CXCR4~+BMSC迁移、分化及参与血管形成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:骨髓间充质干细胞(bone mesenchymal stem cells, BMSCs)对以细胞为基础的干细胞治疗、特别是对于心血管疾病如心肌梗死、动脉粥样硬化等治疗,具有非常大的吸引力和应用前景。然而BMSCs是如何趋化、迁移到病变部位的分子机制并不十分清楚。目前已知基质细胞衍生因子1 (stromal cell-derived factor-1, SDF-1)是影响干/祖细胞迁移的关键趋化因子之一,并参与动脉粥样硬化过程。本实验旨在研究内皮细胞分泌的SDF-1是否影响CXCR4+干/祖细胞向内皮损伤处迁移与粘附。
     方法:首先从动物骨髓分离并培养BMSCs,通过磁珠分选出CXCR4+BMSCs;用氧化低密度脂蛋白(ox-LDL)刺激人脐静脉内皮细胞(human umbilical vein endothelial cells, HUVECs)诱导SDF-1 a表达;通过RT-PCR和ELISA方法检测HUVECs中SDF-lαmRNA和蛋白表达。采用Transwell小室检测CXCR4+BMSCs迁移功能;最后检测HUVECs分泌上清中SDF-1α对CXCR4+BMSCs粘附影响。
     结果:研究发现在ox-LDL刺激下,HUVECs中SDF-1αmRNA和蛋白升高。同时HUVECs低氧诱导因子(hypoxia-inducible factor, HIF-lα)表达上调。与对照组相比,含SDF-1 a上清促进了CXCR4+BMSCs迁移;这种迁移现象可被预先孵育CXCR4抗体抑制。与对照组相比,CXCR4+BMSCs粘附功能显著增强;而CXCR4中和性抗体可抑制这种粘附现象。
     结论:我们的结果提示在致动脉粥样硬化(atherosclerosis, AS)病变过程中,ox-LDL刺激HUVECs通过SDF-1α/CXCR4轴引起CXCR4+BMSCs发生迁移与粘附运动。
     目的:近来研究发现骨髓间充质干细胞(BMSCs)参与了损伤后修复过程中新生血管形成和缺血梗死后的修复。骨髓源性CXCR4+干/祖细胞经动员到梗死区域促进梗死修复,然而并不明确干/祖细胞对缺血梗死后修复的作用机制。本课题在体内、体外研究分析CXCR4+BMSCs的血管形成能力,探讨其对缺血损伤后的修复机制。
     方法:通过磁珠分选并培养CXCR4+BMSCs,用血管内皮生长因子(VEGF)诱导CXCR4+BMSCs分化,采用流式细胞仪检测基因表型;用实时定量RT-PCR和FACS分别检测内皮细胞(EC)表记物PEC AM-1和vWF的mRNA和蛋白表达水平;CXCR4+BMSCs功能性作用通过检测是否摄取乙酰化低密度脂蛋白(ac-LDL)和血管形成能力来评价;最后通过小鼠肢体缺血模型移植CXCR4+BMSCs,观察其对梗死区新生血管形成和修复的影响。
     结果:在VEGF诱导下,CXCR4+BMSCs可表达EC表面标志物Flk-1,ICAM-1, VCAM-1。与对照组相比,VEGF显著提高CXCR4+BMSCs中PECAM-1和vWF的mRNA和蛋白表达水平。在VEGF诱导下,CXCR4+BMSCs能摄取Dil标记的ac-LDL。在Matrigel胶上CXCR4+BMSCs能形成血管样结构,VEGF显著促进了管样结构的形成。电镜下CXCR4+BMSCs具有EC样连接结构和EC特征性Weibel-Palade样的超微结构。最后,在小鼠肢体缺血模型移植CXCR4+BMSCs中,CXCR4+BMSCs参与新生血管的形成,促进了梗死区域修复。
     结论:结果证实在VEGF诱导下CXCR4+BMSCs可分化成EC样细胞,参与损伤后新生血管形成,对损伤后修复具有重要的治疗意义。
Background:Bone mesenchymal stem cells (BMSCs) are attractive candidates for cell based therapies to cardiovascular disease such as infarction and atherosclerosis; however, the mechanisms responsible for stem cell chemotaxis and homing remain unknown. Chemokine stromal cell-derived factor 1 (SDF-1a) is involved in the process of atherogenesis. This study was aimed at investigating whether the SDF-1a of human umbilical vein endothelial cells (HUVECs) play a role in migration of BM-derived CXCR4+(receptor for SDF-la) stem cells.
