NF-κB信号传导通路和自噬在神经干细胞分化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:神经干细胞研究是当今生命科学研究的热点之一,源于其重要的发育分化机制和潜在的临床应用价值,但对复杂的调控机制的了解还不够清楚,限制了神经干细胞的广泛应用。我们的研究计划将从一个全新的角度:从NF-κB传导通路入手研究其对神经干细胞增殖分化的影响及自噬在其中发挥的作用,试图证明自噬激活和阻断NF-κB传导通路是诱导神经干细胞分化的有效手段。
     方法:体外培养的神经干细胞中加入NF-κB的抑制剂SN50,取不同的剂量(6.25-25μg/ml)和时间点(2-24 h)相差显微镜下观察神经干细胞的增殖、分化情况;SN50阻断NF-κB核转移的作用用NF-κB p65的免疫荧光检测,用激光共聚焦显微镜作定性分析;采用MTT法取不同的剂量和时间点检测细胞的增殖率;Western blot检测增殖细胞核抗原PCNA蛋白表达;SN50对神经干细胞的细胞毒性采用LDH漏出率来检测;采用免疫荧光法、Western blot法检测神经干细胞、神经元及神经胶质细胞的标志性蛋白的表达(Nestin、MAP-2、GFAP);生长相关蛋白(GAP-43)、细胞周期调节蛋白cyclin D1和细胞周期调节蛋白激酶Cdk4的表达均用Western blot法;MDC荧光染色及LC3免疫荧光检测自噬体形成;Western blot检测LC3-I和LC3-II的生成,Beclin 1蛋白的表达变化。
     结果:体外培养的神经干细胞中加入NF-κB的抑制剂SN50后,结果显示:SN50(6.25-50μg/ml)在各时间段12 h、24 h,对神经干细胞s有明显的抑制作用,与阴性对照组相比均有显著或高度显著性差异(P<0.05、P<0.01)。SN50给药组对神经干细胞细胞的增殖有抑制作用,且此作用呈明显的时间、剂量依赖性,随着给药时间的延长和给药浓度的增加,抑制增殖的作用越显著;SN50各剂量组和对照组相比,LDH漏出率变化没有显著差异(p>0.05, Figure 6)。正常对照组PCNA呈高水平表达,SN50各剂量组作用24小时后,PCNA蛋白表达均显著降低(p<0.001)。Western blot实验结果显示cyclin D1和Cdk 4在SN50处理后的神经干细胞中的表达随时间呈显著下降的趋势;而GAP-43的表达则相反,随时间成显著增高的趋势;MAP-2、NeuN的蛋白表达随着诱导分化时间的延长和用药剂量的增加,其表达增强,呈现出明显的时间、剂量依赖性;SN50抑制NF-κB的活性促使神经干细胞分化为神经元的比例增加。MDC标记的酸性囊泡增多,LC3-II/LC3-I比值及Beclin 1表达增加;用自噬抑制剂3-MA(3-methyladenine)阻断自噬后,SN50诱导的神经干细胞分化的作用显著减弱。这些结果表明SN50促进神经干细胞分化与自噬激活有关。
     结论:在抑制NF-κB核转移后,神经干细胞的增殖被抑制,但促进了神经干细胞的分化。NF-κB抑制剂触发神经干细胞分化的机制可能和抑制细胞周期,激活自噬有关。本研究结果提示NF-κB抑制剂在神经退行性疾病中的作用不仅仅是抑制神经元的死亡,而且它在促进干细胞分化、诱导干细胞迁移方面也起着重要作用。
Aim: A number of experimental methods have been developed to promote the differentiation of neural stem cells (NSCs) toward specific lineages. Neuronal differentiation is often associated with cell cycle arrest, altered rate of macromolecule synthesis and degradation as well as remodeling of cytoskeletal structures. NF-κB plays important roles in proliferation of lymphocytes, tumor cells and NSCs, however, its possible role in NSCs differentiation has nerve been explored. In this study, we studied if inhibiting NF-κB signaling pathway is involved in NSCs differentiation in vitro.
