双基因修饰组织工程骨的构建及其成骨的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:大段骨缺损的修复是骨科临床治疗的难题。近年来,骨组织工程发展迅速,利用骨组织工程治疗骨缺损成为研究的热点。组织工程骨的血管化问题是影响其应用于临床的重要原因之一。骨形态发生蛋白2(BMP2)的成骨作用已获得公认,内皮细胞生长因子(VEGF)是血管内皮细胞的特异性有丝分裂原,可促进新生血管形成。研究表明,在骨形成和骨折愈合过程中,VEGF和BMP2的表达相互促进,并在骨再生过程中产生协同效应。联合应用BMP2和VEGF双基因,可实现骨与血供的联合重建,成为促进骨缺损修复的一种有效方法。利用重组病毒载体转染外源性基因到组织工程骨的种子细胞并与支架材料复合形成基因修饰组织工程骨是当今骨缺损的基因治疗研究的热点。慢病毒载体能够感染大多数非分裂细胞,并具有高效、稳定地表达目的基因的能力,已被广泛应用于基因治疗实验研究。
     目的:(1)利用BMP2和VEGF165两种基因间的协同作用,促进组织工程骨的成骨及血管化。(2)掌握重组慢病毒的生产技术,以便应用于今后其它研究中,从而使相应的外源基因高效稳定地表达。
     材料和方法:(1)从人骨肉瘤成骨样细胞(MG-63细胞)中调取人BMP2和VEGF165基因;分别构建携带BMP2、VEGF165基因的重组慢病毒表达载体;分别进行携带BMP2、VEGF165基因的重组慢病毒(LV-BMP、LV-VEGF)的包装和生产。(2)Wistar大鼠的骨髓间充质干细胞(MSCs)的分离培养、体外扩增。(3)按照未转染细胞组、VEGF165单转染细胞组、BMP2单转染细胞组、BMP2及VEGF165共转染细胞组分别转染MSCs;(4)转染后7天,通过实时荧光定量检测各组人BMP2和VEGF165基因的表达状况;转染后1、4、8周后,通过ELISA检测BMP2和VEGF165蛋白表达水平变化(5)转染后14天,按上述分组对各组细胞行成骨能力的检测(碱性磷酸酶染色及定量检测)。(6)按分组将细胞与支架材料复合并行细胞材料复合物的检测:细胞接种后14天行电镜观察、接种后14天行碱性磷酸酶定量检测、接种后2周观察细胞生长曲线。(7)按分组将组织工程骨回植到裸鼠皮下试验,回植后4、8周组织学观察体内成骨情况,回植后4周CD31免疫组化染色观察血管生成情况。
     结果:(1)分别成功构建携带BMP2、VEGF165的重组慢病毒。(2)仅在BMP+VEGF组,人BMP2和VEGF165基因在mRNA和蛋白水平高效共表达,且其表达水平与相应单转组无明显差异(P>0.05)。ELISA检测显示人BMP2和VEGF165基因在蛋白水平高效共表达可长达8周。(3)双转组中MSCs的ALP活性明显高于各单转组(P<0.01)。(4)细胞接种到支架材料后,扫描电镜观察细胞在接种后14天在支架材料上生长增殖良好。HOECHST DNA检测表明接种后14天内各组细胞生长曲线无明显异常(P>0.05)。但双转组中MSCs的ALP活性明显高于各单转组(P<0.01)。(5)裸鼠实验中,联合应用BMP2与VEGF165组和单用BMP2组有异位骨形成,其他各组均无成骨。植骨后4、8周,HE染色显示联合应用BMP2组与VEGF165组成骨面积多于单用BMP组(P<0.01)。植骨后4周,双转组CD31染色阳性细胞明显多于单转BMP组。
     结论:通过慢病毒载体系统进行双基因转染的大鼠骨髓间充质干细胞(MSCs)复合磷酸三钙(TCP)体外构建组织工程骨及体内成骨的实验研究,证实(1)利用较新的慢病毒载体系统共转染的方法可使种子细胞高效稳定地共表达人BMP2及VEGF165基因(2)利用两种基因间的协同作用,联合应用BMP2和VEGF可明显促进组织工程骨的成骨及血管化,其成骨及血管化效果均优于单用一种生长因子。
Background: It still remains as a clinical problem for orthopaedic surgeons to repair large bone defect. Tissue engineered bone has been advancing rapidly in recent years and has become a research focus in the treatment of bone defect. But the vascularization process is a major bottleneck for its clinical application. The osteogenic ability of bone morphogenetic protein 2 (BMP2) has been widely admitted and vascular endothelial growth factors (VEGF) is special mitogen in vascular endothelial cell, accelerating the growth of new vessels. Researches show that the expression of BMP and VEGF exists mutual influence relations, leading to a synergetic effect on bone regeneration. United reconstruction of bone formation and bone supply can be realized by combined application of both genes, becoming a novel method to repair bone defect. It has become a research focus to transfer endogenous gene to seed cell of tissue-engineered bone through recombinant virus vector system and then combined with scaffolds to form gene-modified tissue engineered bone. Lentiviral vector can infect most none-dividing cells and owns the capacity to express exogenous genes efficiently and stably. It has been widely applied in researches on gene therapy.
