抗凝血性等离子体聚烯丙胺薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医用金属材料如不锈钢、钛基合金以及钴基合金由于其优良的力学性能(高强度、抗疲劳)及化学稳定性,在下腔静脉滤器、血管支架等介入器械制造中得到了广泛应用。然而,这些长期植入人体内与血液接触的介入器械,其自身抗凝血性能明显不足。肝素作为一种抗凝试剂被广泛的应用于临床治疗和心血管材料表面抗凝改性。然而,由于医用金属生物材料表面官能团的数量少,使得表面固定的抗凝分子浓度难以满足介入器械实际应用中的抗凝水平要求。因此如何通过表面处理,在金属材料表面形成一定浓度的反应性官能团,并通过官能团有效的固定抗凝分子肝素来提高金属生物材料表面的抗凝血性成为研究难点和重点。
     本文以316L医用不锈钢这种常用的与血液接触的金属材料为研究对象,采用脉冲可调制波等离子体聚合技术,以烯丙胺为单体,通过调控脉冲占空比及放电功率在不锈钢表面沉积了一系列含伯胺基官能团的等离子体聚烯丙胺薄膜,并进一步以胺基为反应位点共价固定抗凝生物分子肝素。
     傅立叶红外光谱(FTIR)、拉曼光谱及X射线光电子能谱(XPS)表征结果表明:等离子体聚烯丙胺薄膜为类聚合物(polymer-like)结构,低功率及占空比下合成的等离子体聚烯丙胺薄膜能部分保持单体的结构,薄膜伯胺基含量(NH_2/C)最大值为2.43%。薄膜表面固定肝素量达到4.10μg/cm~2。经等离子体聚烯丙胺薄膜改性后的不锈钢表面亲水性得到较大的提高。纳米划痕及薄膜动态稳定性结果表明,薄膜与基底具有良好的结合力,低功率制备的聚合薄膜在水溶液中动态稳定性较差,60W合成的薄膜具有较好的动态稳定性能
     针对低功率下等离子体聚烯丙胺薄膜交联化程度低、薄膜水溶液中动态稳定性较差的特点,本文采用真空热处理的方法(真空为1.5×10~(-4)Pa,温度为200℃)对其进行进一步处理。拉曼光谱显示,热处理后,薄膜结构发生较大改变,薄膜中残留的烯键消失,骨架震动成分增多,薄膜交联度得到提高。X射线光电子能谱(XPS)测量结果表明,热处理后薄膜的伯胺基含量只有微量减少。薄膜在水溶液中动态稳定性得到了显著的提高。
     体外血液相容性结果表明:等离子体聚烯丙胺薄膜及其肝素化的薄膜几乎无溶血现象;等离子体聚烯丙胺薄膜显示出较强的促内皮细胞粘附和增殖作用;表面肝素化的等离子体聚烯丙胺薄膜对纤维蛋白原的激活起到了一定的抑制作用,其表面具有较少的血小板粘附、集聚和激活,APTT时间由不锈钢的35S延长到50.1S。动物体内实验结果表明,经肝素化等离子体聚烯丙胺薄膜改性的不锈钢,表面覆盖了一层薄而均匀内皮细胞层,对初期急性血栓的产生起到了明显的抑制作用,表现出了良好的抗凝血性能。
The metallic biomaterials such as stainless steel (AISI 316L), tantalum and the shape memory alloy TiNi have been widely used for coronary stent, the peripheral vascular stent and vena cava filter which are of the cardiovascular interventional device due to their excellent mechanical attributes. However, the haemocompatibility of these biomedical metals is insufficient for the long-term antithrombogenic demand in vivo applications. Immobilization of heparin biomolecules on biomaterials is a widely investigated approach to modify surfaces for improving antithrombotic property. Because the metallic biomaterials used for cardiovascular implants possess a paucity of reactive functional groups, biomolecular immobilization of these materials is challenging.
     In this paper, 316L stainless steel as a commonly used cardio vascular material is chosen as the materials in our research. Allylamine films with primary amine (-NH_2) were fabricated on medical stainless steel using pulsed plasma polymerization technique. Allylamine films were subsequently covalently immobilized by heparin via their surface primary amine.
