HT-毒素特异性组分的分离及其在Ht1基因玉米质膜存在结合蛋白的证据
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对玉米大斑病菌1号小种毒素的特异性组分进行分离,建立了高效的特异性毒素分离纯化方法,并对其进行了紫外波谱分析;用荧光素双醋酸酯(FDA)染色法,测定了毒素特异性组分对原生质体死亡率的影响;进而用1-苯胺基-8-萘磺酸(ANS)荧光探针标记法和SDS-PAGE电泳法对特异性毒素组分与Htl基因玉米细胞互作过程中的质膜蛋白进行了研究,旨在证明Htl基因玉米细胞质膜上存在特异性毒素组分结合蛋白(TBP),为从细胞和分子生物学角度阐明毒素的致病机理提供证据。主要结果如下:
     1.对玉米大斑病菌的1号小种菌株(99-2)的粗毒素进行硅胶薄层层析(TLC),分离到Ⅰ(Rf0.06)、Ⅱ(Rf0.21)、Ⅲ(Rf0.45)、Ⅳ(Rf0.60)、Ⅴ(Rf0.75)5个条带,分别对此5个条带进行生物测定,发现条带Ⅱ对带Htl基因的玉米具有较强的特异性。
     2.在检测波长220nm、流速1.0mL/min的HPLC分析条件下,对条带Ⅱ的洗脱剂中甲醇与水的比例进行摸索,最后确定60%甲醇为最佳洗脱条件。经对条带Ⅱ进行高效液相色谱(HPLC)的进一步纯化,得到3种组分Ⅱ-1、Ⅱ-2、Ⅱ-3,其中只有Ⅱ-3具有特异致病活性。对Ⅱ-1、Ⅱ-2、Ⅱ-3进行紫外-可见光谱扫描。发现只有Ⅱ-3在300nm处有吸收峰,Ⅱ-1和Ⅱ-2的峰形相似,可能为类似物。
     3.从HT-毒素Ⅱ-3组分处理玉米幼苗的叶片中提取原生质体,在0-1.5h内其死亡率与对照(蒸馏水处理幼苗)无明显差别,但1.5h后Ⅱ-3处理一直明显高于对照,说明Ⅱ-3加速了叶片细胞的死亡;在6h左右处理有显著上升,而对照变化不大。说明Ⅱ-3与叶片细胞作用后并不直接伤害细胞,而需经过一定时间,这一过程很可能是Ⅱ-3与受体结合后信号不断放大,最终使原生质体失去活力的过程。
     4.以玉米叶片原生质体为研究对象,以ANS(1-苯胺基-8-萘磺酸)作荧光探针,用荧光法研究了Ⅱ-3与质膜蛋白的互作。在被ANS标记后的原生质体悬浮液中加入不同浓度HT-毒素Ⅱ-3组分后,ANS荧光强度明显增加,呈现出了剂量—效应关系,表明Ⅱ-3与质膜上ANS某些受体发生了互作。本试验采用两种试剂,从两个角度表明了ANS受体和质膜上存在的Ⅱ-3受体具有蛋白特性。推测HT-毒素特异性组分的原始作用位点在质膜外侧,且特异性毒素组分与其受体互作具明显的饱和性。
     5.利用SDS-PAGE电泳技术分析了HT-毒素Ⅱ-3组分对玉米叶片中可溶性蛋白和质膜蛋白的影响。结果表明,Ⅱ-3对叶片中可溶性蛋白没有影响,但在叶片质膜蛋白中找到了3个与Ⅱ-3致病相关的蛋白,经分析其分子量分别为31.622KD、63.125KD和93.536KD,其中分子量为31.622KD和63.125KD的蛋白为叶片本身所特有。
In this dissertation, firstly, the conditions of isolation and purification of specific toxin fractions produced by Exserohilum turcicum has been studied, and a high-efficient method has been established;secondly, the toxins were analysed by UV-Vis spectrophotometry;then the effect of specific toxin on death rate of corn leaves protoplast was studied by FDA as a tinct reagent;finally, using ANS as a probe and SDS-PAGE to study the membrane protein of the corn leaves with Htl gene. In a word, the aim of the research is to search some existent evidences of the toxin binding site on protoplasmic membrane, and provide proofs for nosogenesis of specific toxin in terms of cytology and the molecular biology. The main results are as follows:1. Five fractions, I (Rf0.06)、 II (Rf0.21)、 III (Rf0.45)、 IV (Rf0.60)、 V (Rf0.75) have been obtained after HT-toxin from race 1 of Exserohilum turcicum 99-2 isolated by TLC. In all of these fractions, only fractions II had specific toxicity to the corn leaves with Htl gene.2. Under the analysis conditions that inspect wavelength 220nm and velocity of flow1.0mL/min, 60% methanol in flowed phase was the optimum conditions. Under the above analysis conditions, fractions II-1、 II-2、 II-3 were isolated from fractions II by HPLC purification, and the bioassay result showed only fraction II-3 was toxigentic to corn leaves with Htl gene but non-toxigentic to corn leaves without Htl gene. Fractions