     Objectives: (1) Promote the angiogenesis and osteogenesis processes of tissue-engineered bone by virtue of the synergetic effect of BMP2 and VEGF genes. (2) Master the technique of recombinant lentivirus production to apply in future researches, leading to a stable and high expression of relating exogenous genes.
     Materials and methods: (1) Human VEGF165 and BMP2 cDNAs were obtained from human osteosarcoma cell line MG63. The expression lentivirus vectors carrying VEGF165 or BMP2 were constructed respectively. Recombinant lentivirus carrying VEGF165 (Lv-VEGF) or BMP2 (Lv-BMP) were packaged and produced respectively. (2) Rat bone marrow mesenchymal stem cells (MSCs) were isolated and expanded in vitro. (3) MSCs were co-transfected with Lv-VEGF and Lv-BMP (BMP+VEGF group), or each alone (BMP group and VEGF group), or with no virus (control group). (4) The mRNA expression of human VEGF165 and BMP2 genes in each group was detected by real-time PCR at 7 days after transfection. And the protein expression of human VEGF165 and BMP2 genes in each group was detected by enzyme linked immunosorbent assay (ELISA) at 1,4,8 weeks after transfection.(5) Alkaline phosphatase activity (ALP) staining as well as ALP activity was performed in each group at 14 days after transfection. (6) MSCs of each group were collected and seeded on theβ-tricalcium phosphate (β-TCP) scaffolds. Theβ-TCP scaffolds combining MSCs of BMP+VEGF group were randomly chosen for scanning electron microscopy (SEM) observation at 14 days after cell seeding. Cell proliferation of each group was determined every day by a hoechst assay for up to 2 weeks after cell seeding. The ALP activity assay of cell-seeded scaffolds in each group were analyzed 14 days after cell seeding.(7)Engineered constructs of each group were implanted subcutaneously to nude mice. The implants were harvested and used for histological analysis at 4 and 8 weeks after implantation. Angiogenesis was also observed at 4 and 8 weeks after implantation by CD31 staining.
     Results: (1) Lentiviral expression vectors carrying hVEGF165 or hBMP2 were correctly constructed. (2) VEGF165 and BMP2 genes were co-expressed in BMP+VEGF group. No significant difference of BMP2 expression was detected between BMP+VEGF and BMP groups (P>0.05), similarly no significant difference of VEGF165 expression between BMP+VEGF and VEGF groups (P>0.05). And both genes were successfully co-expressed in the co-transfection group for up to 8 weeks confirmed by ELISA. (3) The ALP activity of MSCs was significantly augmented by the co-transfection with both genes than any single gene transfection (p<0.01).(4) After seeding MSCs onto the scaffolds, SEM observation showed that MSCs grew and proliferated well in co-transfection group at 14 days. There was no significant difference among all the groups in hoechst DNA assay for cell proliferation for 14 days after cell seeding (P>0.05), but the highest ALP activity was observed in the co-transfection group at 14 days after cell seeding (p<0.01). In nude mice, ectopic osteogenesis was observed in BMP group and BMP+VEGF group, and no ectopic osteogenesis was found in the other groups. At 4 and 8 weeks post-operation, BMP+VEGF group has better bone formation than BMP group in the HE staining sections (p<0.01). At 4 weeks post-operation, more CD31 positive cells were observed in BMP+VEGF group than in BMP group.
     Conclusions:In our study, we constructed tissue-engineered bone usingβ-TCP combined with MSCs lentivirally co-transfected with BMP2 and VEGF165 and implant these engineered constructs subcutaneously to nude mice to observe the bone formation in vivo. We can conclude: (1) A stable and relatively long term co-expression of both genes can be achieved through lentivirus mediated co-transfection of both genes. (2) Combined use of BMP2 and VEGF gene can produce better osteogenesis and angiogenesis than each single gene alone in virtue of the synergistic effect of both genes.
引文
1.杨志明,黄富国,秦廷武,等.生物衍生组织工程骨植骨的初步临床应用.中国修复重建外科杂志,2002,16(5):311-314.
