Ad-Flk1-Fc抑制膀胱肿瘤生长及血管生成作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膀胱肿瘤是我国最常见的泌尿系统恶性肿瘤,具有多发、高复发性的特点,且随着复发,其恶性程度也呈增高趋势,最终发生浸润转移而危及生命。如何提高膀胱肿瘤的治疗效果是目前泌尿外科领域未解决的难点和一大课题。随着对肿瘤发病机制研究的深入,人们逐渐认识到肿瘤的生长、浸润和转移都需要依赖新生血管的形成。研究显示,当肿瘤长至1~2mm,即需要有新生血管供应,否则肿瘤细胞因缺血缺氧出现死亡,并由此提出了治疗肿瘤的新途径—抗血管生成治疗,为实体肿瘤的治疗提供了新的思路,并形成了抗肿瘤血管生成疗法。与传统的肿瘤治疗相比较,抗肿瘤血管生成策略有较多的优势:作用强,易于到达血管靶细胞,不产生耐药性,无明显毒副作用。虽然近年来抗肿瘤血管生成治疗的研究取得了令人瞩目的成果,国外已有多种此类药物进入临床应用或实验研究,显示出良好的效果,但还存在明显的不足之处:①这些治疗分子都是从外界施加的,作用时间短,必需持续给药;②由于这些分子可溶性方面的限制,需要大剂量静脉给药,使得毒性大为增加。
     血管内皮生长因子(VEGF)是目前已知的最重要促血管生成因子。多数肿瘤组织和肿瘤细胞株均过量表达VEGF。VEGF主要通过与高亲和力酪氨酸激酶受体血管内皮生长因子受体-2(VEGFR-2)结合而发挥生物学活性,VEGF/VEGFR-2信号转导通路被证实在肿瘤血管生成过程中起关键性作用。通过阻断该信号转导通路,可以达到抑制肿瘤血管生成,从而抑制肿瘤的生长和转移的目的。根据这一原理,我们设计了阻断VEGF与其受体相互作用的新的治疗方案:构建含VEGFR-2(Flk1)胞外段和IgG2a Fc段融合基因的腺病毒载体Ad-Flk1-Fc,转染膀胱肿瘤细胞和血管内皮细胞,使之表达分泌游离的融合Flk1-Fc,后者在肿瘤细胞和新生血管内皮细胞生长的微环境中可捕获血液中的VEGF,阻断细胞自/旁分泌产生的VEGF与VEGFR-2的结合,从而抑制血管生成和肿瘤的生长,为临床治疗膀胱肿瘤提供高效、安全新方法。主要研究内容和结果如下:
     第一部分腺病毒载体Ad-Flk1-Fc的构建与表达
     1.腺病毒载体Ad-Flk1-Fc的构建:扩增并提取含有Flk1-Fc片段的质粒pCD-Flk1-Fc,用XbaⅠ、BamHⅠ进行双酶切,产物用琼脂糖凝胶电泳,显示得到约5.1kp的酶切片段,与目的基因理论值相符。将腺病毒穿梭质粒载体pshuttle-CMV双酶切线性化后,插入腺病毒穿梭载体质粒pshuttle-CMV巨细胞病毒启动子下游,构建腺病毒穿梭质粒载体pShuttle-CMV-Flk1-Fc。用Pme I线性化后,转化到含有AdEasy-1的BJ5183感受态细菌中,与其中的AdEasy-1进行同源重组,得到重组腺病毒质粒pAd--Flk1-Fc。
     2.腺病毒载体Ad-Flk1-Fc的包装:重组腺病毒质粒pAd-Flk1-Fc转染人胚肾293细胞,转染48h后在荧光显微镜下可观察到细胞内的绿色荧光,表明质粒转染成功,外源基因开始表达,培养一天后开始收集上清,得到复制缺陷型腺病毒Ad--Flk1-Fc。用得到的质粒重复感染HEK293A,大量扩增腺病毒Ad-Flk1-Fc。用氯化铯梯度离心法纯化重组腺病毒,利用半数组织培养感染剂量法测得重组腺病毒最终的滴度为2×109PFU /ml。
     3.腺病毒Ad-Flk1-Fc的表达与鉴定:用包装后的腺病毒转染膀胱肿瘤BTT739细胞,提取细胞中的总蛋白,用抗Flk1抗体进行Western blot鉴定,结果显示有分子量为165kD的蛋白表达,与Flk1-Fc融合蛋白的理论分子量相同。将Ad-Flk1-Fc转染COS-7细胞后,进行免疫细胞化学染色检测Flk-1表达,Ad-Flk1-Fc转染细胞为阳性,而对照组则为阴性,进一步证实融合蛋白Flk1-Fc的表达。
     以上结果显示,实验成功构建了腺病毒载体Ad-Flk1-Fc,并在膀胱肿瘤BTT739等真核细胞中表达融合蛋白Flk1-Fc。
     第二部分Ad-Flk1-Fc在体外对血管内皮细胞(HUVEC)的作用
     1. Ad-Flk1-Fc细胞培养上清液对HUVEC的生长抑制作用:首先体外培养HUVEC,用Ad-Flk1-Fc转染膀胱肿瘤BTT739细胞培养上清液(即融合蛋白Flk1-Fc)处理离体培养的HUVEC,并设置Ad-Fc、pAd及PBS对照组,采用内皮细胞增殖抑制实验(MTT法),接种48h后,对照组细胞增殖迅速,Ad-Flk1-Fc组细胞数量较对照组有明显减少,与空白对照组相比HUVEC生长抑制率分别为Ad-Flk1-Fc组(53.08%)、Ad-Fc组(13.86%)、pAd组(14.38%)。结果显示Ad-Flk1-Fc细胞培养上清液对HUVEC细胞生长有明显抑制作用,而其它三组的HUVEC细胞的生长无抑制作用(p<0.01)。
     2. Ad-Flk1-Fc细胞培养上清液诱导HUVEC凋亡的作用:流式细胞仪检测Ad-Flk1-Fc细胞培养上清液对血管内皮细胞凋亡的影响,实验分组同上述,检测结果显示Ad-Flk1-Fc组的凋亡率为42.93%,明显大于Ad-Fc组(20.36%)、pAd组(19.45%)及PBS组(18.58%)。其可以显著诱导HUVEC凋亡(p<0.01)。
     3. Ad-Flk1-Fc细胞培养上清液抑制HUVEC迁移的作用:通过Transwell试验观察Ad-Flk1-Fc细胞培养上清液对HUVEC在Transwell中的迁移的影响,实验分组同上,Ad-Flk1-Fc组的抑制率为53.19%,而Ad-Fc组和pAd组分别为12.0%及2.4%,上清液对HUVEC迁移有明显的抑制作用(p<0.01)。
     4. Ad-Flk1-Fc细胞培养上清液抑制HUVEC管状化的作用:在Matrigel胶中观察发现,Ad-Flk1-Fc细胞培养上清液对HUVEC内皮小管管腔样结构的形成有显著的抑制作用。
     以上结果提示:Ad-Flk1-Fc转染膀胱肿瘤BTT739细胞培养上清液(融合蛋白Flk1-Fc)在体外对HUVEC的生长、迁移及管状化具有明显的抑制效应,而对HUVEC凋亡有明显的诱导作用,为Ad-Flk1-Fc后期的开发和应用奠定了理论基础。
     第三部分pAd- Flk1-Fc对可移植性小鼠膀胱肿瘤治疗效应的研究
     1. Ad-Flk1-Fc的抑瘤效应:T739小鼠48只,随机分4组,12只/组。每组再分为两个亚组,分别为动态组和病理组。动态组主要观察:①肿瘤体积变化:每周测两次,至其中一组小鼠死亡达到一半时停止测量;②生存率:观察记录荷瘤小鼠死亡情况,观察期2个月。病理组小鼠第21天时处死,剥离肿瘤,测量体积,并称重,计算瘤重和体积抑制率后进行病理检查。小鼠皮下种植等基因小鼠膀胱肿瘤细胞BTT739的同时,注射Ad-Flk1-Fc2×109 PFU,2次/wk,共2 wk、并设置Ad-Fc、pAd及PBS对照组。结果显示:Ad-Flk1-Fc治疗组荷瘤鼠的平均瘤重和平均体积均显著低于Ad-Fc、pAd及PBS对照组;而肿瘤抑制率和荷瘤鼠生存时间则均显著大于其它三组。
     2. Ad-Flk1-Fc对肿瘤血管生成的抑制效应:Ad-Flk1-Fc治疗后进行膀胱肿瘤病理检查,有明显的肿瘤细胞坏死。根据CD31抗原标记肿瘤内皮细胞计算MVD,在所有的膀胱肿瘤组织中都能计数到MVD,阳性染色多位于肿瘤细胞之间,微血管形态不一,呈星状、裂隙状或分支状。肿瘤巢内多呈片状或灶状分布。计数结果表明Ad-Flk1-Fc组MVD值明显低于其它三组(P<0.01)。采用原位末端标记(TUNEL)法检测肿瘤细胞凋亡情况,Ad-Flk1-Fc治疗组明显高于其它三组(P<0.01)。
     3. Ad- Flk1-Fc对非肿瘤血管新生的抑制效应:BTT739小鼠24只,同上随机均分为4组,于皮下注射含0.4ug/ml小鼠VEGF的Matrigel胶诱导血管新生,然后同上分别注射Ad-Flk1-Fc、Ad-Fc、pAd及PBS。再利用携带荧光素的Isolectin B4对内皮细胞进行染色及定量检测,Ad-Flk1-Fc治疗组的荧光强度明显低于其它三组。
     以上结果显示Ad-Flk1-Fc对移植性小鼠膀胱肿瘤及肿瘤的血管生成具有抑制效应,并延长荷瘤鼠的生存期。
     结论:
     1.成功构建了腺病毒载体Ad-Flk1-Fc,并在膀胱肿瘤BTT739等真核细胞中表达融合蛋白Flk1-Fc。