II-1、II -2 and II -3 were scanned by UV-Vis spectrophotometer. It was shown that the fractions II-1 and II-2 had analogous spectrum, and especially the fraction II-3 had a special peak at 300nm.3. The death rate of protoplast from corn leaves treated by toxin was consistent with control (corn treated by distilled water instead of toxin) before 1.5h, but it's higher than control after 1.5h, which demonstrated the toxin had accelerated the death of corn cells. And moreover, the treated had a obvious ascend, which suggested that the toxin play a greatest role in 6h from side to side. So it is possible that the toxin does not injure cells
    directly, but needs a certain time. And this course will be probably that the signal is amplified constantly after the toxin combines with its receptor, which make protoplasts lose vigor finally.4. The effect of the toxin on protoplasmic membrane protein was studied by the method of fluorescence, using 8-anilino-1 -naphthalene-sulfonic acid (ANS) as probe and taking the mesophyll protoplasts from maize leaves as the research system. After the liquid of protoplasts labeled ANS was injected with different toxin cone, dosage-effect relationship existed because of the ANS fluorescence intensity increasing obviously, which indicated the toxin had some kinds of effects on receptor of ANS. Two types of reagents were employed to prove the proteic characteristic of ANS receptor, the result of which demonstrated the proteic characteristic of the toxin. It was concluded that the first action site of the specific toxin might be on the outside of protoplasmic membrane, moreover, the toxin receptor has the proteic characteristic and the combination between toxin and its receptor has saturation activity.5. The effects of HT-toxin on soluble protein and membrane protein extracted from corn leaves treated by toxin were studied by the means of SDS-PAGE. The electrophoretic results showed that soluble protein bands had no change, but three membrane proteins(the molecular weight is 31.622KD, 63.125KD and 93.536KD) related to the toxin nosogenesis were found, and protein 31.622KD and protein 63.125KD are inherence of Htl gene corn leaves.
引文
[1] 董金皋.农业植物病理学(北方本)[M].北京:中国农业出版社,2001,84~85.
    [2] 晋齐鸣,任金平,张秀文,等.1991年吉林省中部地区玉米病害发生危害情况[J].吉林农业科学,1992,(2):40~42.
    [3] Raymundo A D, Hooher A L. Measuring the relationship between northern comleaf blight and yield losses[J]. Plant Disease, 1981, 65:325~327.
    [4] Levy Y. The overwintering of Exserohilum turcicum in Israel[J]. Phytoparasitica, 1984,12:177~182.
    [5] Perkins J M, Pederson W L. Disease development and yield losses associated with leaf blight on corn[J]. Plant Disease, 1987, 71: 940~943.
