离子液体中分子有序组合体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂的自组装是一门重要学科,在材料制备、药物载体、分离、制药以及分散等领域都有着重要的应用。近些年,表面活性剂分子在离子液体中形成的聚集体引起了各国研究者的极大兴趣,这主要是基于离子液体独一无二的优良性质。离子液体具有特殊的物理化学性质,如低挥发性,宽的电化学窗口,不可燃性,高热稳定性以及宽泛的液态范围等。与传统的挥发性有机溶剂相比,离子液体被誉为环境友好溶剂,这主要是由于它们的不挥发性可以阻止对环境的污染。离子液体已经被广泛的应用于有机合成,化学分离,纳米材料制备以及聚合物导电凝胶等领域。它们的性质可以通过调整阴离子、阳离子以及阳离子上取代基的改变来满足不同的需要。离子液体中的表面活性剂分子的自组装的重要意义在于它们不仅可以在离子液体中增溶很多物质,而且可以扩展离子液体的应用。
     本论文主要研究的是表面活性剂在离子液体中形成的聚集体的物理化学性质。论文的主要内容如下:
     第一章主要介绍了当前工作的研究背景,回顾了表面活性剂和离子液体的发展历程,接下来又对表面活性剂在离子液体中形成的聚集体的研究现状进行了简单的概述,为本论文的研究提供了理论基础和技术支持。最后,阐述了本论文选题的科学意义。
     第二章主要研究了离子液微乳液的微观性质。首先,研究了1-丁基-3-甲基咪唑四氟硼酸盐(bmimBF_4)、非离子表面活性剂辛基苯基聚氧乙烯醚(TX-100)以及甲苯三元体系的相行为,然后用传统的电导方法划分出了bmimBF_4/甲苯(IL/O)、双连续以及甲苯/bmimBF_4(O/IL)三个微乳液的微观结构区域。动态光散射(DLS)也证实了离子液微乳液的形成。我们通过紫外光谱研究了IL/O微乳液的微观极性,用甲基橙(MO)和亚甲基蓝(MB)作为吸收探针。研究结果表明离子液微乳液的微观极性随着bmimBF_4含量的增加而增大,但是当离子液池形成以后,微乳液中离子液池的体积随bmimBF_4含量的增加而增大但是极性不变。此外,紫外光谱也表明了无机盐Ni(NO_3)_2,CoCl_2,CuCl_2和生物大分子核黄素都能增溶到当前研究的IL/O的微乳液液滴中。接下来用微量热的方法研究了IL/环己烷微乳液的液滴之间相互作用的第二维利系数。离子液微乳液的稀释热用等温滴定量热(ITC)得到,基于硬球相互作用潜能假设理论和一个二次多项式,液滴之间相互作用的第二维利系数就可以通过稀释热和离子液微乳液液滴的数量密度得到。这样得到的第二维利系数的正确性用不同的IL/环己烷微乳液(含无机盐和不含无机盐的)的电导阈值进行了证明。所求得的第二维利系数带来的信息表明离子液微乳液液滴之间的相互作用要远远大于传统微乳液的,这可能是由离子液微乳液的大粒径所导致的。
     第三章主要研究了极性溶剂的加入对离子液微乳液微结构的影响。首先研究了以三乙胺做为连续相的新型离子液微乳液中,三乙胺不仅是一种有机溶剂,同时也是一种Lewis碱,可以作为催化剂,也可以参加很多有机反应。在当前的微乳液中,bmimBF_4液滴被碱性环境包围着,因此它在作为碱性催化反应的微反应器等方面有重要的潜在应用。其次我们研究了少量水的加入对离子液微乳液的影响。紫外光谱表明,加入的水分子不存在微乳液的离子液池中,红外光谱也证明了这个结果。核磁谱图分析进一步表明加入的水分子增溶在连续相三乙胺中,并在周围环境中释放出OH~-。少量的OH~-也能够进入到离子液微乳液的栅栏层中,因此得到了OH~-的连续界面。然后研究了用离子液微乳液制备金属材料的可能性,结果表明,在形成的离子液微乳液中可以制备金属氧化物以及氢氧化物,而这在传统的微乳液中是不可能得到的。接下来研究了分子量为400的聚乙二醇(PEG-400)的加入对bmimBF_4/TX-100/环己烷离子液微乳液微结构的影响。研究发现,随着PEG-400的加入,导致了离子液微乳液液滴的尺寸呈线性增长,这与胶束溶胀的现象是一致的,表明PEG-400仅仅增溶到了离子液微乳液的极性核的内部。红外光谱分析证实了加入的PEG-400减小了TX-100的EO基团的氧原子和bmimBF_4的咪唑阳离子之间正电荷的静电作用力。同时,PEG-400的氧原子也与咪唑正离子存在相互作用。这些结果表明有少量的PEG-400也进入到了离子液微乳液的栅栏层中。电导实验说明,离子液微乳液的电导值随着PEG-400的加入而降低,这是因为绝缘的PEG-400的加入稀释了导电的极性核,表明PEG-400仅仅增溶到了离子液微乳液的内部,粘度实验也证实了这个结果。
     第四章研究了阳离子氟表面活性剂(FC-4)在1-丁基-3-甲基咪唑类离子液体中的聚集行为。首先研究了FC-4在bmimBF_4和bmimPF_6中不同温度时的表面张力曲线,得到了一系列的表面性质,包括吸附效率(pC_(20)),表面压(Π_(cmc)),饱和吸附量(Γ_(max))以及油水界面的最小分子截面积(A_(min))。通过比较氟表面活性剂和传统的碳氢表面活性剂,我们发现氟表面活性剂在离子液体中的表面活性要远远优于传统的碳氢表面活性剂在其中的表面活性。通过CAC与温度的关系,我们计算出了聚集体形成的热力学参数。这些热力学参数表明FC-4在bmimBF_4中形成的聚集体是传统的胶束,但是FC-4在bmimPF_6中形成的聚集体是溶液中离散的FC-4分子形成的纳米液滴,核磁结果也进一步证实了上述结论。接下来,我们又研究了FC-4在bmimTf_2N中的聚集行为。表面张力、FF-TEM电镜、~(19)F-NMR、~1H-NMR和FT-IR实验一致表明:ⅰ)FC-4阳离子与Tf_2N阴离子形成了电子对,ⅱ)离子对通过联合形成预胶束,ⅲ)到临界胶束浓度(CMC)时预胶束转变为胶束。通过CMC与温度的关系得到胶束形成的热力学参数表明,表面活性剂疏水尾巴与bmimTf_2N的疏溶剂作用力比其他离子液体要小得多,这也就说明了为什么其他表面活性剂在bmimTf_2N中难以形成胶束。FC-4能够在bmimTf_2N中形成聚集体则归咎于表面活性剂阳离子和离子液阴离子之间形成的离子对。
The self-assembly of surfactant molecules is of fundamental interest and is important in many applications such as nanomaterial synthesis,drug delivery,separation,pharmaceutical formulation,and other dispersant technologies.Recently,aggregations of amphiphilic molecules in ionic liquids(ILs) have received more and more attention due to the attractive properties of ILs.ILs have special physical and chemical properties such as low volatility, wide electrochemical window,nonflammability,high thermal stability,and wide liquid range. Compared to traditional volatile organic solvents,ILs are regarded as environmentally benign solvents,since their nonvolatility can prevent environmental pollution.ILs have been widely applied in organic synthesis,chemical separation,nanomaterial preparation,and polymer gel electrolytes.Even though their properties can be modified to satisfy the requirements by suitable selection of cation,anion,and cation substituent,molecular assemblies formed in ILs are of great interest because the aggregates are expected to solubilize many insoluble substances in ILs and widen the IL applications.
     This dissertation is focused on the investigations of the physical and chemical properties of ionic liquid based surfactant aggregates.The outline and contents of this dissertation are as follows:
     Chapter one is a brief introduction of the research background of this work,in which a review of ILs and surfactant are present,and then the history and recent progress in the surfactant aggregates associated with ILs are reviewed from a worldwide angle of view.The objective and the scientific significance of this doctoral dissertation are also pointed out at the end of this part.
     In Chapter two,the micro-properties of IL microemulsions were investigated in detail. Firstly,the phase behavior of the 1-butyl-3-methylimidazolium tetrafluoroborate(bmimBF_4), p-octylpolyethylene glycol phenyl ether(TX-100) and toluene system was investigated and micro-regions of bmimBF_4-in-toluene(IL/O),bicontinuous and toluene-in-bmimBF_4(O/IL) were identified by traditional electrical conductivity measurements.Dynamic light scattering (DLS) revealed the formation of the IL microemulsions.The micropolarities of the IL/O microemulsions were investigated by the UV-Vis spectroscopy using the methyl orange(MO) and methylene blue(MB) as absorption probes.The results indicated that the polarity of the IL/O microemulsion increased only before the IL pools were formed,whereas a relatively fixed polar microenvironment was obtained in the IL pools of the microemulsions.Moreover, UV-Vis spectroscopy has also shown that ionic salt compounds such as Ni(NO_3)_2,COCl_2, CuCl_2 and biochemical reagent riboflavin could be solubilized into the IL/O microemulsion droplets.Then the second virial coefficient of the IL/ cyclohexane microemulsion was obtained using microcalorimetry.The dilution heat of the microemulsion solutions was measured by isothermal titration microcalorimetry(ITC) and the second virial coefficient was derived from the dilution heat and the number density of the IL microemulsion solutions, based on a hard-sphere interaction potential assumption and a function of the second-order polynomial.The validity of the second virial coefficient was confirmed by the percolation behavior of different ionic liquid microemulsion solutions of Triton X-100 in cyclohexane with or without added salts.The information of second virial coefficient shows that the interactions between ionic liquid microemulsion droplets are much stronger than those of traditional microemulsions,which may be attributed to the relatively larger size of the microemulsion droplets.
