关于ox-LDL诱导骨髓来源的平滑肌样细胞体外转分化为泡沫样细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管平滑肌细胞是动脉粥样斑块中一种主要的细胞成分,在血管疾病的发展过程中起重要作用。与终末分化的骨骼肌细胞和心肌细胞不同,成年动物体内的平滑肌细胞在局部微环境的各种因素诱导下,仍然具有高度的可塑性和可逆的表型变化特性。在早期的动脉粥样病变中,平滑肌细胞表型转化表现为平滑肌表面标志基因的表达减少、细胞增殖率升高以及细胞合成细胞外基质的增加。在动脉粥样硬化病损中,平滑肌细胞表面ox-LDL的吞噬受体表达上调能够使其转化为泡沫样细胞。虽然对中膜平滑肌细胞迁移和增殖的分子机制作了大量研究,但是至今仍然未能找到抑制血管阻塞性重建的有效治疗方法。
     有研究表明骨髓间充质干细胞是平滑肌祖细胞的一个非常重要来源,这些骨髓来源的平滑肌祖细胞能够归巢到血管病损处并分化为平滑肌样细胞细胞参与冠脉搭桥术后的再狭窄、移植后再狭窄以及高脂血症所致的动脉粥样硬化等病变。但对于骨髓间充质干细胞中能够特异性分化为平滑肌系的祖细胞研究却并不多见。其原因之一为骨髓中的平滑肌祖细胞与其他几种祖细胞系同时存在,将其分离纯化存在一定困难。
     虽然大量研究表明ox-LDL能够促进血管的炎症并且促进动脉粥样硬化的发生和发展,但是ox-LDL对骨髓来源的平滑肌样细胞(SMLC)的分化和转分化作用却未见报道。ox-LDL受体在骨髓来源的平滑肌样细胞(SMLC)中是否表达以及其在动脉粥样硬化中对平滑肌样细胞分化所起的作用目前仍不十分清楚。本研究旨在探讨ox-LDL受体LOX-1介导骨髓来源平滑肌样细胞的转分化作用。为骨髓源性干祖细胞在动脉粥样硬化中的作用机制提供新的实验依据。
     本研究采用组织特异性启动子结合流式分选的方法,用带有SM22启动子的绿色荧光蛋白质粒重组体Psm22-eGFP-1将平滑肌祖细胞(SMPC)从骨髓间充质干细胞中分离纯化出来。分离出的平滑肌祖细胞myocardin+CD 105+KDR+CD31-CD45-CD34-,但并不表达平滑肌细胞特异性的标志物(α-SMA、SM22、smoothelin和SM-MHC)。在用PDGF-BB长时间诱导后,SMPC逐渐表达α-SMA、SM22和SM-MHC而分化为平滑肌样细胞(SMLC).当SMLC与不同浓度ox-LDL共培养之后,SMLC表面的LOX-1表达随着ox-LDL浓度升高而增多,同时myocardin和平滑肌表面特异性标志基因的表达逐渐减少。在LOX-1表达上调的同时,SMLC的吞噬功能增强,在其细胞胞浆内出现脂滴聚集,成为泡沫样细胞。
     本研究表明在骨髓间充质干细胞中存在myocardin+CD 105+KDR+CD31-CD45-CD34-的平滑肌祖细胞亚群。在PDGF-BB的诱导下,这一平滑肌祖细胞亚群能够分化成为平滑肌样细胞。而且ox-LDL可通过LOX-1使其向泡沫样细胞转分化。
Vascular smooth muscle cells (SMCs) are the predominant cell type in atherosclerotic plaques and play a crucial role in the development of vascular diseases. Unlike either terminally differentiated skeletal or cardiac muscle cells, SMCs in adult animals retain remarkable plasticity and can undergo profound and reversible phenotype changes in response to various factors in their local environment. During early atherogenesis, SMCs change to a phenotype characterized by decreased expression of SMC differentiation marker proteins, a high rate of cellular proliferation, and increased synthesis of extracellular matrix proteins. The increased phagocytosis of oxidized low density lipoprotein (ox-LDL) via scavenger LDL receptor pathways in SMCs contributes to the development of foam-like cells within atherosclerotic lesions.Although much effort has been devoted to understanding the molecular pathways regulating migration and proliferation of medial SMCs, no effective therapy to prevent occlusive vascular remodeling has been established.
