人羊膜来源干细胞的性质及分化潜能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景基于干细胞研究的再生医学有望修复心肌损伤,是当前研究的热点。人羊膜来源干细胞具有多向分化潜能,且因其易于获得、不引起伦理学争议、干细胞含量丰富、免疫原性低等特点,有潜力成为未来再生医学临床应用的重要种子细胞来源。
     目的
     1.了解人羊膜不同部位(层面)来源干细胞的性质差异。
     2.评价RCCS(旋转细胞培养系统)等培养方式在人羊膜来源干细胞培养中的价值。
     3.比较不同方法诱导人羊膜来源干细胞向心肌细胞方向分化的效果。
     方法与结果
     1.羊膜上皮层来源的细胞表达各种干细胞标记物的水平普遍高于羊膜间质层来源的间充质干细胞;前者仅CD73表达水平低于后者。而羊膜上皮层内,近基底部的上皮细胞表达干细胞标记物的水平均高于近表层部(流式细胞学分析方法)。
     2.RCCS培养较静止培养更利于维持各种干细胞标记物的表达水平(流式细胞学分析方法)。RCCS培养羊膜上皮细胞2周后,细胞倾向聚集生长,并有类胚体样细胞团形成,其中存在高表达胚胎干细胞标记物的细胞(免疫组化法、免疫荧光法)。
     3.以心肌细胞裂解液、GDF-15、BMP2+FGF10分别对羊膜来源干细胞进行诱导,2周后各诱导组在蛋白水平及mRNA水平不同程度的表达心肌标记物(免疫组化法,RT-PCR法)。GDF-15诱导组表达MEF2C及GATA-4水平较高,BMP2+FGF10组表达HCN2水平较高,仅心肌细胞裂解液组明确表达KIR2.1。
     4.羊膜来源干细胞具有不对称分裂的特点,以体积较大、形态较圆、胞内颗粒样物质较丰富明显的细胞表达干细胞标记物水平较高;而体积偏小、形态近圆或略不规则的细胞表达功能蛋白较强(免疫组化法、免疫荧光法)。
     结论
     1.羊膜来源干细胞的性质及分布存在不均一性,这为进一步筛选更具临床应用价值的细胞来源提供了依据。
     2.RCCS培养有助于维持人羊膜来源干细胞的多向分化潜能。
     3.诱导人羊膜来源干细胞向心肌细胞方向分化的过程中,GDF-15具有一定作用。干细胞向心肌细胞方向分化可能需要多种细胞因子的共同作用。
Background Regenerative medicine based on cytotherapy draws great interests as a potential solution of cardiac repair.Recent reports indicate that amnion-derived stem cells have pluripotency and differentiate toward all three germ layers.Besides,some unique properties such as the ease of availability without invasive procedures,not elicit ethical debate,abundant in cell reserve,and low immunogenicity,have made amnion a potential source of cells for regenerative medicine.
     Objectives
     1.Determine the characteristics of stem cells isolated from different regions of amnion.
     2.Evaluate the application of RCCS(rotary cell culture system) in maintaining human amnion-derived cells.
     3.Induce cardiogenic differentiation of human amnion-derived cells by different agents.
     Methods and Results
     1.By flow cytometry,it was revealed that human amniotic epithelial cells(hAEC) isolated from amniotic epithelial layer expressed stem cell markers generally at higher levels than human amniotic mesenchymal stromal cells(hAMSC) isolated from amniotic mesenchymal layer(except for CD73);besides,among hAEC,the basal group(digested later) expressed stem cell markers at higher levels than the superficial group(digested earlier).
     2.By flow cytometry,RCCS showed positive effects in maintaining the expression levels of stem cell markers in hAECs.
     3.After inducing cardiogenic differentiation of human amnion-derived cells by cardiac lysis,GDF-15,and BMP2+FGF10 respectively,the expressions of cardiac markers were detected by immunohistochemistry and RT-PCR in induced cells.