     Methods:HUVECs were isolated and cultured from human umbilical cords and were treated with ox-LDL. The mRNA and protein expression of SDF-la was detected in HUVECs. CXCR4+BMSCs from bone marrow were isolated and were tested by migration and adhesion assays.
     Results:It was found that ox-LDL induced HUVECs to increase the mRNA and protein expression of SDF-1a. In addition, ox-LDL induced HUVECs to increase the expression of hypoxia-inducible factor-1 (HIF-1a). Ox-LDL enhanced the migratory and adhesion response of CXCR4+BMSCs. When the neutralizing SDF-la antibody abrogated the secreted SDF-la, the migration and adhesion response of CXCR4+BMSCs markedly was inhibited.
     Conclusions:Our data indicated that the endothelial cells (ECs) stimulated by ox-LDL could increase the BMSCs migratory response via SDF-la/CXCR4 signaling axis. These findings provide a new paradigm for biological effects of ox-LDL and have implications for novel stem cell therapeutic strategies for atherosclerosis.
     Background:Recent findings indicate that bone marrow mesenchymal stem cells (BMSCs) participate in the process of neovascularization in response to repair-to-injury and are involved in post-infarction myocardial repair. CXCR4+ stem/progenitor cells mobilized to the infarct area and improved the myocardial repair. It is unclear what special characteristics the vascular progenitors of bone marrow origin have. In present study, we aimed to determine whether CXCR4+BMSCs contribute to the angiogenic capacity in vitro and in vivo.
     Methods:CXCR4+BMSCs were separated by using paramagnetic microbeads and cultured. RT-PCR and FACS analysis confirmed the gene expression phenotype. The uptake of acetylated low density lipoprotein (ac-LDL) and the capillary tube formation in Materigel were evaluated. The effect of CXCR4+BMSCs transplantation on neovascularization was investigated in a murine model hindlimb ischemia.
     Results:After induced by VEGF, CXCR4+BMSCs expressed the endothelial cells (ECs) phenotype. The expression of EC markers, PECAM-1 and von Willebrand factor (vWF) increased significantly at both the mRNA and protein levels. In addition, CXCR4+BMSCs enhanced the uptakes of Dil-ac-LDL and form capillary-like tubes in vitro. In vivo the local transfer of CXCR4+BMSCs increased neovascularization in ischemic hindlimb.
     Conclusion:These results demonstrate that CXCR4+BMSCs differentiate into ECs and contribute to neovascularization in the vascular lesion, which indicate the important therapeutic implications for repair-to-injury and a new cell source for cell-based vascular engineering in the future.
引文
[1]Norata GD, Tonti L, Roma P, Catapano AL. Apoptosis and proliferation of endothelial cells in early atherosclerotic lesions:possible role of oxidised LDL. Nutr Metab Cardiovasc Dis.2002;12(5):297-305.
    [2]Wang Y, Haider H, Ahmad N, Zhang D, Ashraf M. Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. J Mol Cell Cardiol.2006;41(3):478-87.
    [3]Hur J, Yoon CH, Lee CS, Kim TY, Oh IY, Park KW, et al. Akt is a key modulator of endothelial progenitor cell trafficking in ischemic muscle. Stem Cells. 2007;25(7):1769-78.
    [4]Mohle R, Rafii S, Moore MA. The role of endothelium in the regulation of hematopoietic stem cell migration. Stem Cells.1998; 16 Suppl 1:159-65.
    [5]Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation.2004;110(21):3300-5.
    [6]Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 2006;24(5):1254-64.
    [7]Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity.2003;19(2):257-67.
    [8]Lima e Silva R, Shen J, Hackett SF, Kachi S, Akiyama H, Kiuchi K, et al. The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J.2007;21 (12):3219-30.
    [9]Ara T, Tokoyoda K, Okamoto R, Koni PA, Nagasawa T. The role of CXCL12 in the organ-specific process of artery formation. Blood.2005; 105(8):3155-61.