     It has been suggested that bone marrow cells may have the potential to give rise to smooth muscle progenitor cells (SMPCs) that home to the damaged vessels and differentiate into smooth muscle-like cells (SMLCs), thereby contributing to the pathogenesis of vascular diseases. It is well known that myocardin is a CArG-dependent critical serum response factor/cofactor in the transcriptional program regulating smooth muscle cell differentiation from bone-marrow derived stem cells (BMSCs) and is required for vascular smooth muscle development. However, there have been few studies closely following the development of SMCs from BMSCs. This is due to the difficulty of isolating smooth muscle progenitor cells (SMPCs) from bulk BMSCs because SMPCs coexist with several other progenitor cells.
     Oxidized low density lipoprotein (ox-LDL) is believed to contribute to atherogenesis in part by being taken up into smooth muscle cells (SMC) via specific scavenger receptors; however, it is not clear whether ox-LDL receptor(s) are expressed in bone marrow-derived smooth muscle-like cells (SMLCs) and whether they play a role in the process of SMLC development. Therefore, we examined the ox-LDL induced transdifferentiation of SMLCs that is mediated by lectin-like ox-LDL receptor-1 (LOX-1).
     Smooth muscle progenitor cells (SMPCs) from bone marrow mesenchymal stem cells (BMSCs) were isolated using a tissue-specific promoter sorting method with a mouse recombinant plasmid SM22-promoter(-480bp)/green fluorescent protein. The SMPCs were myocardin+CD105+KDR+CD45-CD34-, but did not express SMC-specific markers a smooth muscle actin (α-SMA), SM22, smooth muscle myosin heavy chain (SM-MHC) and smoothelin. After long-term culture with platelet-derived growth factor-BB (PDGF-BB), SMPCs expressed a-SMA, SM22 and SM-MHC, and differentiated into SMLCs. When SMLCs were incubated with different concentrations of ox-LDL, LOX-1 expression on the surface of SMLCs gradually increased with the increase of the ox-LDL concentration, but myocardin and SMC-specific marker genes decreased, accordingly. Furthermore, receptor-mediated endocytosis was enhanced and lipid droplets accumulated in the cytoplasm of SMLCs. A subpopulation of myocardin+ CD105+KDR+ CD31+CD45-CD34- SMPCs exist in BMSCs that can differentiate into SMLCs under induction with PDGF-BB. Moreover, LOX-1 contributes to the ox-LDL-induced transdifferentiation of bone marrow-derived SMLCs into foam-like cells.
引文
[1]Owens G.K., Kumar M.S., Wamhoff B.R. (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84,767-801.
    [2]Libby P., Theroux P. (2005) Pathophysiology of coronary artery disease. Circulation 111,3481-3488.
    [3]Simper D., Stalboerger P.G., Panetta C.J., Wang S.& Caplice N.M. (2002) Smooth muscle progenitor cells in human blood. Circulation 106,1199-1204.
    [4]Caplice N.M., Bunch T.J., Stalboerger P.G., Wang S., Simper D.& Miller D.V., et al. (2003) Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America 100,4754-4759.
    [5]Arakawa E., Hasegawa Yanai N., Obinata M.& Matsuda Y. (2000) A mouse bone marrow stromal cell line, TBR-B, shows inducible expression of smooth muscle-specific genes. FEBS letters 481,193-196.
    [6]Yeh E.T., Zhang S., Wu H.D., Korbling M., Willerson J.T.& Estrov Z. (2003) Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108,2070-2073.
    [7]Wang D., Chang P.S., Wang Z., Sutherland L., Richardson J.A.& Small E., et al. (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105,851-862.
    [8]Li S., Wang D.Z., Wang Z., Richardson J.A.& Olson E.N. (2003) The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences of the United States of America 100,9366-9370.
    [9]Rensen S.S., Niessen P.M., Long X., Doevendans P.A., Miano J.M.& van Eys GJ. (2006) Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins. Cardiovascular research 70,136-145.
    [10]Cao D., Wang Z., Zhang C.L., Oh J., Xing W.& Li S., et al. (2005) Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Molecular and cellular biology 25,364-376.