     In chapter three,the effects of polar solvents on the microstructure of IL microemulsions were studied.A novel IL microemulsion consisting of bmimBF_4 and Triton X-100 was prepared and triethylamine was used either as organic solvent or a Lewis base.The dispersed microdroplets of bmimBF_4 were surrounded by a base environment and thus are potentially useful as the microreactors for base-catalyzed reactions.The addition of small amounts of water to the IL microemulsions was intensively investigated.UV/Vis spectra first showed that the added water molecules did not appear in the IL pools of the microemulsions,which was then confirmed by FTIR spectra.~1H NMR spectroscopic analysis further indicated that the added water binds to the continuous triethylamine to form a surrounding OH~- base environment.Small amounts of the OH~- thus formed entered the palisade layers of the IL microemulsions and a continuous base interface was provided.The possibility of using the IL microemlusions to prepare metal materials was also discussed and the results indicated that it is possible for the microemulsions to prepare their metal hydroxides and additionally their oxide materials in the microemulsions,while it is impossible for these to be obtained in the traditional microemulsions.Then the effect of a common polymer,polyethylene glycol with molecular weight of 400(PEG-400) on the microstructure of bmimBF_4/TX-100/cyclohexane IL reverse microemulsion has been investigated.The addition of PEG-400 leaded to the linear increase of the microemulsion droplet size,in accordance with the observation of dispersed phase,showing that PEG-400 was only solubilized into the polar interior of the IL microemulsions.FTIR spectroscopic analysis indicated that the addition of PEG-400 decreased the electrostatic interaction between the oxygen atoms of OE units and the positive electrical charged imidazolium cation of bmimBF_4.At the same time,the oxygen atoms of PEG-400 can also interact with the imidazolium cation.These results suggested that small amounts of PEG-400 entered the palisade layers of the IL microemulsion.The conductivity of the IL reverse microemulsions was decreased owing to the dilution of conducting polar cores by the addition of insulative PEG-400,indicating that PEG-400 was only solubilized into the reverse IL microemulsion interior.The conclusion was further supported by viscosity measurement.
     In chapter four,aggregation behaviors of a fluorinated surfactant(FC-4) in 1-butyl-3-methylimidazolium ionic liquids were investigated.Firstly,the aggregation behavior of FC-4 was studied by surface tension measurements in bmimBF_4 and bmimPF_6 at various temperatures.A series of surface properties,including adsorption efficiency(pC_(20)), effectiveness of surface tension reduction(Π_(cmc)),maximum surface excess concentration (Γ_(max)) and minimum surface area/molecule(A_(min)) at the air-water interface were estimated. By comparing the fluorinated surfactant with traditional surfactants,we deduced that the surface activity of the fluorinated surfactant in ILs was superior to the activity of traditional surfactants.From the CAC values and their temperature dependence,we estimated the thermodynamic parameters of aggregate formation.The thermodynamic parameters indicate that the aggregate of FC-4 in bmimBF_4 is a traditional micelle,while the aggregate of FC-4 in bmimPF_6 is nano-droplets composed of FC-4 molecules segregated from the solution phase. These results were further confirmed by ~1H NMR measurements.Next,the aggregation behavior of FC-4 in bmimTf_2N was studied.Surface tension,freeze-fracture transmission electron microscopy,~(19)F-NMK,~1H-NMR and FT-IR measurements revealed thatⅰ) the FC-4 cation forms an ion-pair with the Tf_2N anion,ⅱ) the ion-pairs undergo association to form pre-micellar aggregates,andⅲ) the pre-micellar aggregates transform into micelles at the critical micelle concentration(CMC).The thermodynamic parameters for micelle formation derived from the temperature dependence of the CMC demonstrated that the solvophobic interaction between the solvophobic tails of the surfactant molecules is rather weak in bmimTf_2N compared with other ionic liquids,in accordance with the observation that surfactants do not readily form micelles in bmimTf_2N.The fact that FC-4 forms micelles in such an inconvenient solvent is attributed to the ion-pair formation between the surfactant cation and the ionic liquid anion.
引文
[1]Larsen,A.S.;Holbrey,J.D.;Tham,F.S.;Reed,C.A..Designing ionic liquids:imidazolium malts with inert carborane anions[J].J.Am.Chem.Soc.2000,122(30):7264-7272.
    [2]Chen,H.;Kwait,D.C.;Gonen,Z.S.;Weslowski,B.T.;Abdallah,D.J.;Weiss,R.G..Phase characterization and properties of completely saturated quaternary phosphonium salts.Ordered,room-temperature ionic liquids[J].Chem.Mater 2002,14(10):4063-4072.
    [3]Walden,P..Uber die molekulargrosse und elektrische leitfahigkeit einiger gesehmolzenen salze[J].Bull.Acad.Imper.Sci.(St.Petersburg) 1914,405-422.
    [4]Wilkes,J.S.;Levisky,J.A.;Wilson,R.A.;Hussey,C.L.Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry,spectroscopy and synthesis[J],Inorg.Chem.1982,21:1263-1264.
    [5]Wilkes,J.S.;Zaworotko,M.J.air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J].J.Chem.Soc.Chem.Commun.1992:965-967.
    [6]Fuller,J.;Carlin,R.T.;De Long,H.C.;Haworth,D.Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate-model for room-temperature molten salts[J].J.Chem.Soc.Chem.Commun.1994:299-300.
    [7]Bonhote,P.;Dias,A.P.;Papageorgiou,N.;Kalyanasundaram,K.;Gratzel,M.Hydrophobic,Highly Conductive Ambient-Temperature Molten Salts[J].Inorg.Chem.1996,35:1168-1178.
    [8]Koch,V.R.;Nanjundiah,C.;Battista,A.G.;Scrosati,B.The interfacial stability of Li with 2 new solvent-free ionic liquids-1,2-dimethyl-3-propylimidazolium imide and methide[J].J.Electrochem.Soc.1995,142:L116-L118.
    [9]Macfarlane,D.R.;Golding,J.;Forsyth,S.;Deacon,G.B.Low viscosity ionic liquids based on organic salts of the dicyanamide anion[J].Chem.Commun.2001:1430-1431.
    [10]Wang,Z.N.;Liu,F.;Gao,Y.A.;Zhuang,W.C.;Xu,L.M.;Han,B.X.;Li,G.Z.;Zhang,G.D.,Hexagonal liquid crystanlline phases formed in ternary systems of Brij97/water/ionic liquids[J].Langmuir 2005,21(11):4931-4937.
    [11]Welton,T..Room-temperature ionic liquids,solvents for synthesis and catalysis[J].Chem.Rev.1999,99(8):2071-2084.
    [12]Avery,T.D.;Jenkis,N.F.;Kimber,M.C.;Lupton,D.W.;Taylor,D.K..First examples of the catalytic asymmetric ring-opening of meso 1,2-dioxines utilising cobalt(Ⅱ) complexes with optically active tetradentate Schiff base ligands:formation of enantio-enriched cyclopropanes[J].Chem.Commun.2002,(1):28-29.
    [13]Zerth,H.M.;Leonard,N.M.;Mohan,R.S..Synthesis of homoallyl ethers via allylation of acetals in ionic liquids catalyzed by trimethylsilyl trifluoromethanesulfonate[J].Org.Lett.2003,5(1):55-57.
    [14]Huddieston,J.G.;Willauer,H.D.;Swauoski,R.P.;Visser,A.E.;Rogers K.D..Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction[J].Chem.Commun.1998,(16):1765-1766.
    [15]Anderson,J.L.;Ding,J.;Welton,T.;Armstong,D.W..Characterizing ionic liquids on the basis of multiple solvation interactions[J].J.Am.Chem.Soc.2002,124(47):14247-14254.
    [16]田中华,华贲,王键吉,刘琴,室温离子液体物理化学性质研究进展[J],化学通报2004,67:1-10.
    [17]Wang,P.;Zakeeruddion,S.M.;Comte,P.;Exnar,I.;Gratzel,M..Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells[J].J..Am.Chem.Soc.2003,125(5):1166-1167.
    [18]李汝雄,绿色溶剂—离子液体的合成与应用,化学工业出版社,2004.
    [19]Heintz,A.;Kulikov,D.V.;Verevkin,S.P.Thermodynamic Properties of Mixtures Containing Ionic Liquids.1.Activity Coefficients at Infinite Dilution of Alkanes,Alkenes,and Alkylbenzenes in 4-Methyl-n-butylpyridinium Tetrafluoroborate Using Gas-Liquid Chromatography[J].J.Chem.Eng.Data.2001,46:1526-1529.