     The component, structure and properties of the plasma polymerized allylamine (PPAa) films are characterized using Raman laser spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and trifluoromethylbenzaldehyde (TFBA) derivatization process as function of radio frequency (RF) power and pulsed duty cycle (Pdc). The results indicate that PPAa films are polymer-like structure; High content of primary amine was retained in the PPAa film, the highest content of primary amine (NH_2/C) was 2.43% and the concentration of immobilized heparin was 4.10μg/cm~2 which determined by toluidine blue method.
     While increasing the RF discharge power and pulsed duty cycle, more and more large size of particles appear in the film, film surface became much rougher, and water contact angle was gradually increased. And our nano-scratch results indicate that these films have a good binding strength to the stainless steel. The complicated change of the weight loss of the films indicated that stability of the films was determined significantly by diversified factors. The PPAa film fabricated under lower RF power displayed bad dynamical stability in the phosphate buffer solution (PBS).
     In this paper, in order to improve the PPAa films dynamical stability in aqueous solution, the PPAa films was further treated under 200°C and 1.5×10~(-4)Pa vaccum condition. Raman spectra and XPS results indicate that the configuration of the alkene was disappeared, the component of framework vibration increased significantly, and tiny decreasing content of NH_2. However, the dynamical stability of the films was improved remarkably.
     The evaluation of hemocompatibility was carried out including in vitro hemolysis ratio, Alamar Blue assay, fibrinogen adsorption, platelet adhesion, the lactate dehydrogenase (LDH), the glycoproteins granule membrane protein 140 (GMP140), activated partial thromboplastin time (APTT) tests and in vivo implantation into dog's external iliac arteries. The hemo-evaluations indicate that the heparin-immobilized PPAa films had better hemocompatibility.
引文
[1]刘道志,奚廷斐.微创介入医疗器械与材料产业的现状和发展趋势.专题(介入医疗器械).2006,12(12):01-15
    [2]C.R.Deible,P.Petrosko,P.C.Johnson,E.J.Beckman.Molecular barriers to biomaterial thrombosis by modification of surface proteins with polyethylene glycol.Biomaterials.1999,20:101-109
    [3]J.F.W.Keuren,S.J.H.Wielders,G.M.Willems,M.Morra,L.Cahalan,P.Cahalan,T.Lindout.Thrombogenicity of polysaccharide-coated surfaces.Biomaterials.2003,24:1917-1024
    [4]E.R.Edelman,A.Nathan,M.Katada,J.Gatesm,M.J.Kamovsky.Perivascular graft heparin delivery using biodegradable polymer wraps.Biomaterials,21:2279-2286
    [5]王安峰,车波,李逸云,林思聪.抗凝血生物材料研究聚乙烯的表面肝素化.高分子学报.1998,4:P465-470
    [6]N.Huang,P.Yang,Y.X.Leng,J.Y.Chen,H.Sun,J.Wang,G.J.Wang,P.D.Ding,T.F.Xi,Y.Leng.Hemocompatibility of titanium oxide films.Biomaterials.2003,24:2177-2187
    [7]P.K.Chu,J.Y.Chen,L.P.Wang,N.Huang.Plasma-surface modification of biomaterials.Materials Science and Engineering R.2002,36:143-206
    [8]顾汉卿,主编.生物医学材料学.天津科技翻译出版社公司.1983,8
    [9]Y.J.Kim,I.K.Kang,M.W.Huh,S.C.Yoon.Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate)immobilized with insulin and/or ha parinusing plasma glow discharge.Biomaterials2000,21:121-130
    [10]P.Klement,Y.J.Du,L.R.Berry,P.Tressel,A.K.C.Chan.Chronic performance of polyurethane catheters covalently coated with ATH complex:A rabbit jugular vein model.Biomaterials.2006,27:5107-5117
    [11] J.E. Kaplan, D.G. Moon, L.K. Weston. Platelets adhere to thrombin-treated endothelial cells in vitro. Am.J.Physiol. 1989, 257:H423- H433
    [12] D.M. Tollefsen, J.R. Feagler, P.M. Majerus.The binding of thrombin to the surface of human platelets. J.Biol.Chem. 1974,249:2646-2651
    [13] J. Lahann, D. Klee, W. Pluester, H. Hoecke. Bioactive immobilization of r-hirudin on CVD-coated metallic implant devices.Biomaterials.2001,22:817-826
    [14] T. Chandy, G.S. Das, R.F. Wilson, G.H.R. Rao. Use of plasma glow for surface engineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis.Biomaterials.2000, 21:1699-1671
    [15] B. Balakrishnan, D.S. Kumar, Y. Yoshida, A. Jayakrishnan. Chemical modification of poly (vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility.Biomaterials. 2005,26:3495-3502
    [16] T. Mcpherson et al. Prevention of platelets adhesion by surface-grafted PEO.Fifth World Biomaterials congress May 29-June2.1996, Toronto,Canada
    [17] T.G.V. Kooten, C.L. Klein, H. Kohler, C.J. Kirkpatrick, D.F. Williams, R.Eloy. From cytotoxicity to biocompatibility testing in vitro: cell adhesion molecule expression defines a new set of parameters.Journal of Materials Science: Materials in Medicine. 1997, 12:835-841
    [18] A.D. Cook. Characterization and development of RGD-peptide-modified poly (lactic acid-co-lysine) as an interactive.J Biomed Mater Res. 1997, 35:513-523
    [19] Nishimura I, Garrell RL, Hedrick M, Iida K, Osher S, Wu B. Precursor tissue analogs as a tissue-engineering strategy. Tissue Eng. 2003, 9(Suppl.1):S77-89.