     2. Ad-Flk1-Fc转染膀胱肿瘤BTT739细胞培养上清液(即融合蛋白Flk1-Fc)在体外对HUVEC的生长、迁移及管状化具有明显的抑制效应,而对HUVEC凋亡有明显的诱导作用。
     3. Ad-Flk1-Fc对移植性小鼠膀胱肿瘤具有抑瘤效应,并延长荷瘤鼠的生存期,其抑瘤机制主要是抑制了肿瘤的血管生成。
     本研究为新型抗膀胱肿瘤药物Ad-Flk1-Fc的开发和应用奠定了良好的基础。
In China, bladder tumor is the commonest malignant tumor of the urinary system, which is characterized by multiple tumors and high relapse rates. In addition, recurrent tumors tend to be increasingly malignant and, finally, tumor infiltration and metastasis may threaten life. How to increase the efficacy of bladder tumor treatment is a challenging topic in urology. With research advances in tumorigenesis, it has been known that tumor growth, infiltration and metastasis depend on neovascularization. It was shown that a tumor of 1~2mm in diameter requires blood supplies by new vessels to prevent tumor cell death from ischemia and hypoxia. Based on these findings, a new anti-angiogenesis treatment has been proposed to treat solid tumors. Compared to conventional tumor treatments, the anti-angiogenesis strategy has many advantages, such as high efficacy, easy access to target vascular cells, and no resistance or obvious toxic and side effects. Although great research advances in anti-angiogenesis treatment have been achieved over recent years and many anti-angiogenesis drugs under clinical trials and experimental studies have shown sound effects, such drugs have obvious drawbacks:①these treatment molecules are all administered, and must be administered continually due to their short action durations;②these molecules need to be administered intravenously at high doses due to their limited solubility, thus increasing drug toxicity substantially.
     Vascular endothelial growth factor (VEGF) is the most important pro-angiogenesis factor yet known so far. Most tumor tissues and tumor cell strains overexpress VEGF. VEGF exerts its biological action primarily through binding to high-affinity tyrosine kinase receptor VEGFR-2, and the VEGF/VEGFR-2 signal transduction pathway plays a key role in tumor angiogenesis. Blocking this pathway may suppress tumor angiogenesis and, subsequently, suppress tumor growth and metastasis. Based on this, we designed a new treatment to block VEGF binding to its receptors: adenovirus vector (Ad-Flk1-Fc) carrying a fusion gene comprising the extracellular domain of VEGF R-2 (Flk1) and IgG2a Fc was constructed, and used to transfect bladder tumor cells and endothelial cells. The transfected cells expressed and secreted free Flk1-Fc, which can capture blood VEGF in the microenvironment in which tumor cells and new endothelial cells grow, thus blocking autocrine/paracrine VEGF binding to VEGF R-2 and suppressing angiogenesis and tumor growth. This method may serve as an effective, safe treatment for bladder tumor. The study and main results are described below.
     Part 1 Construction and expression of adenovirus vector Ad-Flk1-Fc
     1. Construction of adenovirus vector Ad-Flk1-Fc: pCD-Flk1-Fc plasmid containing Flk1-Fc fragment was amplified and extracted, and digested with Xba I and BamH I. Agarose gel electrophoresis of the digestion products resulted in a band of approximately 5.1kb in length, which was consistent with the expected length of the target gene. Adenovirus shuttle plasmid pshuttle-CMV was linearized by digestion with the two endonucleases and inserted into downstream of pshuttle-cytomegalovirus promoter to construct the adenovirus shuttle plasmid vector pShuttle-CMV-Flk1-Fc. The obtained vector was linearized by digestion with Pme I, and transformed into competent bacteria containing AdEasy-1BJ5183 to perform homologous combination with AdEasy-1. Finally, recombinant adenovirus plasmid pAd--Flk1-Fc was obtained.