    [20]Heintz,A.;Lehmann,J.K.;Wertz,C.Thermodynamic Properties of Mixtures Containing Ionic Liquids.3.Liquid-Liquid Equilibria of Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with Propan- 1-ol,Butan-1-ol,and Pentan-1-ol[J].J.Chem.Eng.Data.2003,48:472-474.
    [21]Heintz,A.;Kulikov,D.V.;Verevkin,S.P.Thermodynamic Properties of Mixtures Containing Ionic Liquids.2.Activity Coefficients at Infinite Dilution of Hydrocarbons and Polar Solutes in 1-Methyl-3-ethyl-imidazolium Bis(trifluoromethyl-sulfonyl) Amide and in 1,2-Dimethyl-3-ethyl-imidazolium Bis(trifluoromethyl-sulfonyl) Amide Using Gas-Liquid Chromatography[J].J.Chem.Eng.Data.2002,47:894-899.
    [22]Anderson,J.L.;Ding,J.;Welton,T.;Armstrong,D.W.Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions[J].J.Am.Chem.Soc.2002,124:14247-14254.
    [23]Wasserscheid,P.;Keim,W.Ionic liquids-New "Solutions" for Transition Metal Catalysis [J].Angew.Chem.Int.Ed.2000,39(21):3772-3789.
    [24]Zhao,D.B.;Wu,M.;Kou,Y.;Min,E.Z.Ionic Liquids:Applications in Catalysis[J].Catal.Today 2002,74(1-2):157-189.
    [25]Dupont,J.;de Souza,R.F.;Suarez,P.A.Z.Ionic Liquid(Molten Salt) Phase Organometallic Catalysis[J].Chem.Rev.2002,102(10):3667-3692.
    [26]Domanska,U.;Bogel-Lukasik,E.;Bogel-Lukasik,R.Solubility of 1-Dodecyl-3-methylimidazolium Chloride in Alcohols(C2-C12)[J].J.Phys.Chem.B 2003,107(8):1858-1863.
    [27]Scurto,A.M.;Aki,S.N.V.K.;Brennecke,J.F.Carbon Dioxide Induced Separation of Ionic Liquids and Water[J].Chem.Commun.2003,572-573.
    [28]Swatloski,R.P.;Visser,A.E.;Reichert,W.M.;Broker,G.A.;Farina,L.M.;Holbrey,J.D.;Rogers,R.D.Solvation of 1-Butyl-3-methylimidazolium Hexafluorophosphate in Aqueous Ethanol-A Green Solution for Dissolving 'Hydrophobic' Ionic Liquids[J].Chem.Commun.2001,2070-2071.
    [29]Lagrost,C.;Carrie,D.;Vaultier,M.;Hapiot,P.Reactivities of Some Electrogenerated Organic Cation Radicals in Room-Temperature Ionic Liquids:Toward an Alternative to Volatile Organic Solvents?[J].J.Phys.Chem.A 2003,107(5):745-752.
    [30]Buzzeo;M.C.;Evans,R.G.;Compton,R.G.Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry-A Review[J].ChemPhysChem 2004,5(8):1106-1120.
    [31]Zhou,Y.;Schattka,J.H.;Antonietti,M.Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique [J].Nano Lett.2004,4(3):477-481.
    [32]Wang,Y.;Yang,H.Synthesis of CoPt Nanorods in Ionic Liquids[J].J.Am.Chem.Soc.2005,127(15):5316-5317.
    [33]赵国玺,朱(王步)瑶。表面活性剂作用原理[M]。北京:中国轻工业出版社, 2003,1-7。
    [34]de Gennes,P.G.Soft Matter[J].Angew.Chem.Int.Ed.1992,31(7):842-845.
    [35]Evans,D.F.;Wennerstrom,H.The Colloid Domain Where Physics,Chemistry,Biology and Technology Meet[M].2nd ed.New York:Wiley-VCH,1999.
    [36]Oh,S.;Kizling,J.;Holmberg,K.Microemulsions as reaction media for the synthesis of sodium decyl sulfonate 1:Role of microemulsion composition[J].Colloid Surf.A 1995,97(2):169-179.
    [37]Spiro,M.;de Jesus,D.M.Nanoparticle catalysis in microemulsions:Oxidation of N,N-dimethyl-p-phenylenediamine by cobalt(Ⅲ) pentaammine chloride catalyzed by colloidal palladium in water/AOT/n-heptane microemulsions[J].Langmuir 2000,16(6):2464-2468.
    [38]Bonini,M.;Bardi,U.;Berti,D.;Neto,C.;Baglioni,P.A New Way to Prepare Nanostmctured Materials:Flame Spraying of Microemulsions[J].J.Phys.Chem.B.2002,106(24):6178-6183.
    [39]Lv,F.F.;Zheng,L.Q.;Tung,C.Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system[J].Inter.J.Pharm.2005,301(1):237-246.
    [40]Martino,A.;Kaler,E.W.Phase behavior and microstructure of nonaqueous microemulsions[J].J.Phys.Chem.1990,94(4):1627-1631.
    [41]Peng,S.;An,X.;Shen,W.Critical phenomenon of nonaqueous microemulsion(AOT/DMA/decane)[J].J.Colloid Interface Sci.2005,287(1):141.
    [42]Falcone,R.D.;Correa,N.M.;Biasutti,M.A.Silber,J.J.Properties of AOT Aqueous and Nonaqueous Microemulsions Sensed by Optical Molecular Probes[J].Langmuir 2000,16(7):3070-3076.
    [43]Ray,S.;Moulik,S.P.Dynamics and Thermodynamics of Aerosol OT-Aided Nonaqueous Microemulsions[J].Langmuir 1994,10(8):2511-2515.
    [44]Lopez-Cornejo,P.;Costa,S.M.B.Luminescence of Zinc Tetraphenylporphyrin in Ethylene Glycol-in-Oil Microemulsions[J].Langmuir 1998,14(8):2042-2049.
    [45]Schubert,K.V.;Lusvardi,K.M.;Kaler,E.W.Polymerization in nonaqueous microemulsions[J].Colloid Polym.Sci.1996,274(9):875-883.
    [46]Gao,H.X.;Li,J.C.;Han,B.X.;Chen,W.N.;Zhang,J.L.;Zhang,R.;Yan,D.D.Microemulsions with ionic liquid polar domains[J].Phys.Chem.Chem.Phys.2004,(6):2914-2916.
    [47]Eastoe,J.;Gold,S.;Rogers,S.E.;Paul,A.;Welton,T.;Heenan,R.K.;Grillo,I..Ionic liquid-in-oil mieroemulsions[J].J.Am.Chem.Soc.2005,127(20):7302-7303.
    [48]Chakrabarty,D.;Seth,D.;Chakraborty,A.;Sarkar,N..Dynamics of solvation and rotational relaxation of coumarin 153 in ionic liquid confined nanometer-sized microemulsion [J].J Phys.Chem.B.2005,109(12):5753-5758.
    [49]Gao,Y.A.;Voigt,A.;Hilfert,L.;Sundmacher,K.Nanodroplet Cluster Formation in Ionic Liquid Microemulsions[J].ChemPhysChem 2008,9(11):1603-1609
    [50]Gao,Y.A.;Hilfert,L.;Voigt,A.;Sundmacher,K.Decrease of Droplet Size of the Reverse Microemulsion 1-Butyl-3- methylimidazolium Tetrafluoroborate/Triton X-100/Cyclohexane by Addition of Water[J].J.Phys.Chem.B 2008,112(12):3711-3719.
    [51]Gao,Y.A.;Wang,S.Q.;Zheng,L.L.;Han,S.B.;Zhang,X.;Lu,D.M.;Yu,L.;Ji,Y.Q.;Zhang,G.Y.Microregion detection of ionic liquid microemulsions[J].J.Colloid Interface Sci.2006,301(2):612-616.
    [52]Gao,Y.A.;Zhang,J.;Xu,H.Y.;Zhao,X.Y.;Zheng,L.Q.;Li,X.W.;Yu,L.Structural Studies of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/p-Xylene Ionic Liquid Microemulsions[J].ChemPhysChem 2006,7(7):1554-1561.
    [53]Gao,Y.A.;Li,N.;Zheng,L.Q.;Zhao,X.Y.;Zhang,J.;Cao,Q.;Zhao,M.W.;Li,Z.;Zhang,G.Y.The Effect of Water on the Microstructure of 1-Butyl-3- methylimidazolium Tetrafluoroborate/TX-100/Benzene Ionic Liquid Microemulsions[J].Chem.Eur.J.2007,13(9):2661-2670.
    [54]Gao,Y.A.;Li,N.;Zheng,L.Q.;Bai,X.T.;Yu,L.;Zhao,X.Y.;Zhang,J.;Zhao,M.W.;Li,Z.Role of Solubilized Water in the Reverse Ionic Liquid Microemulsion of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/Benzene[J].J.Phys.Chem.B 2007,111(10):2506-2513
    [55]Zhao,M.W.;Zheng,L.Q.;Li,N.;Yu,L.Fabrication of hollow silica spheres in an ionic liquid microemulsion[J].Materials Letters2008,62(30):4591-4593.