    [20] L.L. Nguyen, P.A. D'Amore. Cellular interactions in vascular growth and differentiation.Int Rev Cyto 1.2001, 204:1-48
    [21] Sepideh Heydarkhan-Hagvall, Katja Schenke-Layland, Andrew P. Dhanasopon,Fady Rofail,Hunter Smith,Benjamin M.Wu,Richard Shemin,Ramin E.Beygui,William R.MacLellan.Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering.Biomaterials.2008,29:2907-2914
    [22]J.Wang,C.J.Pan,N.Huang,H.Sun,P.Yang,Y.X.Leng,J.Y.Chen.Surface characterization and blood compatibility of poly(ethylene terephthalate)modified by plasma surface grafting.Surface & Coatings Technology.2005,196:307-311
    [23]I.K.Kang,O.H.Kwon,M.K.Kim,Y.M.Lee,Y.K.Sung.In vitro blood compatibility of functional group-grafted and heparinimmobilized polyurethanes prepared by plasma glow discharge.Biomaferials.1997,18:099-1107
    [24]F.Z.Cui,D.J.Li.A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films.Surface and Coatings Technology.2000,131:481-487
    [25]T.I.T.Okpalugo,A.A.Ogwu,P.D.Maguire,J.A.D.McLaughlin,D.G.Hirst.In-vitro blood compatibility of a-C:H:Si and a-C:H thin films.Diamond and Related Materials.2004,13:1088-1092
    [26]赵化侨.等离子体化学与工艺.中国科学技术大学出版社.1993
    [27]G.D.Fu,Y.Zhang,E.T.Kang,K.G.Neoh.Nanoporous Ultra-Low-κFluoropolymer Composition Films via Plasma Polymerizaition of Allypentafluorobenzene and Magnetron Sputtering of Poly (tetrafluoroethylene).Advanced materials.2004,16:839-842
    [28]D.M.Bubb,P.K.Wu,J.S.Horwitz,J.H.Callahan,M.Galicia,A.Vertes,R.A.McGill,E.J.Houser,B.R.Ringeisen,D.B.Chrisey.The effect of the matrix on film properties in matrix-assisted pulsed laser evaporation.J.Appl.Phys.2002,91:2055-2060
    [29]P.K.Wu,B.R.Ringeisen,D.B.Krizman,C.G.Frondoza,M.Brooks,D.M. Bubb, R.C.Y. Auyeung, A. Pique, B. Spargo, R.A. McGill, D.B. Chrisey, Rev. Sci. Instrum. Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. 2003, 74:2546-2551
    [30] A.G. Llorente, R.P. Casero, B. Pajot, J. Roussel, R.M. Defourneau, D. Defourneau, J.L. Fave, E. Millon, J. Perriere.Appl. Phys.A.2003, 77:785-788.