     2. Packaging of adenovirus vector Ad-Flk1-Fc: Recombinant adenovirus plasmid pAd-Flk1-Fc was used to transfect human embryonic kidney 293 cells. At 48h after transfection, green fluorescence was observed under fluorescence microscopy in the cells, suggesting successful plasmid transfection and expression of the exogenous gene. After one day of culture, the supernatants were collected, and replication-defective adenovirus Ad--Flk1-Fc was obtained. HEK293A cells were infected with the obtained plasmid repeatedly to amplify adenovirus Ad-Flk1-Fc. Recombinant adenoviruses were purified by cesium chloride gradient centrifugation, and the final titer of recombinant adenovirus was determined by the half culture tissue infection method to be 2×109PFU /ml.
     3. Expression and identification of adenovirus vector Ad-Flk1-Fc: The packaged adenoviruses were used to transfect bladder tumor cells BTT739, and total cellular protein was extracted for Western blotting using Flk1 antibody. The results indicated expression of an 165kD protein, which was in agreement with the theoretical molecular weight of Flk1-Fc fusion protein. After transfection of COS-7 cells with Ad-Flk1-Fc, Flk-1 expression was detected by immunocytochemical staining. The results indicated that Ad-Flk1-Fc transfected cells were stained positive and the control group negtive, suggesting Flk1-Fc expression by COS-7 cells.
     These results indicated the successful construction of adenovirus vector Ad-Flk1-Fc and expression of fusion protein Flk1-Fc in eukaryotic cells such as bladder tumor cells BTT739.
     Part 2 Effect of Ad-Flk1-Fc fusion protein on experimental in vitro angiogenesis of HUVECs
     1. Suppression of HUVEC growth by Ad-Flk1-Fc: Cultured HUVECs were treated with cellular culture supernatant of Ad-Flk1-Fc, or not treated with it(control). Control groups were set up with Ad-Fc、pAd and PBS. Endothelial cell proliferation suppression evaluation (MTT assay) indicated that after 48h culture, cells proliferated quickly in the control group, and the cell number decreased in the Ad-Flk1-Fc group cells, when compared to that in the control group. Compared with the blank group, HUVEC growth suppression rate was 56.3% in the Ad-Flk1-Fc group, 6.68% in the Ad-Fc group, and 4.23% in the pAd group. The results indicated significant suppression of HUVEC growth by Ad-Flk1-Fc, while no suppression in the other three groups (p<0.01).
     2. Induction of HUVEC apoptosis by Ad-Flk1-Fc: The effect of cellular culture supernatant of Ad-Flk1-Fc on endothelial cell apoptosis was investigated by flow cytometry. The groups were set as describe above. The results indicated that the apoptotic rate was significantly higher in the Ad-Flk1-Fc group than the Ad-Fc group (45.33% vs 21.49%), the pAd group (45.33% vs 17.4%) and the PBS group (45.33% vs 18.32%). The results suggest that Ad-Flk1-Fc induced HUVEC apoptosis significantly (p<0.01).
     3. Suppression of HUVEC migration by Ad-Flk1-Fc: The effect of cellular culture supernatant of Ad-Flk1-Fc on HUVEC migration in Transwell was observed, The groups were set as describe above. The suppression rate of HUVEC migration was 72.23% in the Ad-Flk1-Fc group, 13.70% in the Ad-Fc group, and 17.13% in the pAd group, suggesting significant suppression of HUVEC migration (p<0.01).
     4. Suppression of formation of HUVEC tubules by Ad-Flk1-Fc: It was found that cellular culture supernatant of Ad-Flk1-Fc significantly suppressed the formation of HUVECs tubules in Matrigel.
     These results suggest that Ad-Flk1-Fc suppresses the growth, migration and tubule formation of HUVECs significantly in vitro, and induces HUVEC apoptosis significantly, which provides a theoretical basis for future development and application of Ad-Flk1-Fc.
     Part 3 Therapeutic effect of recombinant adenovirus plasmid pAd- Flk1-Fc on transplantable mouse bladder tumor
     1. Tumor-suppressing effect of Ad-Flk1-Fc: BTT739 bearing mice models were established successfully. 48 BTT739 bearing mice were randomized to 4 groups (n=12). Each group was divided into two subgroups, i.e., the dynamic group and the pathology group. The observations of the dynamic group included①Changes in tumor size: The tumor size was measured twice weekly until 50% of mice in a group died;②survival rate: The survival of tumor-bearing mice was observed for 2 months. Mice of the pathology group were sacrificed on day 21, and the tumors were isolated, and determined for size and weight. After calculation of the tumor weight and size suppression rates, the tumors were subject to pathological examination. Mice were implanted with homologous tumor cells BTT739 subcutaneously; meanwhile, Ad-Flk1-Fc (2×109 PFU) was injected twice per week for 2 weeks. Control groups were set using Ad-Fc, pAd and PBS. The average tumor weight and volume were significantly lower in the Ad-Flk1-Fc treatment group than the three control groups, and the tumor suppression rate and survival time of tumor-bearing mice were significantly higher in the Ad-Flk1-Fc treatment group than the three control groups.
     2. Suppression of tumor angiogenesis by Ad-Flk1-Fc: After Ad-Flk1-Fc treatment, pathological examination revealed obvious necrosis of bladder tumor cells. MVD was calculated according to CD31 antigen-labeled tumor endothelial cells. MVD was obtained in all bladder tumor tissues, and positive stains were mostly located between tumor cells. Microvessels were polymorphous, being asterisk, slit-shaped or branched. Microvessels were patchy or focal in tumor nests. MVD was significantly lower in the Ad-Flk1-Fc treatment group than the three control groups (P<0.01). Tumor cell apoptosis assay by TUNEL indicated an apoptotic rate higher in the Ad-Flk1-Fc treatment group than the three control groups (P<0.01)
     3. Suppression of non-tumor angiogenesis by Ad-Flk1-Fc: 24 BTT739 bearing mice were randomized as above to 4 groups, and were injected subcutaneously with 0.4ug/ml VEGF Matrigel, Ad-Flk1-Fc, Ad-Fc, pAd and PBS, respectively. Then, endothelial cells were stained and quantified with fluorescein-carrying Isolectin B4, and the fluorescence intensity was significantly lower in the Ad-Flk1-Fc treatment group than the three control groups.
     The above results show that Ad-Flk1-Fc suppresses transplanted mice bladder tumor and tumor angiogenesis and prolongs the survival of tumor-bearing mice.
     Conclusions:
     1. Adenovirus vector Ad-Flk1-Fc was constructed successfully and the fusion protein Flk1-Fc was expression in eukaryotic cells such as bladder tumor cells BTT739.
     2. Flk1-Fc fusion protein suppressed the in vitro growth, migration and tubule formation of HUVECs significantly and induced HUVEC apoptosis significantly.
     3. Ad-Flk1-Fc suppressed transplanted mice bladder tumor and prolonged the survival of tumor-bearing mice mainly through suppressing tumor angiogenesis.
     This study provides a good basis for developing and applying the novel drug Ad-Flk1-Fc for bladder tumor treatment.