    2. Warnke PH, Springer IN, Wiltfang J, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet,2004,364(9436):766- 770.
    3. Warnke PH, Wiltfang J, Springer I, et al. Man as living bioreactor: fate of an exoge -nously prepared customized tissue-engineered mandible. Biomaterials, 2006,27(17):3163 -3165.
    4. Vacanti CA, Bonassar LJ, Vacanti MP, et al. Replacement of an avulsed phalanx with tissue- engineered bone. N Engl J Med,2001,344(20):1511- 1514.
    5. Quarto R, Mastrogiacvomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med, 2001,344(5)385- 386.
    6. Edwards PC, Ruggiero S, Fantasia J, et al. Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther, 2005, 12: 75 - 86.
    7.金丹,裴国献,王珂,等. hBMP - 7基因转染修复骨缺损的实验研究.中华骨科杂志, 2003, 23: 747-751.
    8. Vacanti CA, Vacanti JP. The science of tissue engineering. Orthop Clin North Am, 2000, 31(3):351-356.
    9. Rose FR, Oreffo RO. Bone tissue engineering: Hope vs hype. Biochem Biophys Res Commun. 2002, 292: 1-7.
    10. Tsuda H, Wada T, Yamashita T, et al. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. J Gene Med, 2005, 7: 1322-1334.
    11. Sikavitsas VI, van den Dolder J, Bancroft GN, et al. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue- engineered constructs using a rat cranial critical size defect model. J Biomed Mater Res A, 2003,67(3):944- 951.
    12. Kunjachan V, Subramanian A, Hanna M, et al. Comparison of differentfabrication techniques used for processing 3-dimensional, porous, biodegradable scaffolds from modified starch for bone tissue engineering. Biomed Sci Instrum, 2004, 40: 129- 135.
    13. El-Ghannam AR. Advanced bioceramic composite for bone tissue engineering: Design principles and structure-bioactivity relationship. J Biomed Mater Res, 2004, 69A(3): 490- 501.
    14. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering .Ann Biomed Eng, 2004, 32(3): 477- 486.
    15. Urist MR. Bone :formation by autoinduction.Science,1965,150(698):893-899
    16.Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clone and activities. Science,1988,242(4885):1528-1534
    17. Edward HR,Joseph ML,Marshball RU,et al. Bone Morphogenetic Protein -2:Biology and Applications.Clinical Orthopeadics and Related Research,1996,324:39-46.
    18. Midy V, Plouet J. Vasculotropin/vascular endothelial growth factor induces differentiationin cultured osteoblasts. Biochem Biophys Res Commun,1994,199:380-386
    19. Deckers MM, Karperien M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology, 2000,141:1667-1674
    20.Cassell OC, Hofer SO, Morrison WA, et al. Vascularization of tissue engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg ,2002,55:603-610
    21.Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science,2002,295:1009-1014
    22.Bouhadir KH, Mooney DJ. Promoting angiogenesis in engineered tissues. J Drug Tatget,2001,9:397-406
    23.Vogelin MDF, Jones NF, Lieberman JR, et al. Prefabrieation of bone by use of a vascularized periosteal flap and bone morphogenetic protein. Plast Reconstr Surg,2002,109:190-198
    24.Kaigler D, Krebsbach PH, Polverini PJ, et al. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng.2003,9:95-103
    25.Goad DL, Rubin J, Wang H, et al. Enchanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology,1996,137:2262-2268
    26.Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone,2002,30:472-477
    27.Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A.Endocrinology, 2002,143:1545-1553
    28.Partridge K, Yang X, Clarke NM, et al. Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer. Biochem Biophys Res Commun, 2002,292:144-152
    29.Tsuchida H, Hashimoto J, Crawford E, et al. Engineeered allogenic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res,2003,21:44-53
    30.Florian G, Helge B, et al. Vascular Endothelial Growth Factor Gene-Activated Matrix (VEGF165-GAM) Enhances Osteogenesis and Angiogenesis in Large Segmental Bone Defects. J Bone Miner Res, 2005,20:2028-2035
    31.Peng H, Wright V, Usas A, et al. Synergistic enhancement of formation and healing by stem cell expressed VEGF and bone morphogenetic protein-4. J Clin Invest, 2002, 110:751-759
    32.Xu J, Qu J, Cao L, et al. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol, 2008, 214(4):472-481.
    33.Galy A, Roncarolo MG, Thrasher AJ. Development of lentiviral gene therapy for Wiskott Aldrich syndrome. Expert Opin Biol Ther, 2008,8(2):181-190.