    [31] Zh.H. Zhang, C.L. Feng. Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride.Applied Surface Science.2007, 253:8915-8922
    [32] F. Basarir, N. Cuong, W.K. Song, T.Ho.Yoon.Surface Modification via Plasma Polymerization of Allylamine for Antibody Immobilization.Macromol Symp.2007, 249:61-66
    
    [33] A. Harsch, J. Calderon, R.B. Timmons, G.W. Gross. Pulsed plasma deposition of allylamine on polysiloxane: a stable surface for neuronal cell adhesion. Journal of Neuroscience Methods.2000, 98:135-144
    [34] G. Kampfrath, R. Hintsche. Plasma-polymerized thin films for enzyme immobilization in bio sensors. Anal.Lett.1989,22:pp.2423-2431
    [35] V.L. Gott, A. Furuse. Fed P roc.1971, 30:1679
    [36] M. Morraa, C. Cassinelli, A. Carpi, R. Giardino, M. Fini. Effects of molecular weight and surface functionalization on surface composition and cell adhesion to Hyaluronan coated titanium.Biomedicine & Pharmacotherapy.2006, 60:365-369
    [37] J.C. Lin, Y.F. Chen, C.Y. Chen.Surface characterization and platelet adhesion studies of plasma polymerized phosphite and its copolymers with dimethylsulfate.Biomaterials. 1999,20:1439-1447
    [38] B. Finke, F. Luethen, K. Schroeder, P.D. Mueller, C. Bergemann, M. Frant, A. Ohl, B.J. Nebe.The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces.Biomaterials.2007,28:4521-4534
    [39] M. Lejeune, F. Brétagnol, G. Ceccone, P. Colpo, F. Rossi. Microstructural evolution of allylamine polymerized plasma films. Surface & Coatings Technology.2006,200:5902-5907
    
    [40] D.A. Puleo, R.A. Kissling, M.S. Sheu.A technique to immobilize bioactive proteins includingbone morphogenetic protein-4 (BMP-4) on titanium alloy.Biomaterials. 2002,23: 2079-2087
    
    [41] V. Ley, A.P. Kruzic, R.B. Timmons. Permeation rates of low molecular weight gases through a plasma synthesized allyl alcohol membrane. Journal of Membrane Science.2003,226:213-226
    
    [42] A. Choukourov, H. Biederman, D. Slavinska, M. Trchova, A. Hollander. The influence of pulse parameters on film composition during pulsed plasma polymerization of diaminocyclohexane.Surface and Coatings Technology.2003, 174-175:863-86
    
    [43] J. Zhang, X.F. Feng, H.K. Xie, Y.C. Shi, T.S. Pu, Y. Guo. The characterization of structure-tailored plasma films deposited from the pulsed RF discharge.Thin Solid Films.2003,435:108-115
    
    [44] A. Harsch, J. Calderon, R.B. Timmons, G.W. Gross. Pulsed plasma deposition of allylamine on polysiloxane: a stable surface for neuronal cell adhesion. Journal of Neuroscience Methods.2000, 98:135-144
    [45] C.G. Spanos, J.P.S. Badyal, A.J. Goodwin, P.J. Merlin. Pulsed plasma chemical deposition of polymeric salt networks. Polymer.2005,46:8908-8912
    [46] H.K. Yasuda.Some Important Aspects of Plasma Polymerization.Plasma Process and Polymers.2005, 2:293-304
    
    [47] J. Kim, D. Jung, Y. Park, Y. Kim, D.W. Moon, T.G. Lee. Quantitative analysis of surface amine groups on plasma-polymerized ethylenediamine films using UV-visible spectroscopy compared to chemical derivatization with FT-IR spectroscopy, XPS and TOF-SIMS.Applied Surface Science. 2007,253:4112-4118
    [48]A.Choukourov,J.Kousal,D.Slavmska,H.Biederman,E.R.Fuoco,S.Tepavcevic,J.Saucedo,L.Hanley.Growth of primary and secondary amine films from polyatomic ion deposition.Vacuum.2004,75:195-205
    [49]L.Martin,J.Esteve,S.Borros.Growth vs.nucleation of conducting polymers thin films obtained by plasma-enhanced chemical vapor deposition.Thin Solid Films.2004,451-452:74-80
    [50]J.S.Chen,Z.Sun,S.P.Lau,B.K.Tay.Structural and tribological properties of hard carbon film synthesized by heat-treatment of a polymer on graphite substrate.Thin Solid Films.2001,389:161-166