    [10]Zernecke A, Schober A, Bot I, von Hundelshausen P, Liehn EA, Mopps B, et al. SDF-lalpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res.2005;96(7):784-91.
    [11]Abi-Younes S, Sauty A, Mach F, Sukhova GK, Libby P, Luster AD. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res.2000;86(2):131-8.
    [12]Gao C, Li Y. SDF-1 plays a key role in the repairing and remodeling process on rat allo-orthotopic abdominal aorta grafts. Transplant Proc.2007;39(1):268-72.
    [13]Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H. Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum.2002;46(10):2587-97.
    [14]Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med.2004;10(8):858-64.
    [15]Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci.2005;6:63.
    [16]Calderon TM, Eugenin EA, Lopez L, Kumar SS, Hesselgesser J, Raine CS, et al. A role for CXCL12 (SDF-1 alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol.2006;177(1-2):27-39.
    [17]Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature.1998;393(6685):591-4.
    [18]De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood.2004;104(12):3472-82.
    [19]Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med.2006;12(5):557-67.
    [20]Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell.2005;121(3):335-48.
    [21]Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, et al. A novel chemokine receptor for SDF-1 and Ⅰ-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med.2006;203(9):2201-13.
    [22]Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, et al. HIF-1 alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112(5):645-57.
    [23]Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005;106(6):1901-10.
    [24]Hristov M, Weber C. Ambivalence of progenitor cells in vascular repair and plaque stability. Curr Opin Lipidol.2008;19(5):491-7.
    [25]Fukuda S, Pelus LM. Internal tandem duplication of Flt3 modulates chemotaxis and survival of hematopoietic cells by SDF1 alpha but negatively regulates marrow homing in vivo. Exp Hematol.2006;34(8):1041-51.
    [26]Fukui A, Goto T, Kitamoto J, Homma M, Asashima M. SDF-1 alpha regulates mesendodermal cell migration during frog gastrulation. Biochem Biophys Res Commun.2007;354(2):472-7.
    [27]Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res.2005;97(11):1142-51.
    [28]Schober A, Knarren S, Lietz M, Lin EA, Weber C. Crucial role of stromal cell-derived factor-1 alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation.2003;108(20):2491-7.
    [29]Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature.2005;435(7044):969-73.
    [30]Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res. 2006;66(18):9054-64.
    [1]Hristov M, Zernecke A, Schober A, Weber C. Adult progenitor cells in vascular remodeling during atherosclerosis. Biol Chem.2008;389(7):837-44.
    [2]Modarai B, Burnand KG, Sawyer B, Smith A. Endothelial progenitor cells are recruited into resolving venous thrombi. Circulation.2005;111(20):2645-53.
    [3]Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial. Lancet.2002;360(9331):427-35.
    [4]Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med.2001;7(4):430-6.
    [5]Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation.2001;103(6):897-903.
    [6]Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation.2001;103(5):634-7.
    [7]Lian F, Xue S, Gu P, Zhu HS. The long-term effect of autologous endothelial progenitor cells from peripheral blood implantation on infarcted myocardial contractile force. J Int Med Res.2008;36(1):40-6.
    [8]Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation.2002;106(24):3009-17.
    [9]Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial. Lancet.2004;364 (9429):141-8.
    [10]Real C, Caiado F, Dias S. Endothelial progenitors in vascular repair and angiogenesis:how many are needed and what to do? Cardiovasc Hematol Disord Drug Targets.2008;8(3):185-93.
    [11]Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther.2008; 16(3):571-9.
    [12]Misao Y, Takemura G, Arai M, Ohno T, Onogi H, Takahashi T, et al. Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardiovasc Res.2006;71(3):455-65.
    [13]Morimoto H, Takahashi M, Shiba Y, Izawa A, Ise H, Hongo M, et al. Bone marrow-derived CXCR4+ cells mobilized by macrophage colony-stimulating factor participate in the reduction of infarct area and improvement of cardiac remodeling after myocardial infarction in mice. Am J Pathol. 2007;171(3):755-66.
    [14]Hoffmann B, Beer M, Schelp C, Schirrmeier H, Depner K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J Virol Methods.2005;130(1-2):36-44.
    [15]Basu SK, Goldstein JL, Anderson GW, Brown MS. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976;73(9):3178-82.