    [56]Gao,Y.A.;Li,N.;Zhang,S.H.;Zheng,L.Q.;Li,X.W.;Dong,B.;Yu,L.Organic Solvents Induce the Formation of Oil-in-Ionic Liquid Microemulsion Aggregations[J].J.Phys.Chem.B 2009,113(5):1389-1395
    [57]Gao,Y.A.;Li,N.;Hilfert,L.;Zhang,S.H.;Zheng,L.Q.;Yu,L.Temperature -Induced Microstructural Changes in Ionic Liquid-Based Microemulsions[J].Langmuir 2009,25(3):1360-1365
    [58]Gao,Y.A.;Han,S.B.;Han,B.X.;Li,G.Z.;Shen,D.;Li,Z.H.;Du,J.M.;Hou,W.G.;Zhang,G.Y..TX-100/water/1-butyl-methylimidazolium hexafluorophosphate microemulsion[J].Langmuir 2005,21(13):5681-5684.
    [59]Li,Z.H.;Zhang,J.L.;Du,J.M.;Han,B.X.;Wang,J.Q.Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions[J].Colloids Surf.A,2006,286(1-3):117-120.
    [60]Seth,D.;Chakraborty,A.;Setua,P.;Sarkar,N.Interaction of Ionic Liquid with Water in Ternary Microemulsions(Triton X- 100AVater/1-Butyl-3-methylimidazolium Hexafluorophosphate) Probed by Solvent and Rotational Relaxation of Coumarin 153 and Coumarin 151[J].Langmuir 2006,22(18):7768-7775
    [61]Gao,Y.;Li,N.;Zheng,L.Q.;Zhao,X.Y.;Zhang,S.H.;Han,B.X.;Hou,W.G.;Li,G..Z.A cyclic voltammetric technique for the detection of micro-regions of bmimPF_6/Tween 20/H_2O microemulsions and their performance characterization by UV-Vis spectroscopy[J].Green Chemistry 2006,8(1):43-49.
    [62]Li,N.;Dong,B.;Yuan,W.L.;Gao,Y.A.;Zheng,L.Q.;Huang,Y.M.;Wang,S.L.ZrO2Nanoparticles Synthesized using Ionic Liquid Microemulsion[J].J.Dispe.Sci.Technol.2007,28(7):1030-1033.
    [63]Cheng,S.Q.;Zhang,J.L.;Zhang,Z.F.;Han,B.X.Novel microemulsions:ionic liquid-in-ionic liquid[J].Chem.Commun.2007,2497-2499.
    [64]Bloom,H.;Reinsborough,V.C..Cryoscopy in molten pyridium chloride solution[J].Aust.J.Chem.1967,(20):2583-2587.
    [65]Bloom,H.;Reinsborough,V.C.Surface Tensions and Densities of Solutions of Large Organic Ions in Molten Pyridinium Chloride[J].Aust.J.Chem.1968,21(6):1525-1530.
    [66]Reinsborough,V.C.;Valleau,J.P.Ultrasonic Studies in Molten Pyridinium Chloride Solutions[J].Aust.J.Chem.1968,21(12):2905-2911.
    [67]Reinsborough,V.C.An N.M.R.Study in Molten Pyridinium Chloride Solutions[J].Aust.J.Chem.1970,23(7):1473-1475.
    [68]Bloom H.,Reinsborough V.C.Viscosity and Conductance Micellar Studies in Molten Pyridinium Chloride[J].Aust.J.Chem.1969,22(3):519-525.
    [69]Evans,D.F.;Yamauchi,A.;Roman,R.;Casassa,E.Z..Micelle formation in ethylammounium nitrate,a low-melting fused salt[J].J.Colloid Interface Sci.1982,88(1):89-96.
    [70]Greavesa,T.L.Drummond,C.J.Ionic liquids as amphiphile self-assembly mediaw[J].Chem.Soc.Rev.2008,37(8):1709-1726.
    [71]Evans,D.F.;Yamauchi,A.;Wei,G.J.;Bloomfield,V.A.Micelle Size in Ethylammonium Nitrate As Determined by Classical and Quasi-Elastic Light Scattering[J].J.Phys.Chem.1983,87(18):3537-3541.
    [72]Velasco,S.B.;Turmine,M.;Caprio,D.D.;Letellier,P.Mieelle Formation in Ethyl-ammonium Nitrate(An Ionic Liquid)[J].Colloids Surf.A 2006,275(1-3):50-54.
    [73]Thomaier,S.;Kunz,W.Aggregates in Mixtures of Ionic Liquids[J].J.Mol.Liq.2007,130(1-3):104-107.
    [74]Araos,M.U.;Warr,G.G..Structure of nonionic surfactant micelles in the ionic liquid ethylammonium nitrate[J].Langmuir 2008,24(17):9354-9360.
    [75]Anderson,J.L.;Pino,V.;Hagberg,E.C.;Sheares,V.V.;Armstrong,D.W..Surfactant solvation effects and micelle formation in ionic liquids[J].Chem.Commun.2003,(19):2444-2445.
    [76]Tran,C.D.;Yu,S.F.Near-infrared Spectroscopic Method for the Sensitive and Direct Determination of Aggregations of Surfactants in Various Media[J].J.Colloid Interface Sci.2005,283(2):613-618.
    [77]Patrascu,C.;Gauffre,F.;Nallet,F.;Bordes,R.;Oberdisse,J.;de Lauth-Viguerie,N.;Mingotaud,C..Micelles in ionic liquids:aggreagation behavior of alkyl poly (ethyleneglycol)-ethers in 1-butyl-3methyl-imidazolium type ionic liquids[J].ChemPhysChem 2006,7(1):99-101.
    [78]Fletcher,K.A.;Pandey,S..Surfactant aggregation within Room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(tfifluoromethylsulfonyl)imide[J].Langmuir 2004,20(1):33-36.
    [79]Moniruzzaman,M.;Kamiya,N.;Nakashima,K.;Goto,M..Formation of reverse micelles in a room-temperature ionic liquid[J].ChemPhysChem 2008,9(5):689-692.
    [80]He,Y.Y.;Li,Z.B.;Simone,P.;Lodge,T.P..Self-assembly of block copolyner micelles in an ionic liquids[J].J.Am.Chem.Soc.2006,128(8):2745-2750.
    [81]Zhang,S.H.;Li,N.;Zheng,L.Q.;Li,X.W.;Gao,Y.A.;Yu,L..Aggregation behavior of pluronic triblock copolymer in 1-butyl-3-methylimidazolium type ionic liquids[J].J.Phys.Chem.B 2008,112(33):10228-10233.
    [82]Wu,J.P.;Li,N.;Zheng,L.Q.;Li,X.W.;Gao,Y.;Inoue,T.Aggregation Behavior of Polyoxyethylene(20) Sorbitan Monolaurate(Tween 20) in Imidazolium Based Ionic Liquids[J].Langmuir 2008,24(17):9314-9322
    [83]Li,N.;Zhang,S.H.;Zheng,L.Q.;Dong,B.;Li X.W.;Yu L.Aggregation behavior of long-chain ionic liquids in an ionic liquid[J].Phys.Chem.Chem.Phys.2008,10(30):4375-4377.
    [84]Gao,Y.A.;Li,N.;Li,X.W.;Zhang,S.H.;Zheng,L.Q.;Bai,X.T.;Yu,L.Microstructures of Micellar Aggregations Formed within 1-Butyl-3- methylimidazolium Type Ionic Liquids[J].J.Phys.Chem.B 2009,113(1),123-130
    [85]Kimizuka,N.;Nakashima,T..Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels[J].Langmuir 2001,17(22):6759-6761.
    [86]Nakashima,T.;Kimizuka,N..Vesicles in salt:formation of bilayer membranes from dialkyldimethylammonium bromides in ether-containing ionic liquids[J].Chem.Lett.2002,31(10):1018-1019.
    [87]Kimizuka N.Self-assembly in Mesoscopic Dimension and Artificial Supramolecular Membranes[J].Curr.Opin.Chem.Biol.,2003,7(6):702-709.
    [88]Hao,J.C.;Song,A.X.;Wang,J.Z.;Chen,X.;Zhuang,W.C.;Shi,F.;Zhou,F.;Liu,W.M..Self-assembled strucuture in room-temperature ionic liquids[J].Chem.Eur.J.2005,11(13):3936-3940.
    [89]Evans,D.F.;Kaler,E.W.;Benton,W.J..Liquid crystals in a fused salt: b,g-distearoylphosphotidylcholine in N-ethylammounium nitrate[J].J.Phys.Chem.1983,87(4):533-535.
    [90]Wang,L.Y.;Chen,X.;Chai,Y.C.;Hao,J.C.;Sui,Z.M.;Zhuang,W.C.;Sun,Z.W..Lyotropic liquid crystalline phases formed in an ionic liquid[J].Chem.Commun.2004,(24):2840-2841.