    [11]Wang Z., Wang D.Z., Hockemeyer D., McAnally J., Nordheim A.& Olson E.N. (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428,185-189.
    [12]Kashiwakura Y., Katoh Y., Tamayose K., Konishi H., Takaya N.& Yuhara S., et al. (2003) Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter:in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Circulation 107,2078-2081.
    [13]Han C.I., Campbell G.R.& Campbell J.H. (2001) Circulating bone marrow cells can contribute to neointimal formation. Journal of vascular research 38, 113-119.
    [14]Sata M. (2003) Circulating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation. Trends in cardiovascular medicine 13, 249-253.
    [15]Hillebrands JL, Klatter FA, van den Hurk BM, Popa ER, Nieuwenhuis P, Rozing J. (2001) Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis.J Clin Invest 107,1411-1422.
    [16]Bochaton-Piallat ML, Clowes AW, Clowes MM, Fischer JW, Redard M, Gabbiani F, and Gabbiani G. (2001) Cultured arterial smooth muscle cells maintain distinct phenotypes when implanted into carotid artery. Arterioscler Thromb Vasc Biol,21,949-954.
    [17]Frid MG, Kale VA, and Stenmark KR. (2002) Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation in vitro analysis. Circ Res,90,1189-1196
    [18]Zhigao Wang,Dazhi Wang, Dirk Hockemeyer, John McAnally, Alfred Nordheim, Eric N. Olson. (2004) Myocardin and ternary complex factors complete for SRF to control smooth muscle gene expression. Nature,428,185-189.
    [19]Zhou J, Hu G, Herring BP. (2005) Smooth muscle-specific genes are differentially sensitive to inhibition by Elk-1. Mol Cell Biol.,25,9874-9885.
    [20]Koichro Kuwahara, Tomasa Barrientios, GC.Teg Pipes, Shijie Li and Eric N. Olson. (2005) Muscle-specific signaling Mechanism that links Actin Dynamics to serum response factor, Molecular And Cellular Biology.25,3173-3181.
    [21]Hinson JS, Medin,MD, Lockman K, Taylor JM, Mack CP. (2007) Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. Am J Physiol Heart Circ Physiol,292, H1170-1180.
    [22]Li J, Zhu X, Chen M, Cheng L, Zhou D,Lu MM, Du K, Epstein JA, Parmacek MS. (2005) Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. PNAS,102,8916-8921
    [23]DongSun Cao,Zhigao Wang,Chun-Li Zhang,Jiyeon Oh,Weibing Xing,Shejie Li. (2005) Modulation of smooth muscle Gene expression by association of Histon Acetytransferases and Decetylases with Myocardin. Molecular And Cellular Biology.25,364-376.
    [24]Qiu P, Ritchie RP, Gong XQ, Hamamori Y, Li L. (2006) Dynamic changes in chromatin acetylation and the expression of histone acetyltransferases and histone deacetylases regulate the SM22alpha transcription in response to Smad3-mediated TGFbetal signaling. Biochem Biophys Res Commun.348, 351-358.
    [25]Du, K. L., Ip, H. S., Li, J., Chen, M., Dandre, F., Yu, W., Lu, M. M., Owens, G. K. and Parmacek, M. S., (2001) Myocardin Is a critical serum Response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Molecular And Cellular Biology.23,2425-2427
    [26]Tadashi Yoshida,Keiko Kawai-Kowase Gray K Owens. (2004) Forced Expression of Myocardin is not sufficient for induction of smooth muscle Differntiation in mutipotential Embryonic cells, Arteriosler Thromb Vasc Biol, 24,1596-1601
    [27]Rensen SS, Niessen PM, Long X, Doevendans PA, Miano JM, van Eys GJ. (2006) Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins. Cardiovasc Res.70,136-145.
    [28]Edward T. H. Yeh MD, Sui zhang MD, PhD, Herry D, Wu MD,Martin Korbling,MD,James T. (2003) Willerson. Transdifferentiation of Human peripheral Blood CD34+ -Eriched cell population Into cardiomyocytes,Endothelial cells,and smooth muscle cells In vivo. Circulation, 108,2070-2073
    [29]Masata Sata, (2003) Circulating vascular progenitor cells contribute to vascular Repair, Remodeling and lesion Formation. Trends Cardiovascular Med,13,249-253.