    34.Li Y, Qiu S, Song L, et al. Secretory expression of p53(N15)-Ant following lentivirus-mediated gene transfer induces cell death in human cancer cells. Cancer Invest, 2008:26(1):28-34.
    35.Robert-Richard E, Moreau-Gaudry F, Lalanne M, et al. Effective gene therapy of mice with congenital erythropoietic porphyria is facilitated by a survival advantage of corrected erythroid cells.Am J Hum Genet, 2008, 82(1):113-24.
    36.Jiang J, Fan CY, Zeng BF.Osteogenic differentiation effects on rat bone marrow-derived mesenchymal stromal cells by lentivirus-mediated co-transfection ofhuman BMP2 gene and VEGF165 gene. Biotechnol Lett, 2008,30(2):197-203.
    37.Stefano I, Walter H, Veronica T, et al. Gene Transfer in Ovarian Cancer Cells: A Comparison between Retroviral and Lentiviral Vectors. Cancer Research, 2002, 62(21): 6099-6107
    38.Thiery VD, Lieven T, Luigi N, et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen - presenting cells in vivo. Blood, 2002, 100:813-822
    1. Safdar N K, M ath ias PG, Jo seph ML. Bone grow th factors. Orthop Clin Nor Am , 2000, 31 (3) : 375.
    2. Dragoo J L, Choi J Y, Lieberman J R, et al. Bone induction by BMP2-transduc -ed stem cells derived from human fat. J Orthop Res, 2003, 21 (4) : 622 - 629.
    3. Woo B H, Fink B F, Page R, et al. Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein 2 in a polymericmatrix. Pharm Res, 2001, 18 (12) : 1747 - 1753.
    4.Wu X , Li Y,Crise B , et al . Transcription start regions in the human genome are favored target s for MLV integration. Science, 2003 ,300 (56) :1749-1751.
    5.Kreppel F, Kochanek S. Long-term transgene expression in proliferating cells mediated by episomally maintained highcapacity adenovirus vectors. J Virol, 2004, 78(1): 9-22
    6. Yant SR, Ehrhardt A, Mikkelsen JG, et al. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol, 2002, 20(10): 999-1005
    7. Goncalves MA, van der Velde I, Knaan-Shanzer S, et al.Stable transduction of large DNA by high-capacity adenoassociated virus/adenovirus hybrid vectors. Virology, 2004,321(2): 287-296
    8. Wang Z, Zhu T, Qiao C P. Adeno-associated virus serotype efficiently delivers genes to muscle and heart. Nat Biotechnol, 2005, 23(3): 321-328
    9. Basso DM, BeattieMS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma, 1995, 12: 1-21.
    10. Pereboeva L, Komarova S, Mikheeva G, et al. Approaches to utilize mesenchymal progenitor cells as cellular vehicles. STEM CELLS, 2003, 21:389-404.
    11. Blesch A. Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods, 2004, 33(2): 164-172
    12. Buchschacher Jr GL, Wong-Staal F. Development of lentiviral vectors for gene therapy for human diseases. Blood, 2000, 95(8): 2499-2504
    13. Radyukhina NV, Rutkevich PN, Aref'yeva TI. Lentivirus transduction of bone marrow hemopoietic precursor cells with Lin-c-kit+ phenotype ex vivo using a genetic construct containing green fluorescent protein gene. Bull Exp Biol Med. 2007,143(6):723-6
    14. Zhang SH, Wu JH. Distinctive gene transduction efficiencies of commonly used viral vectors in the retina. Curr Eye Res. 2008, 33(1):81-90
    15. Gould DJ, Favorov P. Vectors for the treatment of autoimmune diseases. Gene Therapy. 2003,10:912-927.
    16. Li H, Weinstein IB. Protein kinase C beta enhances growth and expression of cyclin D1 in human breast cancer cells. Cancer Res.2006, 66(23):11399-11408
    17. Patwari P, Higgins LJ, Chutkow WA.The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. J Biol Chem. 2006, 281(31):21884-21891
    18. Yu SF, Von Ruden T, Kantoff PW, et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells.Proc Natl Acad Sci USA, 1986, 83(10) : 3194-3198.
    19. Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol, 1998, 72( 11) : 8463- 8471.
    20. Iwakuma T, Cui Y, Chang L. Self-inactivating lentiviral vectors with U3 and U5 modications. Virology, 1999, 261: 120-132.
    21. Douglas JL, Lin WY, Panis ML, et al. Efficient human immunodeficiency virus- based vector transduction of unstimulated human mobilized peripheral bood CD34+cells in the SCID-hu Thy/Liv model of human T cells lymphopoiesis. Hum Gene Ther, 2001, 12: 401-413.
