]#12
    
    [85]#12
    
    [86]#12
    
    [87]#12[88]#12
    
    [89] Hartmut H. Optoelectmnic separation in feldspar processing at Maffei Sarda [J].Aufber.Tech,2001,(9):438-444.
    
    [90]段希祥.选择性磨矿及应用.北京:冶金工业出版社,1991:11-15.
    
    [91] N. Niizeki, M.J. Buerger, Z. Kristallogr. 1957(109):161.
    
    [92] Y. Matsushita, Y. Ueda, Inorg. Chemi. 2003 (42): 7830.
    
    [93] Y. Matsushita, Y. Ueda, Prog. Theor. Phys. 2005 (159):179.
    
    [94] P. Leone, L.M. Le Leuch, P. Palvadeau, etal.Single crystal structures and magneticproperties of two iron or manganese-lead-antimony sulfides: MPb_4Sb_6S_(14) (M: Fe,Mn).Solid State Sci. 2003(5): 771-776.
    
    [95] E. Makovicky, Eur. J. Mineral. 1993 (5):545.
    
    [96] M. Fransini, P. Orlandi, M. Pasero, Acta Vulcanologica. 1992(2):231.
    
    [97]J.C. Jumas, J. Olivier-Fourcade, E. Philippot, M. Maurin, Acta Crystallogr., Sect. B.1980(36):2940.
    
    [98]张正阶,林金辉,宋谢炎等.闪锌矿中杂质Fe存在形式的重新认识[J].矿物学报,1997,17(1):1-10.
    
    [99]宋谢炎,张正阶,林金辉等.铁闪锌矿中铁占位的物化条件及机制[J].矿物学报,1999,19(2):166-174.
    
    [100]陶鲜,谭大芳.含铁闪锌矿热容的实验测定与分析[J].地质科技情报,1998,17(4):77-80.
    
    [101]陶鲜.含铁闪锌矿热力学性质的推导[J].矿物岩石,1999,19(3):8-10.
    
    [102]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1996.
    
    [103]唐恢同.有机化合物的光谱鉴定[M].北京:北京大学出版社,1992.
    
    [104]王淀佐.浮选作用原理及应用[M].北京:冶金工业出版社,1982.
    
    [105]王淀佐.矿物浮选和浮选剂理论与实践[M].长沙:中南工业大学出版社,1986.
    
    [106]Glembockii,V.A.,Inter.Miner.Dress.C ongr,Stookolm,1957,493-507.
    
    [107]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计[M].长沙:中南工业大学出版??社,1996.
    
    [108]Lu,Sh C. and Sun,K J.,Developments of phosphate flotation reagents in China, B Inter.Conf. On Beneficiation of Phosphates, 1998.12.
    
    [109]钟代伏,硕士学位论文[D],北京:中国矿业大学,1989.
    
    [110]王青.矿冶工程,1992,4:22-25.
    
    [111]Takahide Wakamatsu.使用两种捕收剂浮选矿物的基础研究[J].国外金属矿选矿,1982,6:14-19.
    
    [112]Glembosky,A.V.,et al,苏联的硫化矿、非硫化矿和新浮选药剂[J],国外金属矿选矿,1989,(5):1-6.
    
    [113]Riaboy,V ., Development of the concepts on the coordination mechanism of action offlotation reagents, Nauka, Moscow,1984,62-68.
    
    [114]GIembosky, A. V., Chemical approach to searching for new selective flotationreagents, Obogashchenge, Rud,1969,Vol.6,28-30.
    
    [115]Riaboy,V.I.Selection of flotation collectors and improvement of their selectivity,Obogashchenge,Rud,1969,6:31-38.
    
    [116]王淀佐.浮选剂作用原理及应用.北京:冶金工业出版社,1994.
    
    [117]Kannumantha Rao H. and Forssberg, K. SE, Solution chemistry of mixedcationic/anionic collectors and flotation separation of feld spar from quartz, XⅦIMPC,1993,4:837-844.
    
    [118] Jost, F. Leiter, H and Schwuger, M.J., Synergism in binary surfactant mixtures,Colloid&Polymer Sci, 1998,266:554-561.
    
    [119]见百熙,有色金属(季刊)1983(1):40.
    
    [120]H.S.Hanna and P.Somsundaran, Flotation of salt-type mineral.A.M.GandinMemorial, 1976,197-212.
    
    [121]Fuerstenau,D.W and Deason,D.M., Effect of surface transform processes on thesurface chemistry and flotation behaviour of dolomite and apatite, Proc. XⅦIMPC,1991,4:71-81.
    