    [91]Zhang,G.D.;Chen,X.;Zhao,Y.R.;Ma,F.M.;Jing,B.;Qiu,H.Y..Lyotropic liquid-crystalline phases formed by Pluronic P123 in ethylammonium nitrate[J].J.Phys.Chem.B 2008,112(21):6578-6584
    [92]Zhuang,W.C.;Chen,X.;Cai,J.G.;Zhang,G.D.;Qiu,H.Y..Characterization of lamellar phases fabricated from Brij-30/water/1-butyl-3-methylimidazolium salts ternary systems by small-angle X-ray scattering[J].Colloids Surf.A 2008,318(1-3):175-183.
    [93]Friberg,S.E.;Yin,Q.;Pavel,F.;Mackay,R.A.;Holbrey,J.D.;Seddon,K.R.;Aikens,P.A..Solubilization of an ionic liquid,1-butyl-3-methylimidazolium hexafluorophosphate,in a surfactant-water system[J].J.Disper.Sci.Technol.2000,21(2):185-197.
    [94]Wang,Z.N.;Liu,F.;Gao,Y.A.;Zhuang,W.C.;Xu,L.M.;Han,B.X.;Li,G.Z.;Zhang,G.D..Hexagonal liquid crystanlline phases formed in ternary systems of Brij97/water/ionic liquids[J].Langmuir 2005,21(11):4931-4937.
    [95]Greaves T.L.,Weerawardena A.,Fong C.,Drummond C.J.Many Protic Ionic Liquids Mediate Hydrocarbon-Solvent Interactions and Promote Amphiphile Self-Assembly[J].Langmuir,2007,23(2):402-404.
    [96]He,Y.Y.;Lodge,T.P.A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid[J].Chem.Commun.2007,2732-2734
    [97]He,Y.Y.;Lodge,T.P.Thermoreversible Ion Gels with Tunable Melting Temperatures from Triblock and Pentablock Copolymers[J].Macromolecules 2008,41(1):167-174.
    [1]Gao,Y.A.;Han,S.B.;Han,B.X.;Li,G.Z.;Shen,D.;Li,Z.H.;Du,J.M.;Hou,W.G.TX-100 /water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsion[J].Langmuir 2005,21(13):5681- 5684.
    [2]Oh,S.;Kizling,J.;Holmberg,K.Microemulsions as reaction media for the synthesis of sodium decyl sulfonate 1:Role of microemulsion composition[J].Colloids Surf.A 1995,97(2):169-179.
    [3]Spiro,M.;de Jesus,D.M.Nanoparticle catalysis in microemulsions:Oxidation of N,N-dimethyl-p-phenylenediamine by cobalt(Ⅲ) pentaammine chloride catalyzed by colloidal palladium in water/AOT/n-heptane microemulsions[J].Langmuir 2000,16(6):2464-2468.
    [4]Bonini,M.;Bardi,U.;Berti,D.;Neto,C.;Baglioni,P.A New Way to Prepare Nanostructured Materials:Flame Spraying of Microemulsions[J].J.Phys.Chem.B.2002,106(24):6178-6183.
    [5]Lv,F.F.;Zheng,L.Q.;Tung,C.Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system[J].Inter.J.Pharm.2005,301(1):237-246.
    [6]Martino,A.;Kaler,E.W.Phase behavior and microstructure of nonaqueous microemulsions[J].J.Phys.Chem.1990,94(4):1627-1631.
    [7]Peng,S.;An,X.;Shen,W.Critical phenomenon of nonaqueous microemulsion(AOT/DMA/decane)[J].J.Colloid Interface Sci.2005,287(1):141.
    [8]Falcone,R.D.;Correa,N.M.;Biasutti,M.A.Silber,J.J.Properties of AOT Aqueous and Nonaqueous Microemulsions Sensed by Optical Molecular Probes[J].Langmuir 2000,16(7):3070-3076.
    [9]Ray,S.;Moulik,S.P.Dynamics and Thermodynamics of Aerosol OT-Aided Nonaqueous Microemulsions[J].Langmuir 1994,10(8):2511-2515.
    [10]Lopez-Cornejo,P.;Costa,S.M.B.Luminescence of Zinc Tetraphenylporphyrin in Ethylene Glycol-in-Oil Microemulsions[J].Langmuir 1998,14(8):2042-2049.
    [11]Schubert,K.V.;Lusvardi,K.M.;Kaler,E.W.Polymerization in nonaqueous microemulsions[J].Colloid Polym.Sci.1996,274(9):875-883.
    [12]Welton,T.Solvents for Synthesis and Catalysis[J].Chem.Rev.1999,99(8):2071-2084.
    [13]Kazarian S.G.;Briscoe B.J.;Welton T.Combining Ionic Liquids and Supercritical Fluids:in Situ ATR-IR Study of CO_2 Dissolved in Two Ionic Liquids at High Pressures[J].Chem.Commun.,2000,(20):2047-2048.
    [14]Gao,H.X.;Li,J.C.;Han,B.X.;Chen,W.N.;Zhang,J.L.;Zhang,R.;Yan,D.D.Microemulsions with ionic liquid polar domains[J].Phys.Chem.Chem.Phys.2004,6(11) 2914-2916.
    [15]Anderson,J.L.;Ding,J.;Welton,T.;Armstrong,D.W.Characterizing ionic liquids on the basis of multiple solvation interactions[J].J.Am.Chem.Soc.2002,124(47):14247-14254.
    [16]Anderson,J.L.;Pino,V.;Hagberg,E.C.,Sheares,V.V.,Armstrong,D.W.Surfactant solvation effects and micelle formation in ionic liquids[J].Chem.Commun.2003,2444-2445.
    [17]Huddleston,J.G.;Willauer,H.D.,Swatloski,R.P.,Visser,A.E.;Rogers,R.D.Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction[J].Chem.Commun.1998,1765-1766.
    [18]Dickinson,E.V.;Williams,M.E.;Hendrickson,S.M.;Masui,H.;Murray,R.W.Hybrid Redox Polyether Melts Based on Polyether-Tailed Counterions[J].J.Am.Chem.Soc.1999,121(4):613-616.
    [19]Kimizuka,N.;Nakashima,T.Spontaneous Self-Assembly of Glycolipid Bilayer Membranes in Sugar-philic Ionic Liquids and Formation of Ionogels[J].Langmuir 2001,17(22):6759-6761.
    [20]Nakashima,T.;Kimizuka,N.Interfacial Synthesis of Hollow TiO_2 Microspheres in Ionic Liquids[J].J.Am.Chem.Soc,2003,125(21):6386-6387.
    [21]Camper,D.;Scovazzo,P.;Koval,C.;Noble,R.Gas Solubilities in Room-Temperature Ionic Liquids[J].Ind.Eng.Chem.Res.2004,43(12):3049-3054.
    [22]Eastoe,S.;Gold,S.E.;Rogers,A.;Paul,T.;Welton,R.K.;Heenan,I.G.Ionic Liquid-in-Oil Microemulsions[J].J.Am.Chem.Soc.2005,127(20):7302-7303.
    [23]Chakrabarty,D.;Seth,D.;Chakraborty,A.;Sarkar,N.Dynamics of Solvation and Rotational Relaxation of Coumarin 153 in Ionic Liquid Confined Nanometer-Sized Microemulsions[J].J.Phys.Chem.B.2005,109(12):5753-5758.
    [24]Yan,F.;Texter,J.Surfactant ionic liquid-based microemulsions for polymerization[J].Chem Commun.2006,2696-2698.
    [25]Zhu,D.M.;Wu,X.;Schelly,Z.A.Investigation of the micropolarities in reverse micelles of Triton X-100 in mixed solvents of benzene and n-hexane[J].J.Phys.Chem.1992,96(17):7121-7126.
    [26]Qi,L.;Ma,J.Investigation of the microenvironment in nonionic reverse micelles using methyl orange and methylene blue as absorption probes[J].J.Colloid Interface Sci.1998,197(1):36-42.
    [27]Zhu,D.M.;Schelly,Z.A.Investigation of the microenvironment in Triton X-100reverse micelles in cyclohexane,using methyl orange as a probe[J].Langmuir 1992,8(1):48-50.
    [28]Pramanick,D.;Mukherjee,D.Molecular Interaction of Methylene Blue with Triton X-100 in Reverse Micellar Media[J].J.Colloid Interface Sci.1993,157(1):131-134.
    [29]Khmelnitsky,Y.L.;Hock,A.V.;Veeger,C.A.;Visser,J.W.G.Detergentless microemulsions as media for enzymatic reactions:spectroscopic and ultracentrifugation studies[J].J.Phys.Chem.1989,93(2):872-878.
    [30]Plucinsk,P.;Nistsch,W.Kinetics of inteffacial phenylalanine solubilization in a liquid/liquid microemulsion system[J].J.Phys.Chem.1993,97(35):8983-8998.
    [31]Lavallee,D.K.;Huggins,E.;Lee,S.Kinetics and mechanism of the hydrolysis of chlorophyll a in ternary solvent microemulsion media[J].Inorg.Chem.1982,21(4):1552-1553.
    [32]Varshney,M.;Morey,T.E.;Shah,D.O.;Flint,J.A.;Moudgil,B.M;Seubert,C.N.;Dennis,D.M.Pluronic Microemulsions as Nanoreservoirs for Extraction of Bupivacaine from Normal Saline[J].J.Am.Chem.Soc.2004,126(16):5108-5112.