引文
1.虞颂庭,臧美孚,夏溟.尿路上皮肿瘤概论.见:吴阶平泌尿外科(上卷),吴阶平主编,济南:山东科学技术出版社, 2004,8;921
    2.陈宝琦.加强膀胱肿瘤基础研究与临床结合.中华泌尿外科杂志, 2004,25,653-654
    3. Arii S. Tumor angiogenesis and antiangiogenic therapy: current status and perspective. Int J Clin Oncol, 2006, 11(2):71-7
    4. Herbst RS, Onn A, Sandler A. Angiogenesis and Lung Cancer: prognostic and therapeutic implications. J Clin Oncol, 2005, 23(14): 3243-3256
    5. Grossi F, Aita M. Bevacizumab and non-small-cell lung cancer: starving the enemy to survive. Expert Opin Biol Ther, 2007, 7(7):1107-1119
    6. Annabi B, Naud E, Lee YT, et al. Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J Cell Biochem, 2004,91(6):1146-1158
    7. Yue WY, Chen ZP. Does vasculogenic mimicry exist in astrocytoma? J Histochem Cytochem, 2005,53(8):997-1002
    8. Tseng JF, Farnebo FA, Kisker O, et al. Adenovirusmediated delivery of a soluble form of the VEGF receptor Flk1 delays the growth of murine and human pancreatic adenocarcinoma in mice. Surgery. 2002;132:857–865
    9. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med. 2002;8:1369–1375
    10. Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control. 2002,9(2 Suppl): 36-44
    11. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor(VEGF). J Cell Mol Med, 2005, 9(4): 777-794
    12. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Long), 2005, 109(3): 227-241
    13. Plate KH, Breier G,Weich HA, Mennel HD, Risau W. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distributionof VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer. 1994;59:520-529
    14. Padro T, Bieker R, Ruiz S, et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia. 2002;16:1302-1310
    15. Kyzas PA, Stefanou D, Batistatou A, Agnantis NJ. Potential autocrine function of vascular endothelial growth factor in head and neck cancer via vascular endothelial growth factor receptor-2. Mod Pathol .2005;18:485-494
    16. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor(VEGF). J Cell Mol Med, 2005, 9(4): 777-794
    17. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Long), 2005, 109(3): 227-241
    18. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med. 2002,8(12): 1369-75
    19. Liu JY, Wei YQ, Yang L, et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood. 2003,102 (5): 1815-23
    20. McMahon G VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000;5 1:3-10.
    21. Ribatti D, Vacca A. Novel therapeutic approaches targeting vascular endothelial growth factor and its receptors in haematological malignancies. Curr Cancer Drug Targets. 2005;5:573-578
    22. Strawn LM, McMahon G App H, et al. Flk-1 as a target for tumor growth inhibition. Cancer Res. 1996;56:3540-3545
    23. Janusz Rak, Joanne L Yu. Oncogenes and tumor angiogenesis:The question of vascular‘supply’and vascular‘demand’. Seminars in Cancer Biology, 2004,14(2):93-104
    24. Shukunami C, Oshima Y, Hiraki Y. Chondromodulin-I and tenomodulin: a new class of tissue-specific angiogenesis inhibitors found in hypovascular connective tissues. Biochem Biophys Res Commun, 2005,333(2):299-307
    25. Jin F, Xie Z, Kuo CJ, et al. Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy. Cancer Gene Ther, 2005,12(3):257-67
    26. Reisfeld RA, Niethammer AG, Luo Y, et al. DNA vaccines designed to inhibit tumor growth by suppression of angiogenesis. Int Arch Allergy Immunol, 2004,133(3): 295-304
    27. Folkman, J.&Shing, Y. Angiogenesis. J. Biol. Chem. 1992 267, 10931-10934
    28. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation.Nature 2000 407 242-48
    29. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003,9(6): 669-676
    30. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor(VEGF). J Cell Mol Med, 2005, 9(4): 777-794
    31. Kopfsteni L, V eikkola T, D jonov VG, et al D istinet roles mles of vascular endothelial grow th factor-D in lymphangiogenesis and etastasis [J}. Am J Pathol 2007, 170(4): 1348-61
    32. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev, 2004, 25(4): 581-611
    33. Ho QT, Kuo CJ. Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol, 2007, 39(7-8): 1349-1357
    34. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003, 9(6): 669-676
    35. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor(VEGF). J Cell Mol Med, 2005, 9(4): 777-794
    36. Gerber, H.P., Dixit, V.&Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 1998 273, 13313-13316
    37. Toniatti C, Bujard H, Cortese R, et al. Gene therapy progress and prospects: transcription regulatory systems. Gene Ther. 2004, 11(8): 649-657.
    38. Russell WC. Update on adenovirus and its vectors. Journal of General Virology, 2000, 81(11): 2573-604.
    39. Wang L, Qi X, Sun Y, et al .Adenovirus-mediated combined P16 gene and GM-CSF gene therapy for the treatment of established tumor and induction of antitumor immunity. Cancer Gene Ther 2002:9:819-24
    40.施明,王福生,高兰英.腺病毒载体的研究进展.世界华人消化杂志2000;8:1282-1286
    41. Zhou Z, Zhang DF, Ren H. Humoral immunization and cell-mediated immunization evoked by HBsAg and B7-2 Ag co-expression recombinant adenovirus vector. Zhonghua Ganzangbing Zazhi 2001;9:111-113
    42. Krougliak V, Graham FL. Development of cell lines capable of complementing E1, E4 and protein IX defective adenovirus type 5 mutants. Human Gene Therapy 1995;6:1575-1586
    43. He TC, et al .A simplified system for generation recombinant adenoviruses .Proc NatlAcad Sci USA 1998;95:2509-2514
    44. Davis AR,Wivel NA, Palladino JL, et al Construction of adenoviral vectors.Mol Biotechnol 2001;18:63-70
    45. Breyer B, Jiang W, Cheng H, et al .Adenoviral vector-mediated gene transfer for human gene therapy .Curr Gene Ther 2001;1:149-162
    46. Hayes AJ, Li Ly, Lippman ME:Science, Medicine and the future.Antivascular therapy: a new approach to cancer treatment.BMJ 1999 Mar 27:318 (7187):853-6
    47. Jeffe E A, Nachman R L,Becher C G, et al. Culture of human endothelial cells derived from umbilicaleins.Identification by morphologic and immunologic criteriajJJ. Clin Invest, 1973 52: 2745-2756.
    48. .司徒镇强,吴军正.细胞培养.西安:世界图书出版社西安公司,2007,第二版
    49. Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V S.; Dvorak, H.F. Tumor cells secret a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983, 219(4587):983-985.