    [122]Somasundaran P,中南矿冶学院学报,1982,增刊2.
    
    [123]Pugh, R. and Stenius, P., Solution chemistry studies and flotation behaviour of apatite, calcite and fluorite minerals with oleate collector,Int.J. Miner. Process.,1985,15:193-218.
    
    [124]Kannumantha Rao,H. Mineral Processing and Extractive Metalurgy, 1990,9-12:147-155.
    
    [125]见百熙.浮选药剂[M].北京:冶金工业出版社,1981.
    
    [126]胡岳华,章顺力,邱冠周.石灰抑制黄铁矿的活化机理研究[J].中南工业大学学报,1995,26(2):176-180.
    
    [127]朱玉霜、朱建光编,浮选药剂的化学原理[M].长沙:中南工业大学出版社,1987.
    
    [128]黄尔君、冯育武,有色金属(选矿部分),1998,(4):34-35.
    
    [129]胡熙庚,黄和慰,毛钜凡等.浮选理论与工艺[M].长沙:中南工业大学出版社,1991,9:214-215.
    
    [130]南京大学地质学系矿研室编著.结晶学与矿物学[M].地质出版社,1966:313.
    
    [131]李崇德,低碱度浮选分离黄铜矿和黄铁矿及新捕收剂PAC应用的研究[硕士学位论文].北京:上海第二医科大学,2000,P29-72.
    
    [132]王淀佐,蒋玉仁等.选矿与冶金药剂分子设计[M].长沙:中南工业大学出版社,1996:60-185.
    
    [133]胡熙庚主编,有色金属硫化矿选矿[M].北京:冶金工业出版社,1982.
    
    [134]南京大学地质学系矿研室编著.结晶学与矿物学[M].地质出版社,P315-316.
    
    [135]谷晋川.辉锑矿与毒砂浮选分离机理的研究[硕士学位论文].昆明:昆明理工大学,1988.
    
    [136]唐晓莲.黄铜矿和毒砂浮选分离机理的研究[硕士学位论文].昆明:昆明理工大学,1987.
    
    [137]贺婧,颜丽,杨凯等.不同来源腐殖酸的组成和性质研究[J].土壤通报,2003(4):343-345.
    
    [138]A.M.Abeidu, A.M.Almahdy, (International Journal of Mineral Processing}) ,1980(6):285-302.
    
    [139]J.W.Robison,《Handbook of Spectroscopy》 .CRC Press, 1974,2:P97-98.
    
    [140]覃文庆,邱冠周、黎全等.黄原酸盐介质中黄铁矿的电化学行为Ⅱ:疏水性产物双黄药的吸附及其稳定性研究[J].有色金属,1999,(4):35-37.
    
    [141]Clauss, C. R. A. etal. Inter. J. Miner. Process, 1979, 3(1):127-31.
    
    [142]王喜良,童雄.强化含金矿石提金的理论与应用[M].昆明:云南科技出版社,??1999(1): 2-3.
    
    [143]Yakhontava,L.K. and Gyudnev, A.P., Tr. Meenelal, Mug., Akad. Nauk ISSSR.1993,22:172-178.
    
    [144] John. W.M., Dissertation Abstract International,1985,44(5).
    
    [145]Draskic,D.Etat.选矿脱砷脱硅技术研讨会论文集[A],1986,9:53-58.
    
    [146]宣道中等,毒砂与硫化矿物的分选[A].中国有色金属学会第一届全国选矿学术讨论会论文集(上册)[C].北京:中国有色金属学会选矿学术委员会等,1986,266-275.
    
    [147]李锡会,周丽英编译.毒砂的浮游特点[J].国外矿冶,1967,(4):10-17.
    
    [148]Poling,GW.and Vrengdt,M.J.A.,Principles at Mineral Flotation, 1985,P137-146.
    
    [149]Beattie M.J.V, Poling GW. A Study of the surface Oxidation of Arsenopyrite Using Cyclic Voltammetry. Int J Miner Process, 1989,20 (3):87-108.
    
    [150]孙水裕,王淀佐.硫化矿物表面氧化的研究[J].有色金属,1993,(4):43-49.
    
    [151]M.T.V.Abeattie,G.W.Poling, I.J.M.P,1987,(20):87-89.
    
    [152]陈万雄、杨家红.毒砂与黄铁矿的氧化与分离[J].矿产综合利用,1994,(4):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700