制氢弛放气量对甲醇生产工艺影响的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内生产甲醇基本上都是用天然气水蒸汽催化转化制甲醇,然而用这种方法制取甲醇合成气,产物中氢碳比偏高,用这种合成气合成甲醇,氢气利用率低,过量的氢气等同于惰性气体,需要在循环过程中排放,同时带出CO,CO2使碳利用率下降,造成运行消耗增加。因此为了达到甲醇生产的节能降耗,实现甲醇新鲜合成气的氢碳比最优化是其中的一个关键。优化氢碳比最主要的方法就是加入二氧化碳,克拉玛依石化公司甲醇厂采取了天然气混合制氢弛放气的补碳新工艺生产甲醇。
     本文主要对克拉玛依甲醇厂甲醇生产的转化和合成工段的工艺流程进行Aspen plus全程模拟,改变了只进行某一工段模拟的现状,对甲醇生产具有很好的现实指导意义。首先对甲醇生产装置进行了细致的分析并采集了工厂正常稳定运行时的生产数据,为模拟计算的正确运行提供了充分的准备。然后选择了甲醇生产全过程中的压缩机、加热器、冷却器、平衡反应器、分离器、换热器等Aspen模块,并选择了合适的物性方法-Wilson活度系数法。将模拟计算结果与工厂分析数据及采集数据进行比较,模拟结果与工厂数据吻合非常好,说明所建立的模拟模型是正确可靠的。
     在工艺控制指标内改变加入制氢弛放气量进行模拟计算,得出制氢弛放气添加量对甲醇生产氢碳比的影响。以甲醇生产最佳氢碳比2.05为优化目标值,运用Aspen plus的灵敏度分析工具,得出不同天然气量的条件下,转化温度及压力对制氢弛放气需求量的影响。运用MATLAB软件得到不同温度及压力下的制氢弛放气需求量的关系式,及制氢弛放气需求值关于天然气量、转化温度、转化压力的关系式,为克拉玛依甲醇厂实际生产提供了很好的指导意义。
At the present, the reaction process which produced methanol in our country is often from the catalytic transform of natural gas with steam. However with this method to produce the synthetic gas of Methanol, will result in the higher value of the ratio of hydrogen and carbon. With this synthetic gas to produce methanol, the utilization ratio of hydrogen gas will reduce,the excessive hydrogen gas equal to inactive gas, which will be blow down in the process of circulate ,and it will also carry over the carbon monoxide and carbon dioxide, this will lead to the utilization ratio of carbon decrease and increase the operational consumption. So the key method is making the hydrogen-carbon ratio of the fresh synthetic gas of methanol optimized for the purpose of energy-saving. The chief method which is used to optimize the hydrogen-carbon ratio is add the carbon dioxide. Karamay Petrochemical Company Methanol plant used the innovative carbon addition technique of Methanol manufactured by natural gas added with exhaust gases from hydrogen producing.
     The main object in this paper is to research the conversion process and synthetic process in methanol producing in Karamay Methanol Factory, and applying the software of Aspen plus to simulate the whole process. This will change the present state which is only simulate one stage of methanol produced, and have better instructional significance in practice. At the first, the process units of methanol is analyzed in details and collect the production data which is recorded at the steady state, this will supply the adequate preparation for the correct analogy calculation. Then some Aspen blocks are selected such as compressor、heater、cooler、equilibrium-reactor、separator、heat exchanger, that exist in the process of methanol produced, and the appropriate property method-Wilson activity coefficient method. Comparing the analog result with the collected data, it is to be found they are coincided perfectly, this testified that the analogy model is correct and reliable.