    [6] 赵桂东,刘荆,未海波,等.夏玉米大小斑发生规律及防治技术[J].玉米科学,1996.4(1):74~75.
    [7] 白金恺.杂粮作物病害[M].北京:中国农业出版社,1995,1~2.
    [8] 周大荣,王崇仁.“八五”玉米主要病虫害及综合防治技术研究[[J].玉米科学,1995(增刊):1~84.
    [9] 高卫东,戴发超.玉米大斑病研究的新进展[J].植物病理学报,1993,23(3):193~195.
    [10] 吴继昌,陈刚,邹桂珍,等.玉米大斑病菌生理小种研究初报[J].植物病理学报,1983,13(2):15~20.
    [11] 藏漫辉.玉米大斑病菌生理分化研究[M].辽宁:辽宁教育出版社,1993,77~87.
    [12] 姜晶春,潘顺发,尹志.玉米大斑病菌生理小种鉴定续报[J].吉林农业科学,1991,(1):46~49.
    [13] 吴安国.云南玉米大斑病菌生理小种研究Ⅱ[J].科技动态,1989,(3):18~21.
    [14] 董金皋,李正平,李秉华,等.玉米大斑菌HT-毒素组分分析[J].植物病理学报,1996.26(2):139~144.
    [15] Cuq F, Herrmann-Gorline S, Klaebe A, et al. Monocerin in Exserohilum turcicum isolates from maize and a study of its phytotoxity[J]. Phytochemistry, 1993, 34 (5): 1265~1270.
    [16] Bashan B, Levy R S, Cojocaru M, et al. Purification and structure determination of a phytotoxic substance from Exserohilum turcicum[J]. Physiological and Molecular Plant Pathology, 1995, 47:225~235.
    [17] Yoka P, Albertini L. Enzymatic and toxic activities of Helminthosporium turcicum pass, parasite of maize[J]. Bulltin de la Societe d'Histoire Naturelle de Toulouse, 1975, 111(4):255~272.
    [18] Petitprez M, Gelie B, Albertini L, et al. Biological activities of phytotoxins of Exserohilura turcicum cytological study[J]. Revue de Cytology Vegetales le Bostaniste, 1984, 7(3):261~270.
    [19] 董金皋.玉米大斑病菌HT-毒素组分Ⅰ的提纯、结构鉴定及致病活性研究[D].北京:中国农业大学博士学位论文,1998.
    [20] 李正平,董金皋,周宗山.玉米大斑病菌HT-毒素的硅胶G柱层析分析[J].河北农业大学学报,1995,18(4):1~3.
    [21] 董金皋,李正平,薛峰,等.玉米大斑病菌毒素结构的确定及几种类似物的毒性 比较[J].植物病理学报,1997,27(3):257~261.
    [22] 董金皋,周宗山,李正平.玉米大斑病菌HT-毒素组分Ⅱ的化学结构[J].植物病理学报,2000,30(2):186~187.
    [23] 张利辉.玉米大斑病菌2号小种毒素的分离与纯化研究[D].保定:河北农业大学硕士学位论文,2001.
    [24] 张利辉,董金皋.玉米大斑病菌2号小种毒素的生物测定与组分分析[J].河北农业大学学报,2001,24(1):42~45.
    [25] 董金皋,韩建民,闫淑娟,等.玉米大斑病菌HT-毒素对玉米细胞膜透性的影响[J].河北农业大学学报,2000,23(3):59~64.
    [26] 董金皋,史有艳,康绍兰.玉米大斑病菌HT-毒素的萃取及其致病活性[J].微生物学通报,1993,20(2):73~77.
    [27] 董金皋,韩建民,张利辉.玉米大斑病菌HT-毒素与玉米细胞的膜脂过氧化研究[J].微生物学通报,2001,28(5):1~5.
    [28] 董金皋,闫淑娟,韩建民,等.玉米大斑病菌HT-毒素对玉米细胞Vc氧化酶活性的影响[J].河北农业大学学报,1999,22(1):50~53.