    [16]Lee OH, Kim YM, Lee YM, Moon EJ, Lee DJ, Kim JH, et al. Sphingosine 1-phosphate induces angiogenesis:its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 1999;264(3):743-50.
    [17]Houwerzijl EJ, Blom NR, van der Want JJ, Esselink MT, Koornstra JJ, Smit JW, et al. Ultrastructural study shows morphologic features of apoptosis and
    para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood.2004;103(2):500-6.
    [18]Yamahara K, Itoh H, Chun TH, Ogawa Y, Yamashita J, Sawada N, et al. Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc Natl Acad Sci U S A.2003;100(6):3404-9.
    [19]Yang HT, Ogilvie RW, Terjung RL. Heparin increases exercise-induced collateral blood flow in rats with femoral artery ligation. Circ Res.1995;76(3):448-56.
    [20]Yu J, Ruan Q. Filtrating smooth muscle progenitor cells from mouse bone marrow mesenchymal stem cells by recombinant Psm22alpha-EGFP-1. Zhonghua Bing Li Xue Za Zhi.2007 36(12):825-31.
    [21]Mehes G, Witt A, Kubista E, Ambros PF. Circulating breast cancer cells are frequently apoptotic. Am J Pathol.2001;159(1):17-20.
    [22]Bonaros N, Rauf R, Wolf D, Margreiter E, Tzankov A, Schlechta B, et al. Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. J Thorac Cardiovasc Surg.2006; 132(6):1321-8.
    [23]Jackson DE, Gully LM, Henshall TL, Mardell CE, Macardle PJ. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is associated with a naive B-cell phenotype in human tonsils. Tissue Antigens.2000;56(2):105-16.
    [24]Galbusera M, Zoja C, Donadelli R, Paris S, Morigi M, Benigni A, et al. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood.1997;90(4):1558-64.
    [25]Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM, et al. Endothelial progenitor cell culture and differentiation in vitro:a methodological comparison using human umbilical cord blood. Cardiovasc Res. 2003;58(2):478-86.
    [26]Dejana E, Corada M, Lampugnani MG Endothelial cell-to-cell junctions. FASEB J.1995;9(10):910-8.
    [27]Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, et al. The molecular organization of endothelial cell to cell junctions:differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol.1995;129(1):203-17.
    [28]Gulati R, Jevremovic D, Peterson TE, Witt TA, Kleppe LS, Mueske CS, et al. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation.2003;108(12):1520-6.
    [29]Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med.2004;10(8):858-64.
    [30]Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, et al. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells.2003;21(3):363-71.
    [31]Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation.2004;110(21):3300-5.
    [32]Hirashima M, Ogawa M, Nishikawa S, Matsumura K, Kawasaki K, Shibuya M. A chemically defined culture of VEGFR2+ cells derived from embryonic stem cells reveals the role of VEGFR1 in tuning the threshold for VEGF in developing endothelial cells. Blood.2003;101(6):2261-7.
    [33]Sone M, Itoh H, Yamashita J, Yurugi-Kobayashi T, Suzuki Y, Kondo Y, et al. Different differentiation kinetics of vascular progenitor cells in primate and mouse embryonic stem cells. Circulation.2003;107(16):2085-8.
    [34]Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med.2006;12(5):557-67.
    [35]Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway:a molecular hub modulating neo-angiogenesis. Trends Immunol.2007;28(7):299-307.
    [36]Kong D, Melo LG, Mangi AA, Zhang L, Lopez-Ilasaca M, Perrella MA, et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation.2004;109(14):1769-75.
    [37]Xu Y, Arai H, Zhuge X, Sano H, Murayama T, Yoshimoto M, et al. Role of bone marrow-derived progenitor cells in cuff-induced vascular injury in mice. Arterioscler Thromb Vasc Biol.2004;24(3):477-82.
    [38]Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, Nozawa Y, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res.2003;93(10):980-9.
    [39]Tanaka K, Sata M, Hirata Y, Nagai R. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res. 2003;93(8):783-90.
    [40]Strehlow K, Werner N, Berweiler J, Link A, Dirnagl U, Priller J, et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation.2003;107(24):3059-65.
    [41]Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res.2003;93(2):e17-24.
    [42]Shiba Y, Takahashi M, Hata T, Murayama H, Morimoto H, Ise H, et al. Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis. Cardiovasc Res.2009;81(1):169-77.