    50. Gerber, H.P, Dixit, V.&Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 1998,273, 13313-13316
    51. Gerber, H.P. et al. VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem1998,273, 30366-30343
    52. Benjamin, L.E, Golijanin, D, Itin, A., Pode, D.&Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 1999,I03, I59-I65
    53. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci. USA 1996.93 14765-14770
    54. Gerber H-P, Mcmurtey A, Kowalski J, et al. VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem, 1998, 273, 30366-43
    55. Gerber HP, Dixit从Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic protein Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem 1998, 273, 13313-6
    56. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted aniogenic mitogen. Science. 1989; 246:1306-9
    57. Matsumoto, T.&Claesson-Welsh, L. VEGF receptor signal transduction. Science STKE 2001,112 (RE21), 1-17
    58. Compernolle, V. et al. Loss of HIF-2 .and inhibition of VEGF impair fetal lung maturation whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med. 2002, 702-710
    59. Connolly DT, Olander JV, Heuvelman D, et al. Human vascular permeability factor Isolation from 0937 cells. J. Biol. Chem, 1989, 264: 20017-24
    60. Unemori EN, Ferrara N, Bauer EA, Amento EP Vascular permeability factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol. 1992; 153 (3):557-62
    61. Shibuya, M. Structure and of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct. Funct. 2001, 26(1):25-35
    62. Terman, B.L; Dougher-Vermazen, M.; Carrion, M.E.; Dimitrov, D.; Armellino, D.C.;Gospodarowicz, D,Bohlen, P. Identification of the ICDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 1992, 187(3):1579-1586.
    63. Gerber, H.P. et al. VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem 1998,273, 30366-30343
    64. Poulsen TT, Pedersen N, Poulsen HS. Replacement and suicide gene therapy for targeted treatment of lung cancer. Clin Lung Cancer, 2005, 6(4): 227-236
    65. Cohen SM,Fricdell GH.Carcinoma of urinary bladder,induced in fischer rat by N-[4, 5-(nitro-2-furyl)-2-thiazolyl」-formamide.Am T Pathology, 1979,95(3):849-854
    66.武文森,尹克铮. BBN诱发小鼠膀胱癌和可移植性膀胱癌株(BST739)的建立及其特性研究。南京铁道医学院学报1992; 11 (1): 12-14
    67.贾瑞鹏,周性明,张忠林.高能聚焦超声对皮下移植性膀胱肿瘤治疗的初步观察.中国肿瘤临床,1998; 25(2):900-902
    68. Folkman J. What is the evidence that tumor are angiogenesis dependent? (J] Natl Cancer Inst,1990;82(1):4-6
    69. Alex K, Wong, et al. Excessive tumor-elaborated VEGF and its neutralization define a lethal paroneoplastic syndrome[J]. Proc Natl Acad Sci, 2001;98(13),7481-7486
    70. Kabbinanavar FF,Schulz J ,McCleod M,M et al.ADDition of Bevacizumab to bolus fluorouracil and leucovori in first-line metastatic colorectal cancer:results of a randomize phase IItrial[J] J Clin Oncol,2005,23(16):3697-3705
    71. Raben D,Helfrich R Chan DC,et al The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer [J].Clin Cancer Res,2005, 11(2pt1):795
    72. H iroko B ando vascular endothelial grow th factor and hevacitum ab in breast cancer [J].breast Cancer,2007,14:163-7
    73. Ling Y, Yang Y, Lu N, et al. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/FIK-1 of endothelial cells[J]. Biochem Biophys Res Commun 2007, 361(1): 79
    1. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endithelial cells(J).Biochem Biophys Res Commun,1989; 161(2):851-858
    2. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secret a vascular permeability factor that promote accumulation of ascites fluid. Science, 1983, 219: 983-5
    3. Connolly DT, Olander JV, Heuvelman D, et al. Human vascular permeability factor Isolation from u937 cells. J. Biol. Chem, 1989, 264: 20017-24
    4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003,9(6): 669-676
    5. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor(VEGF). J Cell Mol Med, 2005, 9(4): 777-794
    6. Siemeister G D, Marting BG The alpha-helical domain near the aminterminus is essential for dimerzation of vascular endothelial growth factor[J]. J Biol Chem,1998;273(18):11115-11120.
    7. Folkman J,Hing YAngiogenesis. J Biol Chem,l992;267(16):10931-10934.
    8. Anthony FV1I, Wheeler T, Elcock CL, et al. Short report: identification of a specific pattern of vascular endothelial growth factor mRNA expression in human placenta and cultured placental fibroblast. Placenta. 1994 (5): 557-61
    9. Cheung CY Singh M, Ebaugh MJ, Brace RA. Vascular endothelial growth factor in ovine placenta and fetal membranes. Am J Obstet Gynecol. 1995;173 (3 Pt 1):753-9
    10. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991,266:11947-54
    11. Houck KA, Leung DW, Rowland AM, et al. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol. Chem. 1992, 267:26031-37
    12. Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepitheiial extracellular matrix and bioactivity of extraceAular matrix-bound VEGF. Mol Biol Cell. 1993, 4:1317-26
    13. Carmeliet P,Ng YS, Nuyens D, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial factor VEGF164 and VEGF188.Nat Med, 1999, 5:495-502
    14. Ruhrberg C, et al. Spatially restricted pattering cues provided by heparin-binding VEGFA control blood vessel branching morphogenesis. Genes Dev, 2002,16:2684-98
    15. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond), 2005,109(3): 227-241
    16. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 2006, 312(5):549-560
    17. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 2000,407 242-48
    18. Ferrara, N.&Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 1999,5, 1359-1364
    19. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 2000,6, 389-395
    20. Ferrara, N.& Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997,18, 4-25
    21. Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V.&Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. cience 1989,246,1306-1309
    22. Tischer, E., Mitchell, R., Hartman, T. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing J. Biol. Chem. 1991.266. 11947-54
    23. Berse, B., Brown, L. F., Van de Water, L. et al. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol. Biol. Cell, 1992, 3: 211-20
    24. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress.Endocr Rev, 2004, 25(4): 581-611
    25. Ho QT, Kuo CJ. Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol, 2007, 39(7-8): 1349-1357
    26. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med,2003, 9(6): 669-676
    27. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor(VEGF). J Cell Mol Med, 2005, 9(4): 777-794
    28. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Long), 2005,109(3): 227-241
    29. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 2006, 312(5): 549-560
    30. Boocock CA .Charnock JD,Sharkey AM,et al .Expression of vascular endothelial growth factor and its receptors flT and KDR in ovarian carcinoma .Cancer Res,1995 87 (7):506-516
    31. Warren RS,Yuan H,Matli MR .Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest,1995,95 (4):1789-1797
    32. Brown-LF,Berse B,Jackman RW,et al .Expression of vascular permeability factor and its receptors in breast cancer .Hum pathol,1995,26 (1) 86-91
    33. Harold G,Dvorak,Tracy M ,et al .Distridution of vascular permeability factor in tumors:concentration in tumor blood vessels .J Exp Med,1991,174 (5): 1275-1278
    34. Samoto K,Ikezaki K,Ono M,et al .Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors [J] .Cancer Res,1995 ;55(5):1189
    35. Saito H,Tsujitani S,Kondo A,et al .Expression of vascular endothelial growth factor correlates with hemotogenous recurrence in gastric carcinoma [J].Surgery, 1999;125(2): 195
    36. Ferrara N,Winner J,Burton T,et al .Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells .J Clin Invest,1993,91(1):160-170
    37. Kondo S , Asano M , Suzuki H .Significance of vascular endothelial growth factor/vascular permeability factor for solid tumor growth and its inhibition by the antibody .Biochem Biophys Res Comman,1993 ,16 ,194(3):1234-1241