    [29] 汪茂田,谢培山,王中东.天然有机化合物提取分离与结构鉴定[M].北京:化学工业出版社,2004,133~156.
    [30] 和有杰.新编农药分析手册[M].北京:科学技术文献出版社,1994,9~10.
    [31] 张真庆,于广利,赵峡,等.几种糖醛酸及其寡糖的薄层层析分析[J].分析化学,2005,33:1750~1752.
    [32] 张蓉,岳永德,花日茂,等.磺酞脲类除草剂残留分析技术研究进展[J].农药,2005,44(9):388~421.
    [33] 宋永燕,李平,郑爱萍,等.抗稻瘟病拮抗菌V-2的鉴定及其活性代谢物的研究[J].植物病理学报,2005,34(2):352~358.
    [34] 张利辉,刘云惠,董金皋,等.玉米大斑病菌特异性毒素组分的分离与纯化[J].植物病理学报,2003,33(1):67~71.
    [35] 包海鹰,李玉,图力古尔,等.长白山鹅膏菌肽类毒素的HPLC分析[J].菌物系统,2002,21(2):234~238.
    [36] Zhi X, He L, Min W, et al. Cobalt (Ⅱ) Complex of 6, 7-Dicycanodipyridoquinoxaline with Antitumor Activities: Synthesis, Crystal Structure and Binding with DNA[J]. Journal of Chinese Pharmaceutical Sciences, 2002, 11 (4): 125~131.
    [37] 任育红,吴江涛,杨加华,等.镐诱导牡蝠金属硫蛋白的初步研究[J].中国海洋药物,2002,6:29~31.
    [38] 王静萍,杜黎明.环丙沙星在BTR缓冲液中的紫外光谱性质研究与应用[J].化学研究,2002,13(1):34~35.
    [39] Kanai R, Edwards G E. Separation of mesophyll protoplast and bundle sheath cells from maize leaves for photosynthetic studies[J]. Plant Physiology, 1973, 51: 1133~1137.
    [40] Sandelius A S, Morre D J. Plasma membrane isolation[J]. In: Larsson C, Moller IM (Eds): The plant plasma membrane. Berlin: Springer Verlag, 1990, 44~75.
    [41] Zheng H L, Zhao Z Q, Zhang C G, et al. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthanum chloride[J]. BioMetals, 2000, 13: 157~163.
    [42] Hodges T K, Mill D. Isolation of the plasma membrane[J]. Methods Enzymolog, 1986, 11 (8): 41~54.
    [43] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248~254.
    [44] 牛桂兰,汤显春,刘进学,等.金矿床区蜡状芽孢杆菌袍壁蛋白SDS-PAGE图谱及聚类分析[J].微生物学杂志,2002,22(2):24~25.
    [45] 杨瑞丽,任学毅,赵秀玲,等.家蚕蛹表达乙肝表面抗原中蛋白免疫原性的研究[J].农业生物技术学报,2002,10(4):359~362.
    [46] 倪中福,孙其信,张义荣,等.斯卑尔脱小麦高分子量谷蛋白亚基组成分析[J].农业生物技术学报,2002,10(2):108~112.
    [47] 郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999,124~145.
    [48] Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin-A fluorescent probe of nonpolar binding sites[J]. Journal of Molecular Biology, 1965, 13: 482~495.
    [49] Seetharamappa J, Kamat B P. Spectroscopic studies on the mode of interaction of an anticancer drug with bovine serum albumin[J]. Chemical & Pharmaceutical Bulletin, 2004, 5 (29): 1053~1057.
    [50] 林克椿,聂松青,薄惠卿,等.用荧光探剂DPH研究腹水癌细胞膜质流动性[J].生物化学与生物物理进展,1981,(6):32~35.
    [51] 胡梁言,阮康成.胰蛋白酶与ANS的相互作用[J].中国生物化学与分子生物学报,1998,14(5):567~572.