    [33]Ghosh,H.N.;Adhikari,S.Trap State Emission from TiO_2 Nanoparticles in Microemulsion Solutions[J].Langmuir 2001,17(13):4129-4130.
    [34]Summers,M.;Eastoe,J.;Davis,S.Formation of BaSO4 Nanoparticles in Microemulsions with Polymerized Surfactant Shells[J].Langmuir 2002,18(12):5023-5026.
    [35]Yin,Z.L.;Sakamoto,Y.;Yu,J.L.;Sun,S.X.;Terasaki,O.;Xu,R.R.Microemulsion-Based Synthesis of Titanium Phosphate Nanotubes via Amine Extraction System[J].J.Am.Chem.Soc.2004,126(29):8882-8883.
    [36]Khomane,R.B.;Manna,A.A.;Mandale,B.;Kulkarni,B.D.Synthesis and Characterization of Dodecanethiol-Capped Cadmium Sulfide Nanoparticles in a Winsor ⅡMicroemulsion of Diethyl Ether/AOT/Water[J].Langmuir 2002,18(21):8237-8240.
    [37]Modes,S.;Lianos,P.Luminescence probe study of the conditions affecting colloidal semiconductor growth in reverse micelles and water-in-oil microemulsions[J],J.Phys.Chem.1989,93(15):5854-5859.
    [38]Zhang,J.L.;Xiao,M.;Liu,Z.M.;Han,B.X.;Jiang,T.;He,J.;Yang,G.Y.Preparation of ZnS/CdS composite nanoparticles by coprecipitation from reverse micelles using CO_2 as antisolvent[J].J.Colloid Interface Sci.2004,273(1):160-164.
    [39]Gao,Y..;Li,N.;Zheng,L.Q.;Zhao,X.Y.;Zhang,S.H.;Han,B.X.;Hou,W.G.;Li,G..Z.A cyclic voltammetric technique for the detection of micro-regions of bmimPF_6/Tween 20/H_2O microemulsions and their performance characterization by UV-Vis spectroscopy[J].Green Chemistry 2006,8(1):43-49.
    [40]Meziani,M.J.;Sun,Y.P.Spectrophotometry Study of Aqueous Salt Solution in Carbon Dioxide Microemulsions[J].Langmuir 2002,18(10):3787-3791.
    [41]Sherwood,E.;Prausnitz,J.M.Third Virial Coefficient for the Kihara,Exp-6,and Square-Well Potentials[J].J.Chem.Phy.1964,41(2):413-428.
    [42]Kurnaz,M.L.;Maher,J.V.Measurement of the second virial coefficient for the interaction of dilute colloidal particles in a mixed solvent[J].Phys.Rev.E.1997,55(1):572-576.
    [43]Chen,W.Y.;Kuo,C.S.;Liu,D.Z.Determination of the Second Virial Coefficient of the Interaction between Microemulsion Droplets by Microcalorimetry[J].Langmuir 2000,16(2):300-302.
    [44]Liu,D.Z.;Chen,W.Y.;Tasi,L.M.;Yang,S.P.Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles[J].Colloids Surf.A.2000,172(1-3):57-67.
    [45]Huang,S.L.;Lin,F.Y.;Yang,C.P.Microcalorimetric studies of the effects on the interactions of human recombinant interferon-α2a[j].Eur.J.Pharm.Sci.2005,24(5):545-552.
    [46](A|¨)lvarez,E.;Garcia-Rio,L.;Mejuto,J.C.;Navaza,J.M.;Perez-Juste,J.Effects of Temperature on the Conductivity of AOT/Isooctane/Water Microemulsions.Influence of Salts[J].J.Chem.Eng.Data.1999,44(4):850-853.
    [47]Mehta,S.K.;Sharma,S.Temperature-induced percolation behavior of AOT reverse micelles affected by poly(ethylene glycol)s[J].J.Colloid Interf.Sci.2006,296(2):690-699.
    [48]Gao,Y.A.;Zhang,J.;Xu,H.Y.;Zhao,X.Y.;Zheng,L.Q.;Li,X.W.;Yu,L.Structural Studies of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/p-Xylene Ionic Liquid Microemulsions[J].ChemPhysChem 2006,7(7):1554-1561.
    [49]Li,N.;Gao,Y.A.;Zheng,L.Q.;Zhang,J.;Yu,L.;Li,X.W.Studies on the Micropolarities of bmimBF4/TX-100/Toluene Ionic Liquid Microemulsions and Their Behaviors Characterized by UV-Visible Spectroscopy[J].Langmuir 2007,23(3):1091-1097.
    [50]Jada,A.;Lang,J.;Zana,R.Relation between electrical percolation and rate constant for exchange of material between droplets in water in oil microemulsions[J].J.Phys.Chem.1989,93(1):10-12.
    [51]Jada,A.;Lang,J.;Zana,R.;Makhloufi,R.;Hirsch,E.;Candau,S.J.Ternary water in oil microemulsions made of cationic surfactants,water,and aromatic solvents.2.Droplet sizes and interactions and exchange of material between droplets[J].J.Phys.Chem.1990,94(1):387-395.
    [1]Gao,H.X.;Li,J.C.;Han,B.X.;Chen,W.N.;Zhang,J.L.;Zhang,R.;Yan,D.D.Microemulsions with ionic liquid polar domains[J].Phys.Chem.Chem.Phys.2004,6(11) 2914-2916.
    [2]Eastoe,S.;Gold,S.E.;Rogers,A.;Paul,T.;Welton,R.K.;Heenan,I.G.Ionic Liquid-in-Oil Microemulsions[J].J.Am.Chem.Soc.2005,127(20):7302-7303.
    [3]Chakrabarty,D.;Seth,D.;Chakraborty,A.;Sarkar,N.Dynamics of Solvation and Rotational Relaxation of Coumarin 153 in Ionic Liquid Confined Nanometer-Sized Microemulsions[J].J.Phys.Chem.B.2005,109(12):5753-5758.
    [4]Gao,Y.A.;Zhang,J.;Xu,H.Y.;Zhao,X.Y.;Zheng,L.Q.;Li,X.W.;Yu,L.Structural Studies of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/p-Xylene Ionic Liquid Microemulsions[J].ChemPhysChem 2006,7(7):1554-1561.
    [5]Li,N.;Gao,Y.A.;Zheng,L.Q.;Zhang,J.;Yu,L.;Li,X.W.Studies on the Micropolarities of bmimBF4/TX-100/Toluene Ionic Liquid Microemulsions and Their Behaviors Characterized by UV-Visible Spectroscopy[J].Langmuir 2007,23(3):1091-1097.
    [6]G-ao,Y.A.;Li,N.;Zheng,L.Q.;Zhao,X.Y;Zhang,J.;Cao,Q.;Zhao,M.W.;Li,Z.;Zhang,G Y.The Effect of Water on the Mierostructure of 1-Butyl-3- methylimidazolium Tetrafluoroborate/TX-100/Benzene Ionic Liquid Microemulsions[J].Chem.Eur.J.2007,13(9):2661-2670.
    [7]Gao,Y.A.;Li,N.;Zheng,L.Q.;Bai,X.T.;Yu,L.;Zhao,X.Y.;Zhang,J.;Zhao,M.W.;Li,Z.Role of Solubilized Water in the Reverse Ionic Liquid Microemulsion of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/Benzene[J].J.Phys.Chem.B 2007,111(10):2506-2513
    [8]Friberg,S.E.;Podzimek,M.A non-aqueous microemulsion[J].Colloid Polym.Sci.1984,262(3):252-253.
    [9]Rico,I.;Lattes,A.Nouv.J.Chim.1984,8(7):429-431.
    [10]Martino,A.;Kaler,E.W.Phase behavior and microstructure of nonaqueous microemulsions[J].J.Phys.Chem.1990,94(4):1627-1631.
    [11]Friberg,S.E.;Liang,Y.C.Critical phenomena in nonaqueous microemulsions[J]. Colloids surf.1987,24(4):325-336.
    [12]Rico,I.;Lattes,A.Waterless microemulsions.2.Use of formamide in place of water in the preparation of large monophasic areas of perfluorinated microemulsions[J].J.Colloid Interface Sci.1984,102(1):285-287.
    [13]Falcone,R.D.;Correa,N.M.;Biasutti,M.A.Silber,J.J.Properties of AOT Aqueous and Nonaqueous Microemulsions Sensed by Optical Molecular Probes[J].Langmuir 2000,16(7):3070-3076.
    [14]Li,Z.H.;Zhang,J.L.;Du,J.M.;Han,B.X.;Wang,J.Q.Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions[J].Colloid Surf.A,2006,286(1-3):117-120.
    [15]Li,N.;Dong,B.;Yuan,W.L.;Gao,Y.A.;Zheng,L.Q.;Huang,Y.M.;Wang,S.L.ZrO_2Nanoparticles Synthesized using Ionic Liquid Microemulsion[J].J.Disper.Sci.Technol.2007,28(7):1030-1033.
    [16]Welton,T.Solvents for Synthesis and Catalysis[J].Chem.Rev.1999,99(8):2071-2084.