    38. Risau, W. Mechanisms of angiogenesis. Nature 1997; 386(6626): 671-674
    39. Szabo S, Sandor Z:The diagnostic and prognostic value of tumor angiogenesis.Eur J Surg Suppl 1998;(852):99-103
    40. Schor AM, Schor SL. Tumour angiogenesis. J pathol, 1983;141: 385-413.
    41. Cao Y. Tumor angiogenesis and therapy. Biomed and Pharmacother, 2005, 59(s): s340-s343
    42. Burri PH, Hlushchuk R,Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn, 2004, 231(3): 474-488
    43. Auguste P, Lemiere S, Larrieu-Lahargue F, et al. Molecular mechanisms of tumor vascularization. Crit Rev Oncol Hematol, 2005, 54(1):53-61
    44. Folberg R, Maniotis AT. Vasculogenic mimicry. APMIS, 2004, 112(7-8): 508- 525
    45. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971, 285: 1182-1186
    46. Frank A S. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol, 2002, 20: 3906-3927
    47. Thomposon WD, Li WW, Maragoudakis M, et al. The clinical manipulation of angiogenesis: pathology, side-effects,surprises, and opportunities with novel human therapies. J Pathol, 2000; 190: 330-337
    48. Hahnfeldt P, Panigraphy D, Folkman J, et al. Tumor development under angiogenesis signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res, 1999; 59: 4770-4775
    49. Boehm T, Folkman J, Browder T, et al. Angiogeneic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390:404-407
    50. Zetter B R. Angiogenesis and tumor metastasis. Annu Rev Med, 1998, 49: 407-424
    51. Kerbel R S, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer, 2002, 2: 727-739
    52. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med, 1995, 1: 27-31
    53. Zhong H, Bowen JP. Antiangiogenesis drug design: multiple pathways targeting tumor vasculature. Curr Med Chem, 2006, 13(8): 849-862
    54. Gille J. Antiangiogenic cancer therapies get their act together:current receptor-targeted approaches. Exp Dermatol, 2006, 15(3): 175-186
    55. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: anovel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell, 1994; 79: 315-328
    56. Stathakis P, Lay AJ, Fitzgerald M, et al. Angiostatin formation involves disulfide bond reduction and proteolysis in Kringle5 of plasmin. Bio Chem, 1999; 274: 8910-8916
    57. Ji WR, Castellino FJ, Chang Y, et al. Characterization of Kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J,1998; 12: 1731-1738
    58. Ji WR, Barrientos LG, Llinas M, et al. Slective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commu, 1998; 247: 414-419
    59. Lucas R, Holmgren L, Garcia I, et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 1998; 92: 4730-4741
    60. Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA, 1999; 96: 2811-2816
    61. Redlitz A, Daum G, Sage EH. Angioststin diminishes activation of the mitogen activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. Jvasc Res, 1999; 36: 28-34
    62. Chi SL,Pizzo SV. Angiostatin is directly cytotoxic to tumor cells at low extracellrlar pH:a mechanism dependent on cell surface associated ATP synthase[J]. Cancer Rse,2006,66:875
    63. O'Reilly MS, Boehm T, Shing Y, et al. Endothstatin: an endogenous inhibitor angiogenesis and growth. Cell, 1997; 88: 277-285
    64. Ding YH, Javaherian K, Lo KM, et al. Zinc-dependant dimmers obverved in crystals of human endostatin. Proc Natl Sci USA, 1998; 95: 10443-10448
    65. Dhanabal M, Ramchandran R, Waterman MJ, et al. Endostatin induces endothelial cell apotosis. J Biol Chem, 1999; 247: 11721-11726
    66. Dixelius J, Larsson H, Sasski T, et al. Endostatin induced tyrosine kinase signaling through the shb adaptor protein regulates endothelial cell apotosis. Blood, 95: 3403-3411
    67. Denis LJ, Vverweij J. Matrix metalloproteinase inhibitors: presentachievements andfeature prospects. Invest New Drugs, 1997; 15: 175-185
    68. Pollheimer J, Bauer S, Huber A, et al. Expression pattern of collagen XVIII and its cleavage product, the angiogenesis inhibitor endostatin, at the fetal materface[J]. Placenta, 2004,25(10):770
    69. Folkman J. Antiangiogenesis in cancer therapy endostatin and its mechanisms of action[J]. Exp Cell Res, 2006, 312(5):594
    70. Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol , 2000; 2:737-744
    71. Ahn SM, Teong ST, Kim YS, et al.Retroviral delivery of TIMP-2 inhibits H-ras-induced migration and invasion in MCF 10A human breast epithelial cells. Cancer Lett, 2004, 207(1): 49-57
    72. Alex K, Wong, et al. Excessive tumor-elaborated VEGF and its neutralization define a lethal paroneoplastic syndrome[J]. Proc Natl Acad Sci, 2001;98(13),7481-7486
    73. Moreno S F, Paloma J B. Therapeutic anti-VEGF in age-re-lated macular degeneration: Ranibizumab and Bevacizumab contfoversy[J]. Br J Ophthalmol, 2008, 92(6):866
    74. Ling Y, Yang Y, Lu N, et al. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/FIK-1 of endothelial cells[J]. Biochem Biophys Res Commun 2007, 361(1): 79
    75. Yang l, Eang J W, Sun Y, et al. Randomized phase II trial on escalated doses of Rh-endostatin (YH-16) for advanced non-small cell lung cancer[J]. Zhonghua Zhong Liu Za Zhi, 2006,28(2):138
    76. Gatzemeier U, Blumenschein G, Fosella F, et al. Phsae II trial of single-agent sorafenib in paitent with advanced nonsmlalcell lung cancinoma[J]. J Clin Oncol, 2006, 24(supp1):7 002
    77. Raben D,Helfrich R Chan DC,et al The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer [J].Clin Cancer Res,2005, 11(2pt1):795
    78. De Castro Junior G, Puglisi F, de Azambuja E, et al. Angiogenesis and cancer: a crosstalk between basic scienceand clinical trials(the“do ut des”paradigm) [J]. Crit Rev Oncol Hematol, 2006,59(1): 40 250
    79. Natale R, Bodkin D, Govindan R, et al. A comparison of the antitumour efficacy ofZD6474 and gefitinib (Iressa) in patients with NSCLC: results of a randomized, double-blind phas II study[J]. Lung Cancer, 2005, 49(Suppl 2): 37-45
    80. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 2006, 312 (5): 549-560
    81. Yoshimura I, Mizuguchi Y, Miyajima A, et al,Suppression of lung metastasis of renal cell carcinoma by the intramuscular gene transfer of a soluble form of vascular endothelial growth factor receptor 1 .T Urol, 2004, 171(6 Pt 1):2467-2470
    82. Kou B, Li Y, Shi Y, et al. Gene therapeutic exploration: retrovirus-mediated soluble vascular endothelial growth factor receptor-2 (sFLK-1) inhibits the tumorigenicity of S 180, MCF-7, and B16 cells in vivo. Oncol Res. 2005, 15(5):239-47
    83. Reinblatt M, Pin H, Browers WJ, et al. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor(sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma. Ann Surg Oncol. 2005, 12(12):1025-36
    84. Klement G,Huang P, Mayer B,et al. Differences in therapeuyic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in muitdrug resistant human breast cancer xenografts[J].Cli Cancer Res,2002,8(1),221-232
    85. Fenton BM, Paonisf,Ding I,Effect of VEGF receptor-2 antibody on vascular function and oxygenation in apontaneous and transpianted tumers[J].Radion Oncol, 2004, 72(2):221-230
    1. Baltzer Aw, Lattermann C,Whalen JD, e1 al .Genetic enhancenent of fracturerepair: healing of an experimental sepmental defect by adenoviral transfer of the BMP-2gene[J].Gene Ther, 2000,7(9): 734- 739