    [52] Kwon C Y, Rasmussen J B, Francl L J, et al. A quantitative bioassay for Necrosis toxin from Pyrenophora tritici-repentis based on electrolyte leakage[J]. Phytopathology, 1996, 86: 1360~1363.
    [53] 崔洋.玉米小斑病菌T小种毒素的分离、纯化及其植物病理反应[J].植物病理学报,1992,22(4):187~191.
    [54] Park P, Nishimura S, Kohmotp K, et al. Two action site of AM-toxin Ⅰ produced by apple pathotype of Alternaria alternata in host cells: an ultrastructural study[J]. Canadian Journal of Botany, 1981, 59 (3): 301~310.
    [55] 于世林.高效液相色谱方法及应用[M].化学工业出版社,2000.
    [56] 施奈德,格莱吉克,柯克兰.实用高效液相色谱法的建立[M].北京:科学出版社,1998.
    [57] 林炳承,邹雄,韩培祯.高效液相色谱在生命科学中的应用[M].山东科学技术出版社,1992.
    [58] 董金皋,李树正.植物病原菌毒素研究进展(第一卷)[C].北京:中国科学技术出版社,1997.
    [59] 李树正.从植物病理学角度看第三代杀菌剂开发的方向[J].农药译丛,1992,14(2):14~18.
    [60] Thomas G, Adnane S, Philippe S. Analysis of a nonribosomal peptide synthetase gene from Alternaria brassicae and flanking genomic sequences[J]. Current Genetics, 2004, 45 (4): 214~24.
    [61] Xingwei Hou, Susan M, Boyetchko, et al. Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum[J]. Applied Microbiology and Biotechnology, 2006, 23 (2): 125~129.
    [62] Pedras M S, Biesenthal C J, Zaharia I L. Comparison of the phytotoxic activity of the phytotoxin destruxin B and four natural analogs. Plant Sci., 2000, 156 (2):185~192.
    [63] Bains P S, Tewari J P. Purification and properties of the phytotoxin produced by Alternaria brassicae[J]. Phytopathology, 1985, 75: 1298.
    [64] 马振国.白菜黑斑病菌(Alternaria brassicae)毒素的分离提纯及致病机理[D].保定:河北农业大学硕士学位论文,1998.
    [65] 樊慕珍,马振国,魏艳敏.白菜黑斑病菌毒素的研究现状[A].董金皋、李树正.植物病原菌毒素研究进展(第一卷)[C].北京:中国科学技术出版社,1997.
    [66] Ueda K, Xiao J Z, Doke N, et al. Isolation and structure of BZR-cotoxin Ⅳ produced by Bipolaris zeicola race 3, the cause of leaf spots disease in corn[J]. Tetrahedron Letter, 1995, 36 (5):741~744.
    [67] Chil Y K, Rasmussen J B, Francl L J, et al. A quantitative bioassay for Necrosis toxin from Pyrenophora tritici-repentis based on electrolyte leakage[J]. Phytopathology, 1996, 86:1360~1363.
    [68] 王朝华,董金皋.植物病原真菌毒素结合蛋白研究现状[J].中国农业科学,2002,35(10):1215~1220.
    [69] Zaifeng Li, Zengru Wu, Fuying Luo. Synthesis and Antifungal Activities ofAlkyl N-(1,2,3-Thiadiazole-4-Carbonyl) Carbamates and S-Alkyl N-(1,2,3-Thiadiazole-4-Carbonyl) Carbamothioates[J]. Journal of Agricultural and Food Chemistry, 2005, 53(10):3872~3876.
    [70] 高必达.烟草野火病菌毒素的分子生物学研究进展[J].生物技术通报,1999,(5):23~25.
    [71] Nelson C J, Hegeman A D, Harms A C, et al. A quantitative analysis ofarabidopsis plasma membrane using trypsin-catalyzed 18o labeling[J]. Molecular & Cellular Proteomies, 2006, 24:211~218.