    [30]Russell Ross, (1999) Atherosclerosis an inflammatory disease. The New England Journal of Medicine,340,115-126
    [31]Pascal J. Goldschmidt-Clermont, Mark A. Creager, Douglas W. Lorsordo, Gregory K.W. Lam, Momtaz Wassef, Victor J. Dzau (2005) Atherosclerosis 2005 Recent Discoveries and Novel Hypotheses.112,3348-3353
    [32]Xiuping Chen, Guanhua Du, (2007) Lectin-like oxidized low-density lipoprotein receptor-1:protein, ligands, expression and pathophysiological significance. Chinese Medical Journal,120,421-426
    [33]Owens GK. (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev,75,487-517
    [34]Jiliang Zhou, B. Paul Herring. (2005) Mechanisms Responsible for the Promoter-specific Effects of Myocardin. The Jouornal of Biological Chemistry. 280,10861-10869
    [35]Hegner B, Weber M, Dragun D, Schulze-Lohoff E. (2005) Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells. J Hytertens.23,1133-4
    [36]Julian Solway, Jonathan Selter, Frederick F. Samaha, et al. (1995) Structure and expression of a smooth muscle cell-specific gene,sm22. J Biol Chem,270, 13460-13469
    [37]Tamama K., Sen C.K.& Wells A. (2008) Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem cells and development 17,897-908.
    [38]Sugiyama S., Kugiyama K., Nakamura S., Kataoka K., Aikawa M., Shimizu K., et al. (2006) Characterization of smooth muscle-like cells in circulating human peripheral blood. Atherosclerosis 187,351-362.
    [39]Dennis J.E., Charbord P. (2002)Origin and differentiation of human and murine stroma. Stem cells (Dayton, Ohio) 20,205-214.
    [40]Hellstrom M., Kalen M., Lindahl P., Abramsson A.& Betsholtz C. (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development (Cambridge, England) 126,3047-3055.
    [41]Carmeliet P. (2000) Developmental biology. One cell, two fates. Nature 408, 43-45.
    [42]Narita Y., Yamawaki A., Kagami H., Ueda M.& Ueda Y. (2008)Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell and tissue research 333,449-459.
    [43]Furnkranz A., Schober A., Bochkov V.N., Bashtrykov P., Kronke G & Kadl A., et al. (2005) Oxidized phospholipids trigger atherogenic inflammation in murine arteries. Arteriosclerosis, thrombosis, and vascular biology 25,633-638.
    [44]Berliner J.A., Watson A.D. (2005) A role for oxidized phospholipids in atherosclerosis. The New England journal of medicine 353,9-11.
    [45]Mehta J.L., Chen J., Hermonat P.L., Romeo F.& Novelli G. (2006) Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1):a critical player in the development of atherosclerosis and related disorders. Cardiovascular research 69,36-45.
    [46]Kume N., Moriwaki H., Kataoka H., Minami M., Murase T.& Sawamura T., et al. (2000) Inducible expression of LOX-1, a novel receptor for oxidized LDL, in macrophages and vascular smooth muscle cells. Annals of the New York Academy of Sciences 902,323-327.
    [47]Pidkovka N.A., Cherepanova O.A.& Yoshida T. (2007) Alexander MR, Deaton RA, Thomas JA, et al. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circulation research 101, 792-801.
    [48]Charbord P., Lerat H., Newton I., Tamayo E., Gown A.M.& Singer J.W., et al. (1990) The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells. Experimental hematology 18, 276-282.
    [49]Galmiche M.C., Koteliansky V.E., Briere J., Herve P.,& Charbord P. (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82,66-76.
    [50]Yoshida T., Sinha S., Dandre F., Wamhoff B.R., Hoofnagle M.H.& Kremer B.E., et al. (2003) Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circulation research 92,856-864.
    [51]Wamhoff B.R., Hoofnagle M.H., Burns A., Sinha S., McDonald O.G. & Owens GK. (2004) A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circulation research 95,981-988.
    [52]Liu, P., et al., (2009) Endothelial progenitor cell therapy in atherosclerosis:a double-edged sword?. Ageing Res Rev,8,83-93.
    [53]van Oostrom, O., et al., (2009) Smooth muscle progenitor cells:friend or foe in vascular disease?. Curr Stem Cell Res Ther,4,131-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700