    2. Rowe W P Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med. 1953,84:570-573.
    3. Shenk T, et al. Adenoviridae:The viruses and their application1 Virology,Raven Press 1 New York.1996:2149-2171.
    4. Zhang WW. DeveloPment and application of adenoviral vectors for gene therapy of cancer Cancer Gene Ther .1999,6(2):113-138
    5. 5 Bergelson JM, et al. Isolation of a common receptor for coxsackie B virus and adenovirus 2 and 5. Science .1997,275:1320-1323
    6. Wickham TJ, et al. IntegrinsaVβ3 andaVβ3 promote adenovirus internalization but not virus attachment. Cel1.1993 ,73 :309-319
    7. Greber UF, et al. Stepwise dismantling of adenovirus Z during entry into cells. Cell. 1993,75:477-486
    8.蔡文琴主编。现代实用细胞与分子生物学实验技术。第一版。北京:人民军医出版社,2002,495-497.
    9. Pina M, Green M. Biochemical Studies on Adenovirus Multiplication3/4XLV. Macromolecule and Enzyme Synthesis in Cells Replicating Oncogenic and Nononcogenic Human Adenovirus. Virology, 1969, 38(4):573-586.
    10. Gilbert PA, Gamier A, Jacob D,et al. On-line Measurement of GFP Fluorescence for the Monitoring of Recombinant Adenovirus Production. Biotechnol. Lett 2000,22(3): 561-567
    11. Nadeau I,Jacob D, Perrier M, et al.293SF Metabolic Flux Analysis during Cell Growth and Infection with an AdenoviralVector. Biotechnol. Prog. 2000,16(5):872-884
    12. Somia N and IM Verma. Gene Ther.trials and tribulations. Nature Rev Genet. 2000,1:91-99
    13. McNeish I A,Bell S J,Lemoine N R. Gene therapy progress and prospects:cancer genetherapy using tumour suppressor genes. Gene Ther. 2004 ,11(6) 497-503
    14. Zoltick PW,Chirmule N ,Schnell MA et al .Biology of E1-deleted adenovirus vectors in nonhuman primate muscle.J Virol. 2001,75:5222-5229
    15. Hehir KM,Armentano D, Cardoza LM, et al. Molecular characterization of replication competent variants of adenovirus vectors and genome modifica-tions to prevent their occurrence. J Viro1,1996,70:8459-8467
    16. Lieber A ,He CY,Kirillova I, et al .Recombinant adenoviruses with large deletions generated by remediated ecision exhibit different biological properties compared with first-generation vectors in vitro and in vivo.J Viro1,1996,70:8944-8960
    17. Lusky M,Christ M,RittnerK,et al.In vitro and in vivo biology of recombinant adenovirus vectors with E1,E1 /E2A,or E1/E4 deleted.J Virol,1998,72 :2022-2032
    18. Russell WC. Update on adenovirus and its vectors. Gen Virol. 2000, 81 (I1):2473-2604.
    19. Wang L, Hernandez-Alcoceba R, Shankar V, et al. Prolonged and inducible transgene expression in the liver using gutless adenovirus: a potential therapy for liver cancer. Gastroenterology, 2004, 126(1):278-289
    20. Youil R, Toner TJ, Su Q,et al. Comparative analysis of the efect of packaging singal, transgene orientation oritation, polyadenylation signal, and E3 region on growth properties of first-generation adenoviruses. Hum Gene Ther, 2003, 14(10): 1017-1034
    21. Ketner G Spencer F, Tugendreich S, et al. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone, Proc. Natl. Acad. Sci. 1994, 91(13): 6186-6190
    22. Nasz I, Adam E. New developments and trends in adenovirus research. Orv Hetil 1997; 138: 2711-2724
    23. Kochanek S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum Gene Ther 1999;10:2451-2459
    24. Thomas CE, Schiedner q Kochanek S, Castro Mq Lowenstein PR. Peripheral infection with adenovirus causes unexpected longterm brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 2000;97:7482-7487
    25. Zheng BJ, Graham FL, Prevec L. Transcription units of E 1 a, E 1 b and pIX regions ofbovine adenovirus type 3. J Gen Virol 1999;80:1735-1742
    26. Okada T, Ramsey WJ, Munir J, Wildner O, Blaese RM. Efficient directional cloning of recombinant adenovirus vectors using DNA-protein complex. Nucleic Acids Res 1998;26:1947-1950
    27. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998;95: 2509-2514
    28. Lou J, Xu F, Merkel K, et al .Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo[J].J Orthop Res,1999,17(1): 43-50
    29.杨文宇,黄宗海,汤福祥等.“两步转化法”高效制备携带自杀基因的重组腺病毒载体.第一军医大学学报.2004, 24 (2):164
    30.尹冰楠,李冬田,李秋香一种简易、廉价、高效构建重组腺病毒载体的方法.天津医科大学学报.2005, 15(7): 171-174
    31. S.Graham FL. Adenovirus vectors for high-efficiency gene transfer into mammalian cells. Immunol Today 2000;21:426-428
    32. Ng P, Parks RJ, Cummings DT, Evelegh CM, Graham FL. An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum Gene Ther 2000;11:693-699
    33. Sakhuja K, Reddy PS,Ganesh S,et al .Optimization of the generation and propagation of gutless adenoviral vectors. Hum Gene Ther ,2003,14:243-254
    34. Liu Q, Zaiss AK, Colarusso P, et al. The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors. Hum gene Ther, 2003, 14 (7): 627-43
    35. MiharaM,Tanl,Chuzhin Y, et al.CTLA4Ig inhibits T cell dependent B-cell matoration inm、lrine systemic IuPus eryZ thematosus.Ciin Ivest,2000,106(l): 91-101
    36. Li N, Yuan YK, Wu J. Construction and identification of recombinant adenovirus vector harboring CTLA4Ig-IRES 2-Ikappa-Balpha gene in ECV 304 cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2005, 21(1): 90-93
    37. DeMateo RP, Chu G, Ahn M, et al. Long-lasting adenovirus transgene expression in mice through neonatal intrathymic tolerance induction without the use of immuno-suppression. Virol. 1997, 71(7): 5334-5335
    38. Zsengeller ZK,13oivin GP, Sawchuk SS, et al. Anti-Treceoto antibody prolongs transgene expression and reduce lung inflammation after adenovirus mediated gene transfer. Hum Gene Ther. 1997, 8(8): 935-938
    39. Schaack J. Induction and inhibition of innate inflammatory responses by adenovirus early region proteins. Viral Immunol. 2005, 18(1): 79-88
    40. Mizuguchi H, Kay MA. A simple method for constructing E1-and EI/E4-deleted recombinant adenoviral vectors. Hum Gene Ther. 1999, 10(12): 2013-2017