     Change the value of added exhaust gases from hydrogen producing which is within the process guideposts, then simulate them, at last get the result that the addition of the exhaust gases from hydrogen producing impact on the hydrogen-carbon ratio of Methanol production. Then use the best value of hydrogen-carbon ratio 2.05 as the target value of optimization, using Aspen plus sensitivity analysis tools, under the condition of different Natural gas volume, obtained transition temperature and pressure effect on the demanded value of the exhaust gases from hydrogen producing .Using MATLAB software,obtained the relationship of the demanded value of the exhaust gases from hydrogen producing under different temperature and pressure, and the relationship of the demanded value of the exhaust gases from hydrogen producing on the Natural gas volume ,transition temperature, transformation pressure , this will supply better instructional significance for Karamay Methanol plant in practice.
引文
[1]姚平经.化工过程系统工程[M].辽宁.大连理工大学出版社.1992.
    [2]孙岳明、陈志明.计算机辅助化工设计[M].北京.科学出版社.2000.
    [3]彭秉璞.化工系统分析与模拟[M].北京.化学工业出版社.1990.
    [4]宋维端等.甲醇工学[M].北京.化学工业出版社.1991.
    [5]化工易贸网.甲醇及下游市场论坛会议资料.2003.
    [6]克拉玛依甲醇厂甲醇装置操作规程.2006.2.
    [7]汪寿建.天然气综合利用技术[M].北京.化学工业出版社.2004.第二版.
    [8]张固.甲醇新鲜合成气氢碳比的优化方法探讨[J].化工设计.2004.14(5):6-10.
    [9]王生斌.天然气混合水煤气补碳生产甲醇的技术开发[J].煤气与热力. 2007.27(10):25-27.
    [10]Aspen plus用户指南[M].
    [11]Aspen Plus即学即用.大庆金桥信息技术工程有限公司.2000.11.
    [12]邢春发等.应用Aspen plus模拟天然气、空气、水蒸气制合成气反应[J].化工科技市场. 2008.31(4):22-23.
    [13]张斌等.天然气催化部分氧化模拟及性能分析[J].天然气工业. 2005. 25 (1) : 144~147.
    [14]郭继宁等.应用Aspen plus模拟甲烷、二氧化碳制合成气反应[J].化工科技市场. 2008.31(9):36-37.
    [15]周密等.Aspen plus模拟计算甲醇合成的平衡组成[J].煤化工.2008.139(6):30-33.
    [16]韩晓锋等.Aspen plus在甲醇合成中的应用[J].煤化工.1999.87(2):32-34.
    [17]孟庆军.甲醇合成过程的Aspen模拟[J].化肥设计.2005.43(6):8-12.
    [18] Uwe Hoèmmerich ,Design and optimization of combined pervaporation/distillation processes for the production of MTBE. [J] Journal of Membrane Science 146 (1998) 53-64.
    [19] C.A. Cardona Alzatea,et. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. [J]Energy 31 (2006) : 2447–2459.
    [20]石东坡.甲醇双塔精馏流程的模拟与分析[J].广州化工. 2009.37(5):202-204.
    [21]杨玉和等.合成氨系统反应温度对能耗影响模拟研究[J].天然气化工.2005.30(5):19-22.
    [22]刘佳、黄伟.合成气一步法制二甲醚吸收塔的模拟研究[J].煤化工.2009.142(3):7-10.
    [23]高军虎等.煤基费托合成尾气流向变换自热式转化制合成气[J].天然气化工.2008.33(3):1-7.
    [24]龚盛昭、李仕梅.二甲醚生产过程甲醇回收塔的计算机优化[J].广东轻工职业技术学院学报. 2005.4(2):7-10.
    [25]克拉玛依甲醇初设.中国华陆工程公司.2004.
    [26]Aspen plus 10.0单元操作模型.PDF.
    [27]梅安华.小合成氨厂工艺设计与技术手册[M].北京.化学工业出版社.1996.
    [28] ]Aspen plus 10.0物性方法和模型
    [29]许国根、许萍萍.化学化工中的数学方法及MATLAB实现[M].北京.化学工业出版社.2008.
    [30]袁一、曾宪龙.大型氨厂合成氨生产工艺[M].北京.化学工业出版社.1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700