    22.Wang JT, Peng DY, Chen M, et al. Gene delivery for lung cancer using nonviral gene vectors. Pharmazie,2007,62(10):723-726.
    23.Lucas R, Keisari Y. Innovative cancer treatments that augment radiotherapy or chemo-therapy by the use of immunotherapy or gene therapy. Recent Patents Anticancer Drug Discov, 2006,1(2):201-208.
    24. Giacca M .Virus-mediated gene transfer to induce therapeutic angiogenesis: where do we stand?Int J Nanomedicine, 2007,2(4):527-540
    25. Alexander JJ, Hauswirth WW. Adeno-associated viral vectors and the retina. Adv Exp Med Biol, 2008, 613:121-128.
    1. Burkus JK, Transfeldt EE, Kitchel SH, et al. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogeneticprotein-2. Spine, 2002, 27:2396-2408.
    2. Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am, 2001, 83(A Suppl 1): S151-S158.
    3. Mont MA, Ragland PS, Biggins B, et al. Use of bone morphogenetic proteins for musculoskeletal applications. An overview. J Bone Joint Surg Am, 2004, 86(A Suppl 2):41-55.
    4. Kofron MD, Laurencin CT. Orthopaedic applications of gene therapy. Curr Gene Ther, 2005, 5: 37-61.
    5. Dai J, Rabie AB, HaggU, et al. Alternative gene therapy strategies for the repair of craniofacial bone defects. Curr Gene Ther, 2004, 4: 469-485.
    6. Oakes DA., Lieberman JR. Osteoinductive applications of regional gene therapy: ex vivo gene transfer. Clin Orthop Relat Res, 2000, 379 Suppl: S101-S112.
    7. Baltzer AW, Lattermann C, Whalen JD, et al. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther, 2000, 7: 734-739.
    8. Tsuda H, Wada T, Yamashita T, et al. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. J Gene Med, 2005, 7: 1322-1334.
    9. Wang EA, Rosen V, D'Alessandra JS, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA, 1990, 87: 2220-2224.
    10. Kiyozuka Y, Miyazaki H, Yoshizawa K et al. An autopsy case of malignant mesothelioma with osseous and cartilaginous differentiation: bone morphogenetic prote in-2 in mesothelial cells and its tumor. Dig Dis Sci, 1999, 44: 1626-1631.
    11. Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today, 2003, 8: 980-989.
    12. Rabie AB, Leung FY, Chayanupatkul A, et al. The correlation between neovascularization and bone formation in the condyle during forward mandibularpositioning. Angle Orthod, 2002, 72:431-438.
    13. Murphy WL, Simmons CA, Kaigler D, et al. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res, 2004, 83(3):204-210.
    14. Wright V, Peng H, Usas A, et al. BMP4-expressing muscle derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther, 2002, 6: 169–178.
    15. Huang YC, Kaigler D, Rice KG, et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res, 2005, 20(5): 848-857.
    16.Wang WG, Lou SQ, Ju XD, et al. In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture: activation by transfection with TGF-beta2. Tissue Cell, 2003, 35: 69-77.
    17. Sugiyama O, An DS, Kung SP, et al. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol. Ther, 2005,11: 390-398.
    18. Pereboeva L, Komarova S, Mikheeva G, et al. Approaches to utilize mesenchymal progenitor cells as cellular vehicles. STEM CELLS, 2003, 21: 389-404.
    19. Wilson JM. Adenoviruses as gene-delivery vehicles. N Engl J Med, 1996,334: 1185-1187.
    20. Hsu WK, Sugiyama O, Park SH, et al. Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone, 2007, 40: 931-938.
    21. McMahon JM, Conroy S, Lyons M, et al. Gene Transfer into Rat Mesenchymal Stem Cells: A Comparative Study of Viral and Nonviral Vectors. Stem Cells And Development, 2006,15: 87-96.
    22. Naldini L, Blomer U, Gage FH, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA. 1996, 93:11382-11388.
    23. Lu W, Zhou X, Hong B, et al. Suppression of invasion in human U87 glioma cells by adenovirus-mediated co-transfer of TIMP-2 and PTEN gene. Cancer Lett, 2004, 214:205-213.
    24. Ojima T, Iwahashi M, Nakamura M, et al. The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen. Int J Oncol, 2006, 28: 947-953.
    25. Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system.J. Virol. 1998, 72: 8463-8471.
    26. Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998, 72: 9873-9880.
    27. Liechty KM, Mackengie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site specific differentiation after in utero transplantation in sheep. Nat Med, 2000, 6:1282-1286.