    [51]Zh.Q.Yao,P.Yang,N.Huang,H.Sun,J.Wang.Structural,mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PⅢ-D).Applied Surface Science.2004,230:172-178
    [52]庞华,葛袁静,张跃飞,张广秋.射频等离子体自偏压及其对聚合成膜的影响.北京印刷学院学报.2003,12:19-23
    [53]A.Barranco,M.Bielmann,R.Widmer,P.Groening.Plasma Polymerization of Rhodamine 6G Thin Films.2005,7:396-400
    [54]P.Hamerli,Th.Weigel,Th.Groth,D.Paul.Surface properties of and cell adhesion onto allylamine-plasmacoated polyethylenterephtalat membranes.Biomaterials.2003,24:3989-3999
    [55]Z.Zhang,Q.Chen,W.Knoll,R.Forch.Effect of aqueous solution on functional plasma polymerized films.Surface and Coatings Technology.2003,174-175:588-590
    [56]D.S.W.Benoit,A.R.Dumey,K.S.Anseth.The effect of heparin -functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation.Biomaterials.2007,28:66-77
    [57]G.Koromila,G.P.A.Michanetzis,Y.F.Missirlis,S.G.Antimisiaris.Heparin incorporating liposomes as a delivery system of heparin from PET-covered metallic stents: Effect on haemocompatibility.Biomaterials. 2006,27:2525-2533
    [58] J. Laredo, L. Xue, V.A. Husak, J. Ellinger. Silyl-heparin adsorption improves the in vivo thromboresistance of carbon-coated polytetrafluoroethylene vascular grafts.The American Journal of Surgery.2003. 186:556-560
    [59] N. Weber, H.P. Wendel, G. Ziemer. Hemocompatibility of heparin coated surfaces and the role of selective plasma protein adsorption. Biomaterials.2002,23:429-439
    [60] S. Patel, L.R. Berry, A.K.C. Chan. Covalent antithrombin-heparin complexes.Thrombosis Research.2007, 120:151 -160
    [61] P.K. Smith, A.K. Mallia, G.T. Harmanam. Colorimetric method for the assay of heparin content in immobilized heparin preparations.Aanl Bichem.1980,109:466-473
    [62] A. Schreer, C. Tinson, J.P. Sherry, K. Schirmer.Application of Alamar blue/5-carboxyXuorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Analytical Biochemistry.2005, 344:76-85
    [63] Y. Tamada, E.A. Kulik, Y. Ikada. Communication Simple method for platelet counting.Biomaterials.1995, 6(4):279-283
    [64] R.K. Kainthan, M. Gnanamani, M. Ganguli, T. Ghosh, D.E. Brooks, S. Maiti, J.N. Kizhakkedathu.Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA.Biomaterials.2006, 27:5377-5390
    [65] Z. Cheng, S.H.Teoh. Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen.Biomaterials. 2004, 25:1991-2001
    [66] K. Webb, W. Hlady, P.A. Tresco.Relative importance of surface wettability, and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organisation.J Biomed Mater Res.1998,41:422-30.
    [67]J.G.Steele,G.Johnson,C.McFarland,B.A.Dalton,T.R.Gengenbach,R.C.Chatelier,P.A.Underwood,H.J.Griesser.Roles of serum vitronectin and fibronectin in initial attachment of human vein endothelial cells and dermal fibroblasts on oxygen and nitrogen containing surfaces mad by radiofrequency plasmas.J Biomater Sci Polym Ed.1994,6:511-32.
    [68]W.Tang,Q.h.Liu,X.B.Wang,J.Zhang,P.Wang,N.Mi.Ultrasound exposure in the presence of hematoporphyrin induced loss of membrane integral proteins and inactivity of cell proliferation associated enzymes in sarcoma 180 cells in vitro.2008,15:747-754
    [69]杨萍.与血液接触的两类无机薄膜的抗凝血机理研究.西南交通大学博士学位论文.2006
    [70]F.Ayhan,A.Yousefi Rad,H.Ayhan.Biocompatibility Investigation and Urea Removal from Blood by Urease-Immobilized HEMA Incorporated Poly (Ethyleneglycol Dimethacrylate)Microbeads.J Biomed Mater Res Part B.2003,64B:13-18
    [71]K.Chatterjee,E.A.Vogler,C.A.Siedlecki.Procoagulant activity of surface immobilized Hageman factor.Biomaterials.2006,27:5643-5650
    [72]H.Chen,Y.Chen,H.Sheardown,M.A.Brook.Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer.Biomaterials.2005,26:7418-7424
    [73]S.T.Olson,I.Bjork,J.D.Shore.Kinetic characterization of heparin catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin.Meth Enzymol.1993,222:525-59.