     4.By Immunofluorescence and immunohistochemistry,uneven divisions of amion-derived stem cells were observed.
     Conclusions
     1.The characteristics of stem cells isolated from different regions of amnion were heterogeneous,which made possible further screening for cells holding greater therapeutic potential for transplantation and regenerative medicine.
     2.RCCS showed positive effects in maintaining the pluripotency of human amnion-derived stem cells.
     3.GDF-15 played a role in inducing cardiogenic differentiation of human amnion-derived stem cells.The cardiogenic differentiation might require the coordination of multiple cytokines.
引文
1.Thomson JA,Itskovitz-Eldor J,Shapiro SS,Waknitz MA,Swiergiel JJ,Marshall VS,Jones JM Embryonic stem cell lines derived from human blastocysts.Science:1998282:1145-1147
    2.Odorico JS,Kaufman DS,Thomson JA Multilineage differentiation from human embryonic stem cell lines.Stem Cells.2001;19(3):193-204
    3.Takahashi K,Tanabe K,Ohnuki M,Narita M,Ichisaka T,Tomoda K,Yamanaka S.Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell.2007 Nov 30;131(5):861-872
    4.Yu J,Vodyanik MA,Smuga-Otto K,Antosiewicz-Bourget J,Frane JL,Tian S,Nie J,Jonsdottir GA,Ruotti V,Stewart R,Slukvin Ⅱ,Thomson JA.Induced pluripotent stem cell lines derived from human somatic cells.Science.2007 Dec 21;318(5858):1917 -1920.
    5.Toshio Miki,Thomas Lehmann,Hongbo Cai,Donna B.Stolz and Stephen C.Strom.Stem Cell Characteristics of Amniotic Epithelial Cells.Stem Cells 2005;23;1549-1559
    6.Ayaka Toda,Motonori Okabe,Toshiko Yoshida,and Toshio Nikaido,The Potential of Amniotic Membrane/Amnion-Derived Cells for Regeneration of Various Tissues J Pharmacol Sci 2007;105:215 - 228
    7.Miki T,Strom SC.Amnion-derived pluripotent/multipotent stem cells.Stem Cell Rev.2006;2(2):133-142.
    8.Steffen Zeisberger,Andreas Zisch and Stephen C.Strom,et al.Concise Review:Isolation and Characterization of Cells from Human Term Placenta:Outcome of the First International Workshop on Placenta Derived Stem Cells.Stem Cells 2008;26;300-311
    9.Ji Xiao-xin,Li Fei,Li Duo.Application of microgravity bioreactor in cell culture.Chinese Journal of Rehabilitation.June 10,2006,vol 10,No 21
    10.袁岩,陈莲凤,张抒扬等.心肌细胞裂解液对骨髓间充质干细胞向心肌细胞分化诱导作用的研究.中华心血管病杂志,2005,Vol.33,No.2:169-173
    11.Tamagawa T,Ishiwata I,Saito S.Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell. 2004 Sep;17(3): 125-130
    