    28. Livingston T, Ducheyne P, Garino J, et al. In vivo evaluation of a bioactive scaffold Forbone tissue engineering. J Biomed Mater Res, 2002, 62: 1-13.
    29. Deckers MM, Karperien M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology, 2000,141(5):1667-1674.
    30. Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone, 2002, 30: 472-477.
    31. Zelzer E, Olsen BR. Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol, 2005,65:169-87.
    32. Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A, 2002, 99:9656–9661.
    33. Midy V, Plouet J. 1994 Vasculotropin/vascular endothelial growth factor induces differentiationin cultured osteoblasts. Biochem Biophys Res Commun, 199:380–386.
    1. Mao X, Chu CL, Mao Z, et al. The development and identification of constructing tissue engineered bone by seeding osteoblasts from differentiated rat marrow stromal stem cells onto three-dimensional porous nano-hydroxylapatite bone matrix in vitro. Tissue Cell, 2005, 37: 349-357.
    2. Banwart JC, Asher MA, Hassanein RS, et al. Iliac crest bone graft harvest donor site morbidity: A statistical evaluation. Spine, 1995, 20: 1055-1060.
    3. Boden SD, Zdeblick T, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages: Definitive evidence of osteoinduction in humans-a preliminary report. Spine. 2000, 25: 376-381.
    4. Rose FR, Oreffo RO. Bone tissue engineering: Hope vs hype. Biochem Biophys Res Commun, 2002, 292: 1-7.
    5. Jiang XQ, Chen JG, Gittens S, et al. The ectopic study of tissue-engineered bone with hBMP-4 gene modified bone marrow stromal cells in rabbits. Chin Med J 2005, 118: 281-288.
    6. Schek RM, Wilke EN, Hollister SJ, et al. Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials, 2006, 27: 1160-1166.
    7. Kiyozuka Y, Miyazaki H, Yoshizawa K, et al. An autopsy case of malignant mesothelioma with osseous and cartilaginous differentiation: bone morphogenetic protein-2 in mesothelial cells and its tumor. Dig Dis Sci, 1999, 44: 1626-1631.
    8. Dai KR, Xu XL, Tang TT, et al. Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone. Calcif Tissue Int. 2005, 77: 55-61.
    9. Xu XL, Lou J, Tang TT, et al. Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res B Appl Biomater , 2005, 75: 289-303.
    10. Lieberman JR, Ghivizzani SC, Evans CH. Gene Transfer Approaches to the Healing of Bone and Cartilage. Mol Ther, 2002:6, 141-147
    11. Spinella-Jaegle S, Roman-Roman S, Faucheu C, et al. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone, 2001, 29: 323-330.
    12. Tsuda H, Wada T, Yamashita T, Hamada H. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. J Gene Med, 2005, 7: 1322-1334.
    13. Musgrave DS, Pruchnic R, Bosch P, et al. Human skeletal muscle cells in ex vivo gene therapy to deliver bone morphogenetic protein-2. J Bone Joint Surg Br, 2002, 84:120-127
    14. Midy V, Plouet J. Vasculotropin/vascular endothelial growth factor induces differentiationin cultured osteoblasts. Biochem Biophys Res Commun.1994,199: 380-386.
    15. Street J, Bao M, deGuzman L, Bunting S, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA, 2002: 99, 9656-9661.
    16. Deckers MM, Karperien M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology. 2000, 141: 1667-1674.
    17. Yeh LC, Lee JC. Co-transfection with the osteogenic protein (OP)-1 gene and the insulin-like growth factor (IGF)-I gene enhanced osteoblastic cell differentiation. Biochim Biophys Acta, 2006, 1763:57-63.
    18. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials, 2000, 21: 2347-2359.
    19. Kunjachan V, Subramanian A, Hanna M, et al. Comparison of different fabrication techniques used for processing 3-dimensional, porous,biodegradable scaffolds from modified starch for bone tissue engineering. Biomed Sci Instrum, 2004, 40: 129- 135.
    20. El-Ghannam AR. Advanced bioceramic composite for bone tissue engineering: Design principles and structure-bioactivity relationship. J Biomed Mater Res, 2004, 69A(3): 490- 501.
    21. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering.Ann Biomed Eng, 2004, 32(3): 477- 486.
    22. Walles T, Herden T, Haverich A, et al. Influence of scaffold thickness and scaffold composition on bioartificial graft survival. Biomaterials, 2003, 24(7): 1233- 1239.
    23. Umeda H, Kanemaru S, Yamashita M, et al. Bone regeneration of canine skullusing bone marrow-derived stromal cells and beta-tricalcium phosphate. Laryngoscope. 2007, 117(6):997-1003.