     Method: After treatment with SN50, the growth inhibition of NSCs was assessed by MTT colorimetric assay and the cytotoxicity of SN50 was measured by lactose dehydrogenase (LDH) leakage. Immunohistochemistry and Western blot analysis were used to study the mechanisms involved in NSCs differentiation in vitro by inhibiting NF-κB signaling pathway. MDC staining was used to examine autophagy induced by SN50 in NSCs. To examine the involvement of autophagy in SN50-induced differentiation of NSCs, the autophagy specific inhibitor 3-methyadenine (3-MA) was added with SN50. Immunohistochemistry and Western blot analysis were used to study the autophagic mechanisms involved in differentiation of NSCs.
     Results: NSCs cultured from mouse embryonic brains exposed to SN50, a recombinant cell-permeable peptide blocking nuclear translocation of NF-κB, resulted in the decrease in proliferation of NSCs. Meanwhile, SN50 promoted migration of NSCs away from neurospheres and growth of neuritis in a dose- and time-dependent fashion. Biochemical analysis revealed increases in the expression of protein levels of MAP-2, NeuN and GAP-43, indicating enhanced differentiation of NSCs towards neuronal lineage. Activation of autophagy during SN50-induced differentiation of NSCs was evidenced by presence of increased number of acidic vacuoles in the cytoplasm and increased expression of membrane form of microtubule associate protein light chain 3 (LC3-II) and becllin 1. Inhibition of autophagy by 3-methyladenine (3-MA) abrogated SN50-induced NSCs differentiation.
     Conclusion: These results suggest that blocking NF-κB transcriptional activation activity arrests cell cycle and promotes stem cell differentiation. Autophagy activation is associated with NF-κB inhibition-evoked stem cell differentiation.
引文
1. Jwinkler, C., Fricker, R.A., Gates MA, et al., Incoroporation and glial differentiation of mouse EGF responsive nerural progenitor cell saftertrans plantation into the embroyonic rat brain. Mol Cell Neurosci,1998;11(3): 99-116
    2. Gage, F.H., Mammalian neural stem cells. Science, 2000; 287(5457): 1433-1438
    3. Riess, P., Zhang, C., Saatman, K.E., Laurer, H.L., Longhi, L.G., Raghupathi, R., Lenzlinger, P.M., Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery, 2002; 51(4): 1043-1052
    4. Brannen, C.L., Sugaya, S.O., In vitro differentiation of multipotent human neural progenitors in serum free medium. Neuroreport, 2000; 11(5): 1123-1128
    5. Soon-Tae Lee, Kon Chu, Jung-Eun Park, Kyungmi Lee, Lami Kang, Seung U. Kim, Manho Kim., Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neuroscience Research, 2005; 52: 243-249
    6. Pluchino, S., Quattrini, A., Brambilla, E., et al., Injection of adult neurospheres induces recovery in a chronic model ofmultip le sclerosis. Nature, 2003; 422 (6933): 688-693
    7. Chu, K., Kim, M., Parka, K.I., et al., Human neural stem cells imp rove sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res., 2004; 1016(2): 145-153
    8. Qin, Z.H., Chen, R.W., Wang, Y.M., et al., Nuclear factorκB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci., 1999; 19: 4023-4033
    9. Denis-Donini, S., Caprini, A., et al., Members of the NF-κB family expressed in zones of active neurogenesis in the postnatal and adult mouse brain. Brain Res, 2005; 154 (1): 81-89
    10. Kaltschmidt, B., Widera, D., et al., Signaling via NF-kappaB in the nervous system. Acta Biochim. Biophys., 2005; 1745: 287-299
    11. Brazel, C.Y., Nunez, J.L., et al., Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience, 2005; 131: 55-65
    12. Chen, X.L., Grey, J.Y., et al. Sphingosine kinase-1 mediates TNF-alphainduced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow. Am. J. Physiol. Heart Circ. Physiol, 2004; 287: H1452-H1458
    13. Hang, C.H., Shi, J.X., et al., Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J. Gastroenterol, 2005; 11: 1149-1154