    [43]Seeger FH, Rasper T, Koyanagi M, Fox H, Zeiher AM, Dimmeler S. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia. Arterioscler Thromb Vasc Biol.2009;29(11):1802-9.
    [1]Zlotnik A, Yoshie O. Chemokines:a new classification system and their role in immunity. Immunity.2000; 12(2):121-7.
    [2]Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540-50.
    [3]Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor:functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872-7.
    [4]Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, et al. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics.1995;28(3):495-500.
    [5]Hesselgesser J, Liang M, Hoxie J, Greenberg M, Brass LF, Orsini MJ, et al. Identification and characterization of the CXCR4 chemokine receptor in human T cell lines:ligand binding, biological activity, and HIV-1 infectivity. J Immunol. 1998;160(2):877-83.
    [6]Yu L, Cecil J, Peng SB, Schrementi J, Kovacevic S, Paul D, et al. Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene. 2006;374:174-9.
    [7]Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature.1998;393(6685):595-9.
    [8]Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature.1996;382(6592):635-8.
    [9]Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001;2(2):123-8.
    [10]Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol.2000; 18:217-42.
    [11]Wegner SA, Ehrenberg PK, Chang G, Dayhoff DE, Sleeker AL, Michael NL. Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J Biol Chem.1998;273(8):4754-60.
    [12]Moriuchi M, Moriuchi H, Turner W, Fauci AS. Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. J Immunol. 1997;159(9):4322-9.
    [13]Moriuchi M, Moriuchi H, Margolis DM, Fauci AS. USF/c-Myc enhances, while Yin-Yang 1 suppresses, the promoter activity of CXCR4, a coreceptor for HIV-1 entry. J Immunol.1999;162(10):5986-92.
    [14]Berson JF, Long D, Doranz BJ, Rucker J, Jirik FR, Doms RW. A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol. 1996;70(9):6288-95.
    [15]Chabot DJ, Chen H, Dimitrov DS, Broder CC. N-linked glycosylation of CXCR4 masks coreceptor function for CCR5-dependent human immunodeficiency virus type 1 isolates. J Virol.2000;74(9):4404-13.
    [16]Brelot A, Heveker N, Montes M, Alizon M. Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem.2000;275(31):23736-44.
    [17]Wang J, Babcock GJ, Choe H, Farzan M, Sodroski J, Gabuzda D. N-linked glycosylation in the CXCR4 N-terminus inhibits binding to HIV-1 envelope glycoproteins. Virology.2004;324(1):140-50.
    [18]Zhou H, Tai HH. Characterization of recombinant human CXCR4 in insect cells: role of extracellular domains and N-glycosylation in ligand binding. Arch Biochem Biophys.1999;369(2):267-76.
    [19]Farzan M, Babcock GJ, Vasilieva N, Wright PL, Kiprilov E, Mirzabekov T, et al. The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 alpha association and HIV-1 entry. J Biol Chem. 2002;277(33):29484-9.
    [20]Veldkamp CT, Seibert C, Peterson FC, Sakmar TP, Volkman BF. Recognition of a CXCR4 sulfotyrosine by the chemokine stromal cell-derived factor-1 alpha (SDF-lalpha/CXCL12). J Mol Biol.2006;359(5):1400-9.
    [21]Angers S, Salahpour A, Bouvier M. Dimerization:an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol. 2002;42:409-35.
    [22]Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez AC, Mellado M. The chemokine SDF-1 alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 1999;13(13):1699-710.
    [23]Basmaciogullari S, Pacheco B, Bour S, Sodroski J. Specific interaction of CXCR4 with CD4 and CD8alpha:functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion. Virology.2006;353(1):52-67.
    [24]Agrawal L, Lu X, Qingwen J, VanHorn-Ali Z, Nicolescu IV, McDermott DH, et al. Role for CCR5Delta32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells. J Virol. 2004;78(5):2277-87.
    [25]Huttenrauch F, Pollok-Kopp B, Oppermann M. G protein-coupled receptor kinases promote phosphorylation and beta-arrestin-mediated internalization of CCR5 homo-and hetero-oligomers. J Biol Chem.2005;280(45):37503-15.