    [72] lshihara K, Yamazaki T, Ishida Y, et al. Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells[J]. The Journal of biological chemistry, 2006, 22: 425~429.
    [73] Klaus S, Folke T, Anna C, et al. Large scale separation and production ofennineered proteins designed for facilitated recovery in detergent-based aqueous two-phase extraction systems[J]. Process Biochemistry, 2004, 39 (7):889~896.
    [74] Kwon Y, Kaui R, Mattiasson B, et al. Extractive lactic acid fermentation in poly (ethyleneimine) -based aqueous two-phase systems[J]. Biotechnolony and bioengineering, 1996, 50 (3):280~290.
    [75] Obat H, Inoure N, Umebayashi M. Effect of Cd on plasma membrane ATPase from plant roots differing in toerance to Cd[J]. Soilscience and Plant Nutrition, 1996, 42 (2): 361~366.
    [76] Zhi W, Deng Q, Song J, et al. One-step purification of alpha-amylase from the cultivation supernatant of recombinant bacillus subtilis by high-speed counter-current chromatography with aqueous polymer two-phase systems[J]. Journal of Chromatography A, 2005, 1070 (2):215~219.
    [77] Capezio L, Romanini D, Pico G A, et al. Partition of whey milk proteins in aqueous two-phase systems of polyethylene glycol-phosphate as a starting point to isolate proteins expressed in transgenic milk[J]. Journal of Chromatogr B Analyt Technol Biomed Life Science, 2005, 819 (1): 25~31.
    [78] Teotia S, Gupta M N. Reversibly soluble macroaffinity ligand in aqueous two-phase separation of enzymes[J]. Journal of Chromatography A, 2001, 923 (2): 275~280.
    [79] Giffing L R, Ruatrano R S. lsolatic focusing of plant cell membranes[J]. Proceedings of the National Academy of Sciences of the USA, 1984, 81 : 4804~4808.
    [80] 潘云娣,杨文鸽.现代分离技术在抗生素提取中的应用[J].微生物学通报,2005,32(5):137~140.
    [81] Lin, Lik A, Tong S Y. Fluorometric determination for micro amounts of album in and globulin fractions with-out seperation by using α, β, γ,δ-tetra (4'-carboxyphenyl) porphyrin[J]. Analytical Biochemistry, 1996, 233:151~155.
    [82] 于兵川,吴洪特,周培疆,等.染料、药物和环境化学污染物与血清白蛋白的相互作用[J].化学通报,2005,68:1~5.
    [83] 薛王君,饶美香,李蕾,等.药物与蛋白质相互作用的研究新进展[J].赣南师范学院学报,2002,56(3):46~50.
    [84] Macq, Lika, Tong S Y. Determ ination of proteins by fluorescence quenching of crythros in B[J].Analytica Chimica Acta, 1996, 233: 151~155.
    [85] 冯喜增,白春礼,林璋,等.丫啶橙与牛血清白蛋白的相互结合反应[J].分析化学,1998,26(2):154~157.
    [86] 俞天智,陶祖贻.水杨酸与HAS相互作用的荧光光谱研究[J].光谱学与光谱分析,1999,19(15):453~456.
    [87] 李东辉,许金钩.荧光各向异性法研究酸度对四磺基酞蓄与牛血清白蛋白相互作用的影响[J].高等学校化学学报,1999,20(8):1218~1220.
    [88] 卢臻,宋功武.曙红Y与牛血清白蛋白的荧光光谱研究及分析应用[J].分析测试学报,2000,19(5):48~49.
    [89] 谭文武,包永军,龚国权,等.茜素红S荧光熄灭法测定蛋白质[J].分析化学,2000.28(4):526.
    [90] Lenaz G. Lipid protein interaction in mitochondria[J]. Archives of Biochemistry and Biophysics, 1976, 1:278~288.