    14. Harada, J., Foley, M., et al., Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J. Neurochem, 2004; 88: 1026-1039
    15. Hu, X., Nesic-Taylor, O., et al., Activation of nuclear factor-kappaB signaling pathway by interleukin-1 after hypoxia/ischemia in neonatal rat hippocampus and cortex. J. Neurochem., 2005; 93(1): 26-37
    16. Fan, Z., Bau, B., et al., IL-1beta induction of IL-6 and LIF in normal articular human chondrocytes involves the ERK, p38 and NFkappaB signaling pathways. Cytokine, 2004; 28 (1): 17-24
    17. Da Silva, C.A., Heilbock, C., et al., Transcription of stem cell factor (SCF) is potentiated byglucocorticoids and interleukin-1beta through concerted regulation of a GRE-like and an NF-kappaB response element. FASEB J., 2003; 17 (15): 2334-2336
    18. Imitola, J., Raddassi, K., et al., Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. U.S.A., 2004; 101(52): 18117-18122
    19. Helbig, G., Christopherson, K.W., et al., NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem., 2003; 278(24): 21631-21638
    20. Bryan, B., Kumar, V., et al., GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J. Biol. Chem., 2004; 279(44): 45824-45832
    21. Gross, R.E., Mehler, M.F., et al., Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron, 1996; 17(4): 595-606
    22. Goncalves, M.B., Boyle, J., et al., Timing of the retinoid-signalling pathway determines the expression of neuronal markers in neural progenitor cells. Dev. Biol., 2005; 278(1): 60-70
    23. Zhang, B., Wang, R.Z., et al. Proliferation and differentiation of neural stem cells in adult rats after cerebral infarction. Chin. Med. Sci. J., 2004; 19(2): 73-77
    24. Wennersten, A., Meier, X., et al., Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J. Neurosurg, 100(1): 88-96
    25. Matarredona, E.R., Murillo-Carretero, M., et al., Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res., 995(2): 274-284
    26. Ferguson, K.L., Callaghan, S.M., et al., The Rb-CDK 4/6 signaling pathway is critical in neural precursor cell cycle regulation. J. Biol. Chem., 2000; 275(43): 33593-33600
    27. Feng, Z., Porter, A.G., NF-kappa B/Rel proteins are required for neuronal diferentiation of SH-SY5Y neuroblastoma ca lls. J Biol Chem, 1999; 274(43): 30341-30344
    28. Azoitei, N., Wirth, T., Baumann, B., Activation of the IkappaB kinase complex is sufficient for neuronal differentiation of PC12 cells. J Neurochem., 2005; 93(6): 1487-1501.
    29. Cuendet, M., Gills, J.J., Pezzuto, J.M., Brusatol-induced HL-60 cell differentiation involves NF-kappaB activation.Cancer Lett., 2004; 206(1): 43-50
    30. Chih-Yuan Wang, Wen-Bin Zhong, Tien-Chun Chang, Shu-Mei Lai, Yuan-Feen Tsai, Cytomorphologic Differentiation of Human Anaplastic Thyroid Carcinoma Cells through Activation of Nuclear FactorκB. Cancer, 2002; 95: 1827-1833
    31. Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B., Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci., 2006; 64(7): 1471-2202
    32. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr., NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol., 1999; 19(8): 5785-5799
    33. Mondal, D., Pradhan, L., et al., Signal transduction pathways involved in the lineage-differentiation of NSCs: can the knowledge gained from blood be used in the brain? Cancer Invest., 2004; 22(6): 925-943
    34. Li W., Cogswa CA., Neuronal diferentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci, 1998; 18(21): 8853-8862
    35. Sabolek M., Herborg A., Schwarz J., Storch A., Dexamethasone blocks astroglial differentiation from neural precursor cells. Neuroreport., 2006; 17(16): 1719-1723
    36. Monastyrska I., Klionsky D.J., Autophagy in organelle homeostasis: peroxisome tumover. Mol Aspects Med, 2006; 27(5-6): 483-494
    37. Kaushiks S., Cuervo A.M., Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress. Mol Aspects Med., 2006; 27(5-6): 444-454
    38. Meijer A.J., Codogno P., Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol., 2004; 36(12): 2445-2462