    24. Kishimoto M, Kanemaru S, Yamashita M, et al. Cranial bone regeneration using a composite scaffold of Beta-tricalcium phosphate, collagen, and autologous bone fragments. Laryngoscope, 2006, 116(2):212-216.
    25. Poehling S, Pippig SD, Hellerbrand K, et al. Superior effect of MD05, beta-tricalcium phosphate coated with recombinant human growth/differentiation factor-5, compared to conventional bone substitutes in the rat calvarial defect model. J Periodontol, 2006, 77(9):1582-1590.
    26. Eslaminejad MB, Mirzadeh H, Mohamadi Y, et al. A Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. J Tissue Eng Regen Med, 2007, 1(6):417-424.
    27. Damron TA. Use of 3D beta-tricalcium phosphate (Vitoss) scaffolds in repairing bone defects. Nanomed, 2007, 2(6):763-675.
    28. Kai T, Shao-qing G, Geng-ting D. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion. Spine, 2003, 28(15):1653-1658.
    29. Jensen SS, Broggini N, Hj?rting-Hansen E. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res, 2006 ,17(3):237-243.
    30. Liu GP, Zhao L, Cui L, et al. Tissue-engineered bone formation using human bone marrow stromal cells and novelβ-tricalcium phosphate. Biomed Mater, 2007, 2: 78-86.
    31. Yuan J, Cui L, Zhang WJ, et al. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials, 2007, 28(6):1005-1013.
    1. Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today, 2003, 8: 980-989.
    2. Rabie AB, Leung FY, Chayanupatkul A, et al. The correlation between neovascularization and bone formation in the condyle during forward mandibular positioning. Angle Orthod, 2002, 72:431-438.
    3. Murphy WL, Simmons CA, Kaigler D, et al. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res, 2004, 83(3):204-210.
    4. Kaigler D, Krebsbach PH, Polverini PJ, et al. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cell. Tissue Eng, 2003, 9:95-103.
    5. Rabie AB, Shum L, Chayanupatkul A. VEGF and bone formation in the glenoid fossa during forword mandibular positioning. Am J Orthodonot Dentofac Orthoped,2002,122:202- 209.
    6. Colton CK. Implantable biohybrid artificial organs. Cell Transplant, 1995, 4:415- 436.
    7. Akita S, Tamai N , Myoui A, et al. Capillary vessel netwok integration by inserting a vascular pedical enhances bone formation in tissue engineered bone using interconnected poros hydroxyapatite ceramics. Tissue Eng, 2004,10:789- 795.
    8. Kawamura K, Yajima H, Ohgushi H, et al. Experimental stydy of vascularized tissue- engineered bone grafts. Plast Reconstr Surg, 2006,117:1471- 1479.
    9. Hokugo A, Kubo Y, Takahashi Y, et al. Prefabrication of vascularized bone graft using guided bone regeneration. Tissue Eng, 2004, 10:978- 986.
    10. Alam MI, Asahina I, Seto I, et al. Prefabrication of vascularized bone flap induced by recombinant human bone morphogenetic protein 2(rhBMP-2). Int J Oral Maxillofac Surg,2003,32:508-514.
    11.杨志明,樊征夫,解慧琪,等.组织工程化人工骨血管化研究.中华显微外科杂志,2002,5:119-122.
    12. Cheng MH, Brey EM, Allori A, et al. Ovine model for engineering bone segments. Tissue Eng, 2005,11:214-225.
    13. Thomson RC, Mikos AG, Beahm E, et al. Guided tissue fabrication from per -iosteum using preformed biodegrable polymer scaffolds. Biomaterials, 1999, 20(21): 2007- 2018.
    14. Goldsmith HS, Griffith AL, Kupferman A, et al. Lipid angiogenic factor from omentum. JAMA, 1984, 252:2034-2036.
    15. SooWon S, Jinhoon K, JiYoun S, et al. Use of omentum as an in vivo cell culture system in tissue engineering. ASAIO J, 2004,50:464-467.
    16. Terheyden H, Knak C, Jepsen S, et al. Mandibular reconstraction with a prefabricated vasculared bone graft using recombinant human osteogenenic protein- 1: an experimental study in miniature pigs.part 1: prefabrication. Int J Oral Maxillofac Surg, 2001, 30:373-379.
    17. Terheyden H, Warnke P, Dunsche A, et al. Mandibular reconstraction with a prefabricated vasculared bone graft using recombinant human osteogenenic protein- 1: an experimental study in miniature pigs.Part 2:transplantation. Int J Oral Maxillofac Surg, 2001, 30:469-478.