    [17]Huddleston,J.G;Willauer,H.D.,Swatloski,R.P.,Visser,A.E.;Rogers,R.D.Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction[J].Chem.Commun.1998,1765-1766.
    [18]Dickinson,E.V.;Williams,M.E.;Hendrickson,S.M.;Masui,H.;Murray,R.W.Hybrid Redox Polyether Melts Based on Polyether-Tailed Counterions[J].J.Am.Chem.Soc.1999,121(4):613-616.
    [19]Mele,A.;Tran,C.D.;Lacerda,S.H.D.The Structure of a Room-Temperature Ionic Liquid with and without Trace Amounts of Water:The Role of C—H—O and C—H…F Interactions in 1-n-Butyl-3-Methylimidazolium Tetrafluoroborate[J].Angew.Chem.Int.Ed.,2003,42(36):4364-4366.
    [20]Huang,J.F.;Chen,P.Y.;Sun,I.W.;Wang,S.P.NMR evidence of hydrogen bonding in 1-ethyl-3-methylimidazolium-tetrafluoroborate room temperature ionic liquid[J].Inorg.Chim.Acta.,2000,320(1-2):7-11.
    [21]Nama,D.;Kumar,P.G A.;Pregosin,P.S.;Geldbach,T.J.;Dyson,P.J.~1H,~(19)F-HOESY and PGSE diffusion studies on ionic liquids:The effect of co-solvent on structure[J].Inorg.Chim.Acta.2006,359(6):1907-1911.
    [22]Lynden-Bell,R.M.;Atamas,N.A.;Vasilyuk,A.;Hanke,C.G.Chemical potentials of water and organic solutes in imidazolium ionic liquids:a simulation study[J].Molecular Physics,2002,100(20):3225-3229.
    [23]Abraham,M.H.;Zissimos,A.M.;Huddleston,J.G;Willauer,H.D.;Rogers,R.D.;Aeree,W.E Some novel liquid partitioning systems:Water-ionic liquids and aqueous biphasic systems[J].Ind.Eng.Chem.Res.2003,42(3):413-418.
    [24]Noda,A.;Hayamizu,K.;Watanabe,M.Pulsed-Gradient Spin-Echo ~1H and ~(19)F NMR Ionic Diffusion Coefficient,Viscosity,and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids[J].J.Phys.Chem.B,2001,105(20):4603-4610.
    [25]Tasaki,K.Poly(oxyethylene)-Water Interactions:A Molecular Dynamics Study[J].J.Am.Chem.Soc.1996,118(35):8459-8469.
    [26]Brinldey,P.L.;Gupta,R.B.Hydrogen bonding with aromatic tings[J].AIChE J 2001,47(4):948-953.
    [27]Jain,T.K.;Varshney,M.;Maitra,A.Structural studies of Aerosol OT reverse micellar aggregates by FT-IR spectroscopy[J].J.Phys.Chem.1989,93(21):7409-7416.
    [28]Zhou,N.F.;Li,Q.;Wu,J.;Chen,J.;Weng,S.;Xu,G.Spectroscopic Characterization of Solubilized Water in Reversed Micelles and Microemulsions:Sodium Bis(2-ethylhexyl)Sulfosuccinate and Sodium Bis(2-ethylhexyl) Phosphate in n-Heptane[J].Langmuir 2001,17(15):4505-4509.
    [29]Zeng,H.X.;Li,Z.P.;Wang,H.Q.Physical chemistry property of water/TX-100/hexanol/octane reverse microemulsion[J].Acta Physico-Chimica Sinica,1999,15(6):522.
    [30]Zhou,G.W.;Li,G.Z.;Chen,W.J.Fourier Transform Infrared Investigation on Water States and the Conformations of Aerosol-OT in Reverse Microemulsions[J].Langmuir 2002,18(12):4566-4571.
    [31]Li,Q.;Weng,S.F.;Wu,J.G.;Zhou,N.F.Comparative Study on Structure of Solubilized Water in Reversed Micelles.1.FT-IR Spectroscopic Evidence of Water/AOT/n-Heptane and Water/NaDEHP/n-Heptane Systems[J].J.Phys.Chem.B 1998,102(17):3168-3174.
    [32]Li,Q.;Li,T.;Wu,J.G.Comparative Study on the Structure of Reverse Micelles.2.FT-IR,~1H NMR,and Electrical Conductance of H_2O/AOT/NaDEHP/n-Heptane Systems[J].J. Phys.Chem.B 2000,104(38):9011-9016.
    [33]Almgren,M.;van Stam,J.;Swarup,S.;Lofroth,J.E.Structure and transport in the microemulsion phase of the system Triton X-100-toluene-water[J].Langmuir 1986,2(4):432-438.
    [34]Zhu,D.M.;Schelly,Z.A.Investigation of the microenvironment in Triton X-100reverse micelles in cyclohexane,using methyl orange as a probe[J].Langmuir 1992,8(1):48-50.
    [35]Holmberg,A.;Piculell,L.;Nyden,M.Effects of an Amphiphilic Graft Copolymer on an Oil-Continuous Microemulsion.Molecular Self-Diffusion and Viscosity[J].J.Phys.Chem.B 2002,106(10):2533-2544.
    [36]Laia,C.A.T.;Brown,W.;Almgren,M.;Costa,S.M.B.Light Scattering Study of Water-in-Oil AOT Microemulsions with Poly(oxy)ethylene[J].Langmuir 2000,16(2):465-470.
    [1]Rogers,R.D.and Seddon,K.R.Ionic Liquids-Solvents of the Future?[J].Science 2003,302(5646):792-793.
    [2]Welton,T.Solvents for Synthesis and Catalysis[J].Chem.Rev.1999,99(8):2071-2084.
    [3]Kazarian S.G.;Briscoe B.J.;Welton T Combining Ionic Liquids and Supercritical Fluids:in Situ ATR-IR Study of CO2 Dissolved in Two Ionic Liquids at High Pressures[J].Chem.Commun.,2000,(20):2047-2048.
    [4]Anderson,J.L.;Ding,J.;Welton,T;Armstrong,D.W.Characterizing ionic liquids on the basis of multiple solvation interactions[J].J.Am.Chem.Soc.2002,124(47):14247-14254.
    [5]Anderson,J.L.;Pino,V.;Hagberg,E.C.,Sheares,V.V.,Armstrong,D.W.Surfactant solvation effects and micelle formation in ionic liquids[J].Chem.Commun.2003,2444-2445.
    [6]Avery,T D.;Jenkis,N.F.;Kimber,M.C.;Lupton,D.W.;Taylor,D.K..First examples of the catalytic asymmetric ring-opening of meso 1,2-dioxines utilising cobalt(Ⅱ) complexes with optically active tetradentate Schiff base ligands:formation of enantio-enriched cyclopropanes[J].Chem.Commun.2002,(1):28-29.
    [7]Zerth,H.M.;Leonard,N.M.;Mohan,R.S..Synthesis of homoallyl ethers via allylation of acetals in ionic liquids catalyzed by trimethylsilyl trifluoro-methanesulfonate[J].Org.Lett.2003,5(1):55-57.
    [8]Huddieston,J.G.;Willauer,H.D.;Swauoski,R.P.;Visser,A.E.;Rogers K.D..Room temperature ionic liquids as novel media for 'dean' liquid-liquid extraction[J].Chem.Commun.1998,(16):1765-1766.
    [9]Wang,P.;Zakeeruddion,S.M.;Comte,P.;Exnar,I.;Gratzel,M..Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells[J].J.Am.Chem.Soc.2003,125(5):1166-1167.
    [10]Wang,L.Y.;Chen,X.;Chai,Y.C.;Hao,J.C.;Sui,Z.M.;Zhuang,W.C.;Sun,Z.W..Lyotropic liquid crystalline phases formed in an ionic liquid[J].Chem.Commun.2004,(24):2840-2841.
    [11]Wang,Z.N.;Liu,F.;Gao,Y.A.;Zhuang,W.C.;Xu,L.M.;Han,B.X.;Li,G.Z.;Zhang,G.D..Hexagonal liquid crystanlline phases formed in ternary systems of Brij97/water/ionic liquids[J].Langmuir 2005,21(11):4931-4937.
    [12]Gao,H.X.;Li,J.C.;Han,B.X.;Chen,W.N.;Zhang,J.L.;Zhang,R.;Yan,D.D..Microemulsions with ionic liquid polar domains[J].Phys.Chem.Chem.Phys.2004,(6):2914-2916.
    [13]Eastoe,J.;Gold,S.;Rogers,S.E.;Paul,A.;Welton,T.;Heenan,R.K.;Grillo,I..Ionic liquid-in-oil microemulsions[J].J.Am.Chem.Soc.2005,127(20):7302-7303.
    [14]Gao,Y.A.;Zhang,J.;Xu,H.Y.;Zhao,X.Y.;Zheng,L.Q.;Li,X.W.;Yu,L.Structural Studies of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/p-Xylene Ionic Liquid Microemulsions[J].ChemPhysChem 2006,7(7):1554-1561.