    [91] Shinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization[J]. Biochimica et biophysica acta, 1978, 515: 367~372.
    [92] Akimitsu K, Hart L P, Walton J D, et al. Covalent binding sites of victorin in oat leaf tissue detected by anti-victorin polyclonal antibodies[J]. Plant Physiology, 1992, 98 (1):121~126.
    [93] Akimitsu K, Hart L P, Walton J D, et al. Immunologicl evidence for a cell surface receptor of victorin using anti-victorin anti-idiotypic polyclonal antibodies[J]. Molecular Plant-Microbe Interaction, 1993, 6 (4): 429~433.
    [94] Loschke D C. The plant toxin victorin binds to a discrete number of proteins in all organisms tested[J]. Australian Journal of Plant Physiology, 1994, 21(2): 243~253.
    [95] Brosch G, Ransom R, Lechner T, et al. Inhibition of maize histone deacetylases by HC-toxin, the host-selective toxin of Cochliobolus carbonum[J]. The Plant Cell, 1995, 7 (11):1941~1950.
    [96] Ransom R F, Walton J D. Histone hyperacetylation in maize in response to treatment with HC-toxin or infection by the filamentous fungus Cochliobolus carbonum[J]. Plant Physiology, 1997, 115 (3):1021~1027.
    [97] 王金生.分子植物病理学[M].北京:中国农业出版社,2001.
    [98] 王忠华,贾育林,夏英武.植物抗病分子机制研究进展[J].植物学通报,2004,21(5):521~530.
    [99] Rhoads D M, Griffin H C, Neuenschwander B B, et al. Assays for characterizing URF-13, the pathotoxin and methomyl receptor of Cms-T maize[J]. Methods in Enzymology, 1996, 264: 566~581.
    [100] 吴学仁,尹秀荣,白亚荣.节果斑点落叶病菌毒素的研究现状[A].北京:中国科学技术出版社,1997,153~157.
    [101] Wolpert T J, Navarre D A, Moore D L, et al. Identification of the 100-KD victorin binding protein from oats[J]. The Plant Cell, 1994, 6(8): 1145~1155.
    [102] Navarre D A, Wolpert T J. Effect of light and CO_2 on victorin-induced symptom development in oats[J]. Physiological and Molecular Plant Pathology, 1999, 55 (4): 237~242.
    [103] Gadjev I, Vandcrauwcra S, Gechev T, et al. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis[J]. Plant Physiology, 2006, 10:1104~1106.
    [104] 陈捷.植物病原菌毒素的致病机理[A].董金皋,李树正.植物病原菌毒素研究进展(第一卷)[C].北京:中国科学技术出版社,1997.
    [105] 陈大华,叶和春,李国凤,等.植物类异戊二烯代谢途径的分子生物学研究进展[J].植物学报,2000,42(6):551~558.
    [106] 陈绍江.大豆紫斑病菌毒素的研究[J].植物病理学报,1996,26(1):45~48.
    [107] 宋凤鸣.活性氧及膜脂过氧化在植物-病原物互作中的作用[J].植物生理学通讯,1996,32(5):377~385.
    [108] 陈利峰.小麦赤霉病穗中脱氧雪腐镰刀菌烯醇量的变化[J].植物病理学报,1996,26(1):23~27.
    [109] 姚洪泉.脱氧雪腐镰刀菌烯醇对K~+刺激的小麦根质膜ATP酶活性,K~+吸收、外渗及再分配的影响[J].植物生理学报,1995,21(1):29~34.
    [110] 高必达.丁香假单胞菌环式脂肽毒素的生理和分子生物学研究[J].生物工程进展,2000,20(4):55~59.
    [111] 魏松红,刘文合,俞孕珍,等.稻瘟病菌毒素对水稻愈伤组织成活率及其超微结构的影响[J].沈阳农业大学学报,1999,30(3):238~240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700