    12. Zhao P., Ise H, Hongo M, Ota M, Konishi I, Nikaido T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation. 2005 Mar 15;79(5):528-535
    
    13. Pan G, Thomson JA.Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007 Jan;17(1):42-49
    
    14. Dominici M,Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317
    
    15. WANG Bing. ZHANG Shu. WU Xing-Yu. Effect of simulated weightlessness on the expression of differentiation-related substances in rat osteosarcoma osteoblast-like cells. J Fourth Mil Med Univ 2003;24(12)
    
    16. Zheng B, Wen JK, Han M.Regulatory factors involved in cardiogenesis. Biochemistry (Mosc). 2003 Jun;68(6):650-657
    
    17. ATTA BEHFAR, LEONID V. ZINGMAN, DENICE M. HODGSON,et al. Stem cell differentiation requires a paracrine pathway in the heart The FASEB Journal. 2002; 16:1558-1566
    
    18. Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Perez Pomares JM, Weesie F, Wessels A, Moorman AF, van den Hoff MJ BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol. 2006 Jul 15;295(2):507-522
    
    19. Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, Hewett TE, Breit SN, Molkentin JD. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006; 98(3):342-350.
    
    20. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, Heineke J, Kotlarz D, Xu J, Molkentin JD, Niessen HW, Drexler H, Wollert KC.The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98(3):351-360.
    
    21. Kempf T, Horn-Wichmann R, Brabant G, Peter T, Allhoff T,Klein G, Drexler H, Johnston N, Wallentin L, Wollert KC Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem. 2007; 53:284-291
    [1] Steffen Zeisberger, Andreas Zisch and Stephen C. Strom, Surbek, Tsuneo A. Takahashi, Heinz Redl, Norio Sakuragawa, Susanne Wolbank, Portmann-Lanz, Venkatachalam Sankar, Maddalena Soncini, Guido Stadler, Daniel Mao, Toshio Miki, Fabio Marongiu, Hideaki Nakajima, Toshio Nikaido, C. Bettina Biiuhring, Marco Evangelista, Simone Hennerbichler, Bing Liu, Marta Magatti, Ning Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells 2008;26;300-311.
    
    [2] Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-317.
    
    [3] Magatti M, De Munari S, Vertua E et al. Human amnion mesenchyme harbors cells with allogeneic T cell suppression and stimulation capabilities. Stem Cells 2008 Jan;26(1):182-92.
    
    [4] Cunningham FG, MacDonald PC, Gant MF et al. The placenta and fetal membranes. Williams Obstetrics. 20th ed. Stamford, CT: Appleton and Lange,1997;95-125.
    
    [5] Benirschke K, Kaufrnann P. Pathology of the human placenta. New York: Springer-Verlag, 2000;281-297.
    
    [6] Moore KL, Persaud TVN. The developing human. 6th ed. Philadelphia: W.B. Saunders Company, 1998;41-62.
    
    [7] Akle CA, Adinolfi M, Welsh KI et al. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 1981;2:1003-51005.
    
    [8] Sakuragawa N, Misawa H, Ohsugi K et al. Evidence for active acetylcholine metabolism in human amniotic epithelial cells: Applicable to intracerebral allografting for neurologic disease. Neurosci Lett 1997;232:53-56.
    
    [9] Terada S, Matsuura K, Enosawa S et al. Inducing proliferation of human amniotic epithelial (HAE) cells for cell therapy. Cell Transplant 2000;9:701-704.
    
    [10] Miki T, Lehmann T, Cai H et al. Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005;23:1549-1559
    
    [11] Ochsenbein-Kolble N, Bilic G, Hall H et al. Inducing proliferation of human amnion epithelial and mesenchymal cells for prospective engineering of membrane repair. J Perinat Med 2003;31:287-294.
    
    [12]Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2006;2:133-142.
    [13]Pan G, Thomson JA.Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007 Jan;17(1):42-49
    
    [14]Tamagawa T, Ishiwata I, Saito S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell 2004;17:125-130.
    
    [15]Sakuragawa N, Thangavel R, Mizuguchi M et al. Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett 1996;209:9-12.
    
    [16]Elwan MA, Sakuragawa N. Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport 1997;8:3435-3438
    
    [17]Elwan MA, Thangavel R, Ono F et al. Synthesis and release of catecholamines by cultured monkey amniotic epithelial cells. J Neurosci Res 1998;53:107-113.
    
    [18]Kakishita K, Elwan MA, Nakao N et al. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: A potential source of donor for transplantation therapy. Exp Neurol 2000; 165:27-34.
    
    [19] Kakishita K, Nakao N, Sakuragawa N et al. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 2003;980:48-56.
    
    [20] Sakuragawa N, Enosawa S, Ishii T et al. Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 2000;45:171-176.
    
    [21]Takashima S, Ise H, Zhao P et al. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 2004;29:73-84.
    
    [22]Davila JC, Cezar GG, Thiede M et al. Use and application of stem cells in toxicology. Toxicol Sci 2004;79:214-223.
    
    [23]Wei JP, Zhang TS, Kawa S et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 2003;12:545-552.
    
    [24]Bilic G, Ochsenbein-Kolble N, Hall H et al. In vitro lesion repair by human amnion epithelial and mesenchymal cells. Am J Obstet Gynecol 2004; 190:87-92.
    