    [74]Y.Byun,H.A.Jacobs,J.Feijen,S.W.Kim.Effect of bronectin on the binding of antithrombin Ⅲ to immobilized heparin.J Biomed Mater Res.1996,30:95-100.
    [75]I.D.Phaneuf,S.A.Berceli,M.J.Bide,W.C.Quist,F.W.LoGerfo.Covalent linkage of recombinant hirudin to poly (ethylene terephthalate) (Dacron):creation of a novel antithrombin surface.Biomaterias 1997, 18:755-765
    [76] J.N. Lindon, E.W. Salzman, E.W. Merril, A.K. Dincer, D. Labarre, K.A. Bauer, R.R. Rosenberg. Catalytic activity and platelet reactivity of heparin covalently bonded to surfaces. J Lab Clin Med.1985,105:219-226
    [77] P. Yang, N. Huang, Y.X. Leng, J.Y. Chen, R.K.Y. Fu, S.C.H. Kwok,Y. Leng,P.K. Chu. Activation of platelets adhered on amorphous hydrogenated carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition (PⅢ-D).Biomaterials.2003, 24 :2821-2829
    [78] M. Zlatanovic, N. Popovic, S. Zlatanovic. Growth of non-regular a-CNx:H cluster arrays on pulse plasma nitrided hot work steel samples. Surface & Coatings Technology.2005, 200-1445-1450
    [79] I.S. Bae, S.J. Cho, W.S. Choi, B.Y. Hong, Y.J. Kim, Y.M. Kim, J.H. Boo.Electrical, mechanical, and optical properties of the organic-inorganic hybrid-polymer thin films deposited by PECVD. Thin Solid Films.2007
    [80] J. Ni, W. Wu, X. Ju, X.D. Yang, Z.M. Chen, Y.J. Tang. Bonding structure of a-CN_X:H films obtained in methane-nitrogen system and its influence on hardness. Thin Solid Films .2008
    [81] Zh.H. Zhang, C.L. Feng. Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride .Applied Surface Science.2007,253:8915-8922
    [82] I. Gancarz, J. Bryjak, M. Bryjak, W. Tylus, G. Pozniak. Poly (phenylene oxide) films modified with allylamine plasma as a support for invertase immobilization. European Polymer Journal.2006,42:2430-2440
    [83] B. Finke, F. Luethen, K. Schroeder, P.D. Mueller, C. Bergemann, M. Frant, A.Ohl, B.J. Nebe.The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces.Biomaterials.2007,28:4521 -4534
    [84]A.L.Hook,H.Thissen,J.Quinton,N.H.Voelcker.Comparison of the binding mode of plasmid DNA to allylamine plasma polymer and poly (ethylene glycol)surfaces.Surface Science.2008
    [85]Z.Zhang,Q.Chen,W.Knoll,R.Forch.Effect of aqueous solution on functional plasma polymerized films.Surface and Coatings Technology.2003,174-175:588-590
    [86]J.G.Wang,K.G.Neoh,E.T.Kang.Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films.Thin Solid Films.2004,446:205-217
    [87]华敏奇,袁振海.划痕试验法对特殊薄膜系结合力的检测与评价.分析测试技术与仪器.2002,8:219-225
    [88]J.Qi,K.H.Lai,C.S.Lee,I.Bello,S.T.Lee,J.B.Luo,S.Z.Wen,Diamond Relat.Mater.2001,10:1833-1838
    [89]J.F.FriedrichT,R.Mix,G.Kqhn.Adhesion of metals to plasma-induced functional groups at polymer surfaces.Surface & Coatings Technology.2005,200:565-568
    [90]A.P.McGuigan,M.V.Sefton.The influence of biomaterials on endothelial cell thrombogenicity.Biomaterials.2007,28:2547-2571
    [91]P.Hamerli,Th.Weigel,Th.Groth,D.Paul.Surface properties of and cell adhesion onto allylamine-plasmacoated polyethylenterephtalat membranes.Biomaterials.2003,24:3989-3999
    [92]阮长耿主编.血栓与止血.江苏科学技术出版社.1994,3:P103-129
    [93]J.H.Elam,H.Nygren.Adsorption of coagulation proteins from whole blood on to polymer materials:relation to platelet activation.Biomaterials.1992,13(1):3-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700