    18. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med, 1999, 77(7): 527-543.
    19. Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med, 1999, 5:623-628.
    20. Carlevaro MF, Cermelli S, Cancedda R, et al. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: Autoparacrine role during endochondral bone formation. J Cell Sci, 2000, 113:59-69.
    21. Aoyama J, Tanaka E, Miyauchi M,et al.Immunolocalization of vascular endothelial growth factor in rat condylar cartilage during postnatal development. Histochem Cell Biol, 2004,122(1):35-40.
    22. Kleinheinz J, Stratmann U , Joos U, et al. VEGF-activated angiogenesis during bone regeneration. J Oral Maxillofac Surg, 2005,63(9):1310-1316.
    23. Leung FY, Rabie AB, Hagg U. Neovasscularization and bone formation in the condyle during stepwise mandibular advancement.Eur J Orthod 2004, 26(2):137-141.
    24. Kent Leach J, Kaigler D, Wang Z, et al. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 2006, 27(17):3249-3245.
    25.Ueno T, Kagawa T, Kanou M, et al. Immunolocalization of vascular endothelial growth factor during heterotopic bone formation induced from grafted periosteum. Ann Plast Surg, 2004, 53(2):150-154.
    26. Eckardt H, Ding M, Lind M, et al. Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. J Bone Joint Surg Br, 2005, 187(10):1434-1438.
    27. Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA, 2002, 199(15):9656-9661.
    28. Epstein SE, Kornowski R, Fuchs S, et al. Angiogenesis therapy: Amidst the hype,the neglected potential for serious side effects.Circulation,2001,104:115-119.
    29. Breitbart AS, Grande DA, Mason JM, et al. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg 1999;42(5):488-495.
    30. Moran CG, Tourret LJ. Recent Advances: Orthopaedics. BMJ, 2001, 322 (7291):902-905.
    31. Wang EA, Rosen V, D'Alessandra JS, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA, 1990, 87: 2220-2224.
    32. Kiyozuka Y, Miyazaki H, Yoshizawa K, et al. An autopsy case of malignant mesothelioma with osseous and cartilaginous differentiation: bone morphogenetic protein-2 in mesothelial cells and its tumor. Dig Dis Sci, 1999, 44: 1626-1631.
    33. Kakudo N, Kusumoto K, Wang YB, et al. Immunolocalization of vascular endothelial growth factor on intramuscular ectopic osteoinduction by bone morphogenetic protein-2. Life Sci. 2006, 79(19):1847-1855.
    34. Tokuda H, Hatakeyama D, Shibata T, et al. p38 MAP kinase regulates BMP-4-stimulated VEGF synthesis via p70 S6 kinase in osteoblasts. Am J Physiol Endocrinol Metab, 2003, 284(6):E1202-E1209.
    35. Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg ,2002,109(7):2384-2397.
    36. Deckers MM, Karperien M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology, 2000, 141(5):1667-1674.
    37. Peng H, Wright V, Usas A, et al. Synergistic enhangcement of bone formation and healing by stem cell- expressed VEGE and bone morphogenetic protein-4. Clin Invest, 2002, 110:751-759.
    38. Kessler S, Mayr-Wohldfart U, Ignatius A, et al. The impact of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) on osseointegration, degradation and biomechanical properties of a synthetic bone substitute. Z Orthop Ihre Grenzgeb, 2003, 141(4):472-480.
    39. Yeh LC, Lee JC. Osteogenic protein-1 increases gene expression of vascular endothelial growth factor in primary cultures of fetal rat calvaria cells. Mol Cell Endocrinol, 1999, 153(1-2):113-124.
    40. Mauney JR, Nguyen T, Gillen K, et al.Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials, 2007, 28(35):5280-5290.
    41. Luong-Van E, Gr?ndahl L, Song S, et al. The in vivo assessment of a novel scaffold containing heparan sulfate for tissue engineering with human mesenchymal stem cells. J Mol Histol, 2007, 38(5):459-468.
    42. Chen F, Feng X, Wu W, et al. Segmental bone tissue engineering by seeding osteoblast precursor cells into titanium mesh-coral composite scaffolds. Int J Oral Maxillofac Surg, 2007, 36(9):822-827.
    43. Papadimitropoulos A, Mastrogiacomo M, Peyrin F, et al. Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calciumphosphate scaffold: an X-ray computed microtomography study. Biotechnol Bioeng, 2007, 98(1):271-281.
    44. Aghaloo T, Jiang X, Soo C, et al. A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther, 2007, 15(10):1872-1880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700