    [25] In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004;22:1338-1345.
    
    [26] Sakuragawa N, Kakinuma K, Kikuchi A et al. Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 2004;78:208-214.
    
    [27]Portmann-Lanz CB, Schoeberlein A, Huber A et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 2006; 194:664-673.
    
    [28]Wolbank S, Peterbauer A, Fahrner M et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: A comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 2007; 13:1173-1183.
    
    [29] Soncini M, Vertua E, Gibelli L et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 2007; 1:296-305.
    
    [30]Moore RM, Silver RJ, Moore JJ. Physiological apoptotic agents have different effects upon human amnion epithelial and mesenchymal cells. Placenta 2003;24:173-180.
    
    [31] Casey ML, MacDonald PC. Interstitial collagen synthesis and processing in human amnion: A property of the mesenchymal cells. Biol Reprod 1996;55:1253-1260.
    
    [32]Alviano F, Fossati V, Marchionni C et al. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 2007;7:11.
    
    [33]Zhao P, Ise H, Hongo M et al. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 2005;79:528-535.
    
    [34]Miki T, Mitamura K, Ross MA et al. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 2007;75:91-96.
    
    [35]Bailo M, Soncini M, Vertua E et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 2004;78:1439-1448.
    
    [36]Colocho G, Graham WP 3rd, Greene AE et al. Human amniotic membrane as a physiologic wound dressing. Arch Surg 1974;109:370-373.
    
    [37]Gruss JS, Jirsch DW. Human amniotic membrane: A versatile wound dressing. Can Med Assoc J 1978;118:1237-1246.
    
    [38]Trelford JD, Trelford-Sauder M. The amnion in surgery, past and present. Am J Obstet Gynecol 1979;134:833-845.
    
    [39]Faulk WP, Matthews R, Stevens PJ et al. Human amnion as an adjunct in wound healing. Lancet 1980; 1:1156-1158.
    
    [40] Ward DJ, Bennett JP. The long-term results of the use of human amnion in the treatment of leg ulcers. Br J Plast Surg 1984;37:191-193.
    
    [41] Ward DJ, Bennett JP, Burgos H et al. The healing of chronic venous leg ulcers with prepared human amnion. Br J Plast Surg 1989;42:463-467.
    
    [42] Subrahmanyam M. Amniotic membrane as a cover for microskin grafts. Br J Plast Surg 1995;48:477-478.
    [43] Gomes JA, Romano A, Santos MS et al. Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 2005;16:233-240.
    
    [44]Tylki-Szymanska A, Maciejko D, Kidawa M et al. Amniotic tissue transplantation as a trial of treatment in some lysosomal storage diseases. J Inherit Metab Dis 1985;8:101-104.
    
    [45]Yeager AM, Singer HS, Buck JR et al. A therapeutic trial of amniotic epithelial cell implantation in patients with lysosomal storage diseases. Am J Med Genet 1985;22:347-355.
    
    [46] Scaggiante B, Pineschi A, Sustersich M et al. Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane. Transplantation 1987;44:59-61.
    
    [47] Sakuragawa N, Yoshikawa H, Sasaki M. Amniotic tissue transplantation: Clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev 1992;14:7-11.
    
    [48] Li H, Niederkorn JY, Neelam S et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 2005;46:900-907.
    
    [49]Avila M, Espana M, Moreno C et al. Reconstruction of ocular surface with heterologous limbal epithelium and amniotic membrane in a rabbit model. Cornea 2001;20:414-420.
    
    [50]Kubo M, Sonoda Y, Muramatsu R et al. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 2001 ;42:1539-1546.
    
    [51]Yuge I, Takumi Y, Koyabu K et al. Transplanted human amniotic epithelial cells express connexin 26 and Na-K-adenosine triphosphatase in the inner ear. Transplantation 2004;77:1452-1454.
    
    [52] Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 2003; 118:11-17.
    
    [53]Ventura C, Cantoni S, Bianchi F et al. Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 2007;282:14243-14252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700