    [15]Li,N.;Gao,Y.A.;Zheng,L.Q.;Zhang,J.;Yu,L.;Li,X.W..Studies on the micropolarities of bmimBF_4/ TX-100/ toluene ionic liquid microemulsions and their behavoirs characterized by UV-visible spectroscopy[J].Langmuir 2007,23(3):1091-1097.
    [16]Gao,Y.A.;Li,N.;Zheng,L.Q.;Zhao,X.Y.;Zhang,J.;Cao,Q.;Zhao,M.W.;Li,Z.;Zhang,G.Y.The Effect of Water on the Microstrueture of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/Benzene Ionic Liquid Microemulsions[J].Chem.Eur.J.2007,13(9):2661-2670.
    [17]Li,N.;Cao,Y.;Gao,Y.A.;Zhang,J.;Zheng,L.Q.;Bai,X.T.;Dong,B.;Li,Z.;Zhao,M.W.;Yu,L..States of water located in the continuous organic phase of 1-butyl-3-methylimidazolium tetrafluoroborate/ Triton X-100/ triethylamine reverse microemulsions[J].ChemPhysChem 2007,8(15):2211-2217.
    [18]Li,N.;Zhang,S.;Zheng,L.Q.;Gao,Y.A.;Yu,L.Second Virial Coefficient of bmimBF4/Triton X-100/ Cyclohexane Ionic Liquid Microemulsion as Investigated by Microcalodmetry[J].Langmuir 2008,24(7):2973-2976.
    [19]Patrascu,C.;Gauffre,F.;Nallet,F.;Bordes,R.;Oberdisse,J.;de Lauth-Viguerie,N.;Mingotaud,C..Micelles in ionic liquids:aggreagation behavior of alkyl poly (ethyleneglycol)-ethers in 1-butyl-3methyl-imidazolium type ionic liquids[J].ChemPhysChem 2006,7(1):99-101.
    [20]Fletcher,K.A.;Pandey,S..Surfactant aggregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J].Langmuir 2004,20(1):33-36.
    [21]Abe,M.Synthesis and applications of surfactants containing fluorine[J].Curr.Opin. Colloid Interface Sci.1999,4(5):354-356.
    [22]Dong,S.L.;Li,X.;Xu,G.Y.;Hoffmann H.A Cationic Fluorocarbon Surfactant DEFUMACI and Its Mixed Systems with Cationic Surfactants:~(19)FNMR and Surface Tension Study[J].J.Phys.Chem.B 2007,111(21):5903-5910.
    [23]Griffiths,P.C.;Cheung,A.Y.F.;Jenkins,R.L.;Howe,A.M.;Pitt,A.R.;Heenan,R.K.;King,S.M.Interaction between a Partially Fluorinated Alkyl Sulfate and Gelatin in Aqueous Solution[J].Langmuir 2004,20(4):1161-1167.
    [24]Roy,A.;Nemethy,G.Micelle formation by nonionic detergents in water-ethylene glycol mixtures[J].J.Phys.Chem.1971,75(6):809-815.
    [25]Rosen,M.J.;Cohen,A.W.;Dahanayake,M.;Hua,X.Relationship of structure to properties in surfactants.10.Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s,C12H25(OC2H4)xOH,in aqueous solution[J].J.Phys.Chem.1982,86(4):541-545.
    [26]Kwan,C.C.;Rosen,M.J.Relationship of structure to properties in surfactants.9.Syntheses and properties of 1,2-and 1,3-alkanediols[J].J.Phys.Chem.1980,84(5):547-551.
    [27]Emersion,M.F.;Holtzer,A.Hydrophobic bond in micellar systems.Effects of various additives on the stability of micelles of sodium dodecyl sulfate and of n-dodecyltrimethylammonium bromide[J].J.Phys.Chem.1967,71(10):3320-3330.
    [28]Crook,E.H.;Trebbi,G.F.;Fordyce,D.B.Thermodynamic Properties of Solutions of Homogeneous p,t-Octylphenoxyethoxyethanols(OPE1-10)[J].J.Phys.Chem.1964,68(12):3592-3599.
    [29]Islam M.N.;Kato,T.Temperature Dependence of the Surface Phase Behavior and Micelle Formation of Some Nonionic Surfactants[J].J.Phys.Chem.B 2003,107(971):965-971.
    [30]Wu,J.P.;Li,N.;Zheng,L.Q.;Li,X.W.;Gao,Y.;Inoue,T.Aggregation Behavior of Polyoxyethylene(20) Sorbitan Monolaurate(Tween 20) in Imidazolium Based Ionic Liquids[J].Langmuir 2008,24(17):9314-9322
    [31]Dupont,J.;Consorti,C.S.;Suarez,P.A.Z.;de Souza,R.F.;Fulmer,S.L.;Richardson,D.P.;Smith,T.E.;Wolff,S..Preparation of 1-butyl-3-methyl imidazolium-based room-temperature ionic liquids[J].Org.Synth.2002,79(3):236-241.
    [32]Rosen,M.J.Surfactants and Interfacial Phenomena[M].2nd ed.;John Wiley & Sons:New York,1989,Chapter 3.
    [33]Li,N.;Zhang,S.H.;Zheng,L.Q.;Dong,B.;Li X.W.;Yu L.Aggregation behavior of long-chain ionic liquids in an ionic liquid[J].Phys.Chem.Chem.Phys.2008,10(30):4375-4377.
    [34]Chen,L.J.;Lin,S.Y.;Huang,C.C.;Chen,E.M..Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants[J].Colloids Surf.A 1998,135(1-3):175-181.
    [35]Tanford,C..The Hydrophobic Effect:Formation of Micelles and Biological Membranes [M].John Wiley & Sons:New York,1980.
    [36]Greaves,T.L.;Weerawardena,A.;Fong,C.;Drummond,C.J..Many protic ionic liquids mediate hydrocarbon-solvent interactions and promote amphiphile self-assembly[J].Langmuir 2007,23(2):402-404.
    [37]Lopes,J.N.C.;Gomes,M.F.C.;Padua,A.A.H..Nonpolar,polar,and associating solutes in ionic liquids[J].J.Phys.Chem.B 2006,110(34):16816-16818.
    [38]Gao,Y.A.;Hou,W.G.;Wang,Z.N.;Li,G.Z.;Han,B.X.;Zhang,G.Y.;Lv,F.F.Dynamic surface tensions of fluorous surfactant solutions[J].Chinese J.Chem.2005,23(4):362-366.
    [39]Li,N.;Zhang,S.H.;Zheng,L.Q.;Wu,J.P.;Li,X.W.;Yu,L.Aggregation Behavior of a Fluorinated Surfactant in 1-Butyl-3-methylimidazolium Ionic Liquids[J].J Phys Chem B,2008,112(39):12453-12460.
    [40]Endres,F.;Bukowski,M.;Hempelmann,R.;Natter,H.Electrodeposition of Nanocrystalline Metals and Alloys from Ionic Liquids[J].Angew.Chem.,Int.Ed.2003,42(29):3428-3430.
    [41]B(u|¨)hler,G.;Feldmann,C.Microwave-Assisted Synthesis of Luminescent LaPO_4:Ce,Tb Nanocrystals in Ionic Liquids[J].Angew.Chem.,Int.Ed.2006,45(29):4864-4867.
    [42]Huang,J.F.;Sun,I.W.Formation of Nanoporous Platinum by Selective Anodic Dissolution of PtZn Surface Alloy in a Lewis Acidic Zinc Chloride-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid[J].Chem.Mater.2004,16(10):1829-1831.
    [43]Dong,S.;Xu,G.;Hoffmann,H.Aggregation Behavior of Fluorocarbon and Hydrocarbon Cationic Surfactant Mixtures:A Study of ~1H NMR and ~(19)F NMR[J].J.Phys.Chem.B 2008,112(31):9371-9378.
    [44]Hammett,L.P.Physical Organic Chemistry:Reaction Rates,Equilibrium,and Mechanism[M].2nd ed.;MacGraw-Hill,New York,1970.
    [45]Lumry,R.in Methods in Enzymology,G.K.Ackers,M.L.Johnson,eds.,Academic Press,New York,1995,Vol.259,pp 628-720.
    [46]Bedo,Z.;Berecz,E.;Lakatos,I.Enthalpy-entropy compensation of micellization of ethoxylated nonyl-phenols[J].Colloid Polym.Sci.1992,270(8):799-805.
    [47]Singh,H.N.;Saleem,S.M.;Singh,R.P.;Birdi,K.S.Micelle formation of ionic surfactants in polar nonaqueous solvents[J].J.Phys.Chem.1980,84(17):2191-2194.
    [48]Goto,A.;Takemoto,M.;Endo,F.A Thermodynamic Study on Micellization of Nonionic Surfactant in Water and in Water-Ethanol Mixture by Gel Filtration[J].Bull.Chem.Soc.Jpn.1985,58(1):247-251.
    [49]Lee,D.J.Enthalpy-entropy compensation in ionic micelle formation[J].Colloid Polym.Sci.1995,273(6):539-543.
    [50]Chen,L.J.;Lin,S.Y.;Huang,C.C.Effect of Hydrophobic Chain Length of Surfactants on Enthalpy-Entropy Compensation of Micellization[J].J.Phys.Chem.B 1998,102(22):4350-4356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700