    39. Klionsky D.J., The molecular machinery of autophagy: unanswered questions. J Cell Sci., 2005; 118(1): 71-84
    40. Juhasz G., Csikos G., Sinka R., Erdelyi M., Sass M., The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Lett., 2003; 543(13): 154-158
    41. Takacs-Vellai, K., T. Vellai, A. Puoti, M. Passannante, C. Wicky, A. Streit, A.L. Kovacs, and F. Muller. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol., 2005; 15: 1513-1517
    42. Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., Levine, B., Autophagy Genes Are Essential for Dauer Development and Life-Span Extension in C. elegans. Science, 2003; 301: 1387-1391
    43. Otto, G.P., Wu, M.Y., Kazgan, N., Anderson, O.R., Kessin, R.H., Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J. Biol. Chem., 2004, 279: 15621-15629
    44. Z.Yue, S. Jin, C.Yang, A.J. Levine, N.Heintz., Beclin1, an autophagy gene essential for early embryo development, is a tumor suppressor, Proc Natl Acad Sci USA, 2003, 100: 15077-15082
    45. Kuma, A., M. Hatano, M. Matsui, A. Yamamoto, H. Nakaya, T. Yoshimori, Y. Ohsumi, T. Tokuhisa, and N. Mizushima, The role of autophagy during the early neonatal starvation period. Nature, 2004; 432: 1032-1036
    46. Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N. Ohsumi, Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Chi Cell Biol., 2005, 169: 425-434
    47. Qu, X., Zou, Z., Sun, Q., Luby-Phelps, K., Cheng, P., Hogan, R.N., Gilpin, C., Levine, B., Autophagy Gene-Dependent Clearance of Apoptotic Cells during Embryonic Development. Cell, 2007; 128(5): 931-946
    48. Han Y., Weinman S., Boldogh I., et al., Tumor necrosis factor-alpha-inducible IkappaB alpha proteolysismediated by cytosolic mcalpain. A mechanism parallel to the ubiquitin proteasome pathway for nuclear factor kappa B activation. J Biol Chem., 1999; 274(2): 787-794
    49. Dixit V., Mak T.W., NF-kappa B signaling: Many roads lead to madrid. Cell, 2002; 111(5): 615-619
    50. Qing G., Yan P., Qu Z., Liu H., Li H., Xiao G., Hsp90 regulates processing of NF-kB2 p100 involving protection of NF-kB-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res., 2007; 17(6): 520-530
    51. Qing G., Yan P., Xiao G., Hsp90 inhibition results in autophagy mediated proteasome-independent degradation of IkB kinase (IKK). Cell Res., 2006; 16(11): 895-901
    52. Djavaheri-Mergny M., Amelotti M., Mathieu J., et al., NF-kappaB activation represses tumornecrosis factor-alpha-induced autophagy. J. Biol. Chem., 2006; 281(41): 30373-30382
    53. Zeng M., Zhou J.N., Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal., 2008; 20(4): 659-665
    54. Qin Z.H., Wang Y.M., Nakai M., et al., Nuclear Factor-κB Contributes to Excitotoxin-Induced Apoptosis in Rat Striatum. Mol. Pharmacol., 1998; 53(1): 33-42
    55. Qin Z.H., Chen R.W., Wang Y., et al., Nuclear FactorκB Nuclear Translocation Upregulates c-Myc and p53 Expression during NMDA Receptor-Mediated Apoptosis in Rat Striatum. J. Neurosci, 1999; 19: 4023-4033
    56. Qin Z.H., Chen J.F., Wang Y., et al., Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-kappaB activation. J Neurochem, 2000; 74(2): 647-658
    57. Liang Z.Q., Li Y.L., Zhao X.L., et al., NF-kappaB contributes to 6-hydroxydopamine -induced apoptosis of nigral dopaminergic neurons through p53. Brain Res., 2007; 1145: 190-203
    58. Liang Z.Q., Wang X., Li L.Y., et al., Nuclear factor-kappaB-dependent cyclin D1 induction and DNA replication associated with N-methyl-D-aspartate receptor-mediated apoptosis in rat striatum. J Neurosci Res, 2007; 85(6): 1295-1309
    59. Lin Y.Z., Yao S.Y., Veach R.A., Torgerson T.R., Hawiger J., Inhibition of nuclear translocation of transcription factor NF-kappaB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem, 1995; 270: 14255-14258
    60. Ferguson KL, Callaghan SM, O'Hare MJ et al. The Rb-CDK4/6 signaling pathway is critical in neural precursor cell cycle regulation. J Biol Chem 2000; 275(43):33593-33600.