    41. Everett RS, Hodges BL, Ding EY et al. Liver toxicities typically induced by first-generation adenoviral vectors can be reduced by use of El, E2b-deleted adenoviral vectors. Hum Gene Ther. 2003, 14(18): 1715-1726
    42. Cao GP, YangY, Wilson JM, et al. Biology of adenovirus vectors with El and E4 deletion for liver directed gene therapy. Virol.l996, 70(12): 8921-8934
    43. Schiednerq Morral N, Parks RJ, et al. Genomic DNAtransfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet.1998, 18(2): 180-183
    44. Morsy MA, Gu M, Motzel S, et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc NatlAcad Sci. 1998, 95(14): 7866-7871
    45. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. Neurosci Res. 2000, 61(4): 364-370
    46. Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP Biochem Biophys Res Commun. 2001, 282 (1): 148-152
    47. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neurons cells in vitro. Exp Neurol. 2000, 164(2): 247-256
    48. Kobune M,Kawano Y Ito Y et al.Telomerized human multiPotent mesenchymal cells can differentiate into hematopoietic and cobblestone area-supporting cells. Exp Hematol.2003,31(8):715-722
    49. Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stromal cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002, 174(1): 11-20
    50. De Palma M, Venneri MA, Roca C, et al.Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 2003, 9(6): 789-795
    51. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002, 420(6917): 860-867
    52. Conget PA, Minguell JJ. Adenovirus-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells.Exp Hemato1.2000, 28(4): 382-390
    53. Tsuda H, Wada T, Ito Y, et al. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther. 2003, 7(3): 354-365
    54. NakamuraK, Ito Y, Kawano Y, et al.Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy. 2004, 11(14): 1155-1164
    55. Bui LA Butterfield LH} Kim JY,Ribas A, Seu P,Lau R, Glaspy JA, Mcbride WH,Economou JS.In vivo therapy of hepstocellular carcinoma with a tumor-specific adenoviral vector expressing Interleukin-2[J].Hum Gene Ther .1997,8:2173-2182
    56. Manome Y. Kunieds T, Wen PY, Koga T, Kufe DW,Ohno T. Transgene expression in malignant glioma using a replication-defective Adenoviral vector containing the Egr-1 promoter activation by ionizing Mdiation or uptake of radioactive Ipdodexoxyuridine[J] .Hum Gene Ther, 1998,9:1409-1417
    57. Hallenbeck PL, Chang YN.Hay C,Gohghtly D, Stewart D, Lm J, Phipps S,Chiang therapy YL. A novel tumor-specific replication-restricted adenoviral vector for gene of hepatocellular carcinoma[J].Hum Gene Ther. 1999,10:1721-1733
    58. Vector used in gene therapy clinical trials In Gene therapy llinical trials world wide,2006
    59. Roth JA. Adenovinus p53 gene therapy. Expert O pinionon Biological Therapy, 2006, 6 55-61
    60. G ingrich JR. A tolerance and efficacy study of neoad juvant intraprostatic GTx-001 follow by radical prostatectomy in patinents with locally advanced prostate cancer 1999,Protoco19909-338
    61. Reid TR, Freeman S, Post L, et al. Effects of Onyx- 015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/ leucovorin[J].Cancer Gene Ther. 2005, 12(8):673
    62. Galanis E.Okuno SH. Nnsctmrnto AC. et al. Phase I I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas [J].Cene Ther 2005,12(5):437-445
    63. Chiocca EA Abbed KM, Tatier S,et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an EIB-Attenuated adenovirus.ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting[J]. Mol Ther, 2004, 10(5):958
    64. McNeish I .,Bell S J,Lemoine N R. Gene therapy progress and prospects :cancer gene therapy using tumour suppressor genes. Gene Ther. 2004, 11 (6) :497-503
    65. Shi CX,Graham FL,GauldieJ,et al.The human SCGBZAZ(mammaglobin-l) Promoter/ enh:mcer in a helper-dependent adenovirus vector directs high levels of transgene expression in mammary careinoma cells but not in normal nonmammary cells.Mol Ther,2004,10(4):758-767
    66. Zhao L GU J Dong A .et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7 /IL-24 for colorectal cancer[J].Human Gene Therapy, 2005, 16: 845-858
    67. Liu XY, Qiu SB Zou WG. et al. Effective gene-virotherapy for complete eradication of tumor mediated by the combination of hTRAIL (TNFSFIO) and plasminogen k5 [J]. Mol Therapy. 2005. 11(4):531-541
    68. Pei ZF,Chu L,ZouWG. et al. An oncolytic adenoviral vector of smac increases antitumor activity of TRAIL against HCC in human cells and in mice [J].Hepatology, 2004, 39 (5):1371-1381
    1. Baoqi Chen. Enhanced integration of base research and clinical research in bladder cancer [J]. Chin J Urol.2004,25:653-654.
    2. Carmeliet P.Angiogenesis in health and disease[J]. Nat Med,2003,9(6):653-660.
    3. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth[J]. Nat Med, 2002,8(12): 1369-1375.
    4. Liu JY, Wei YQ, Yang L, et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2[J]. Blood, 2003,102 (5): 1815-1823.
    5. Tseng JF, Farnebo FA, Kisker O, et al. Adenovirusmediated delivery of a soluble form of the VEGF receptor Flk1 delays the growth of murine and human pancreatic adenocarcinoma in mice[J]. Surgery,2002,132:857–865.
    6. H iroko B ando vascular endothelial grow th factor and hevacitum ab in breast cancer [J].breast Cancer,2007,14:163-7
    7. Ling Y, Yang Y, Lu N, et al. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/FIK-1 of endothelial cells[J]. Biochem Biophys Res Commun 2007, 361(1): 79
    8. Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers[J]. Cancer Control, 2002,9(2 Suppl): 36-44.
    9. Bamias A, Dimopoulos MA. Angiogenesis in human cancer: implications in cancer therapy[J].Eur J Intern Med, 2003 ,14(8):459-469.
    10. Jin FS, Xie ZH, Kuo CJ, et al. Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy[J]. Cancer Gene Therapy, 2005,12(3): 257-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700