    61. BENOW I., ROU T.A., GAP-43: An intrinsic determinant of neuronal development and plasticity. Trend Neurosci., 1997; 20: 84-91
    62. MEIR I.K., PFENNIN G.H., WILLARD M., Growth associated protein GAP-43, a polypeptide that is induced when neurons exten axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fract ion enriched in growth cones. Proc Natl Acad Sci USA, 1986; 83: 3537-3541
    63. SKENE J.H.P., Axonal growth associated proteins. Ann Rev Neurosci, 1989; 12: 127-156
    64. STRITTMA T.S.M., VARTAN IANT., FISHMAN M.C., GAP-43 as a plasticity protein inneuronal form and repair. J Neurosci, 1992; 23: 507-520
    65. GOSLIN K, SCHREYER D.J., SKENE J.H.P., et al., Changes in the distribution of GAP-43 during the development of neuronal polarity. J Neurosci, 1990; 10: 588-602
    66. Meiri K.F., Willard M., Johnson M.I., Distribution and phosphorylation of the growth associated protein GAP-43 in regenerating sympathetic neurons in culture. J Neurosci, 1998; 8: 2571–2581
    67. Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, and Hayashi H. A novel structural class of potent inhibitors of NF-kappa B activation: structure-activity relationships and biological effects of 6-aminoquinazoline derivatives. Bioorg Med Chem, 2003; 11: 3869-3878
    68. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V., Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004;119(6): 753-766
    69. M. Tsukada, Y. Ohsumi, Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett., 1993; 333(1-2): 169-174
    70. A. Melendez, Z. Talloczy, M. Seaman, E.L. Eskelinen, D.H. Hall, B. Levine, Autophagygenes are essential for dauer development and life-span extension in C. elegans. Science, 2003; 301: 1387-1391
    71. G.P. Otto, M.Y. Wu, N. Kazgan, O.R. Anderson, R.H. Kessin, J. Biol.Chem., 2004; 279: 15621
    72. G. Juhasz, G. Csikos, R. Sinka, M. Erdelyi, M. Sass, The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Lett., 2003; 543: 154-158
    73. K. Takacs-Vellai, T. Vellai, A. Puoti, M. Passannante, C. Wicky, A. Streit, A.L. Kovacs, F. Muller, Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr. Biol., 2005; 15(16): 1513-1517
    74. Z.Yue, S. Jin, C.Yang, A.J. Levine, N. Heintz, Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. U.S.A., 2003; 100(25): 15077-15082
    75. A. Kuma, M. Hatano, M. Matsui, A. Yamamoto, H. Nakaya, T. Yoshimori,Y. Ohsumi, T. Tokuhisa, N. Mizushima, The role of autophagy during the early neonatal starvation period. Nature, 2004; 432: 1032-1036
    76. M. Komatsu, S. Waguri, T. Ueno, J. Iwata, S. Murata, I. Tanida, J. Ezaki, N. Mizushima, Y. Ohsumi, Y. Uchiyama, E. Kominami, K. Tanaka, T.J.Chiba, Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Cell Biol., 2005; 169(3): 425-434
    77. X. Qu, Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, R.N. Hogan, C. Gilpin,B. Levine, Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 2007; 128(5): 931-946
    78. Bampton Edward TW, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM., The dynamics of autophagy visualised in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy, 2005; 1(1): 23-36
    79. Kabeya, Y., Mizushima, N., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000; 19: 5720-5728
    80. Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N, A novel protein complex linking the glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron, 2002; 35: 921-933
    81. Liang XH, Jackson S, Seaman M, et al., Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature, 1999; 402: 672-676
    82. Per O Seglen and Paul B Gordon, 3-Methyladenine: specific inhibitor of autophagic/ lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 1982; 79(6): 1889-1892
    83. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG., NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev., 2001; 12: 73-90
    84. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M, NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol, 1999; 19: 2690-2698
    85. Gill JS, Windebank AJ, Ceramide initiates NFkappaB-mediated caspase activation in neuronal apoptosis. Neurobiol Dis., 2000; 7: 448-461
    86. Rao, S.S., C. Chu, and D.S. Kohtz., Ectopic expression of Cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol. Cell. Biol., 1994; 14: 5259-5267.
    87. Skapek, S.X., J. Rhee, D.B. Spicer, and A.B. Lassar., Inhibition of myogenic differentiation in proliferating myoblasts by Cyclin D1-dependent kinase. Science, 1995; 267: 1022-1024
    88. Cremisi, F., Philpott, A., and Ohnuma, S., Cell cycle and cell fate interactions in neural development. Curr. Opin. Neurobiol., 2003; 13: 26-33
    89. Tamotsu Yoshimor, Autophagy: Paying Charon’s Toll. Cell, 2007; 128: 833-836

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700