    [26]Huang X, Shen J, Cui M, Shen L, Luo X, Ling K, et al. Molecular dynamics simulations on SDF-1 alpha:binding with CXCR4 receptor. Biophys J. 2003;84(1):171-84.
    [27]Valenzuela-Fernandez A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, et al. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem.2002;277(18):15677-89.
    [28]Lambeir AM, Proost P, Durinx C, Bal Q Senten K, Augustyns K, et al. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem. 2001;276(32):29839-45.
    [29]Netelenbos T, Zuijderduijn S, Van Den Born J, Kessler FL, Zweegman S, Huijgens PC, et al. Proteoglycans guide SDF-1-induced migration of hematopoietic progenitor cells. J Leukoc Biol.2002;72(2):353-62.
    [30]Valenzuela-Fernandez A, Palanche T, Amara A, Magerus A, Altmeyer R, Delaunay T, et al. Optimal inhibition of X4 HIV isolates by the CXC chemokine stromal cell-derived factor 1 alpha requires interaction with cell surface heparan sulfate proteoglycans. J Biol Chem.2001;276(28):26550-8.
    [31]Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood. 2005;105(1):40-8.
    [32]Le Y, Honczarenko M, Glodek AM, Ho DK, Silberstein LE. CXC chemokine ligand 12-induced focal adhesion kinase activation and segregation into membrane domains is modulated by regulator of G protein signaling 1 in pro-B cells. J Immunol.2005;174(5):2582-90.
    [33]Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol. 2004;35(3):233-45.
    [34]Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol. 1998;38:289-319.
    [35]Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD. Defective lymphocyte chemotaxis in beta-arrestin2-and GRK6-deficient mice. Proc Natl Acad Sci U S A.2002;99(11):7478-83.
    [36]Lefkowitz RJ, Shenoy SK. Transduction of receptor signals by beta-arrestins. Science.2005;308(5721):512-7.
    [37]Sun Y, Cheng Z, Ma L, Pei G. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem.2002;277(51):49212-9.
    [38]Haribabu B, Richardson RM, Fisher I, Sozzani S, Peiper SC, Horuk R, et al. Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J Biol Chem.1997;272(45):28726-31.
    [39]Signoret N, Oldridge J, Pelchen-Matthews A, Klasse PJ, Tran T, Brass LF, et al. Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J Cell Biol.1997; 139(3):651-64.
    [40]Orsini MJ, Parent JL, Mundell SJ, Marchese A, Benovic JL. Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem. 1999;274(43):31076-86.
    [41]Woerner BM, Warrington NM, Kung AL, Perry A, Rubin JB. Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies. Cancer Res.2005;65(24):11392-9.
    [42]Cheng ZJ, Zhao J, Sun Y, Hu W, Wu YL, Cen B, et al. beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4. J Biol Chem.2000;275(4):2479-85.
    [43]Jimenez-Sainz MC, Murga C, Kavelaars A, Jurado-Pueyo M, Krakstad BF, Heijnen CJ, et al. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Mol Biol Cell.2006;17(1):25-31.
    [44]Vroon A, Heijnen CJ, Raatgever R, Touw IP, Ploemacher RE, Premont RT, et al. GRK6 deficiency is associated with enhanced CXCR4-mediated neutrophil chemotaxis in vitro and impaired responsiveness to G-CSF in vivo. J Leukoc Biol.
    2004;75(4):698-704.
    [45]Violin JD, Ren XR, Lefkowitz RJ. G-protein-coupled receptor kinase specificity for beta-arrestin recruitment to the beta2-adrenergic receptor revealed by fluorescence resonance energy transfer. J Biol Chem.2006;281(29):20577-88.
    [46]Signoret N, Rosenkilde MM, Klasse PJ, Schwartz TW, Malim MH, Hoxie JA, et al. Differential regulation of CXCR4 and CCR5 endocytosis. J Cell Sci.1998;111 (Pt18):2819-30.
    [47]Li BQ, Wetzel MA, Mikovits JA, Henderson EE, Rogers TJ, Gong W, et al. The synthetic peptide WKYMVm attenuates the function of the chemokine receptors CCR5 and CXCR4 through activation of formyl peptide receptor-like 1. Blood. 2001;97(10):2941-7.
    [48]Tarasova NI, Stauber RH, Michejda CJ. Spontaneous and ligand-induced trafficking of CXC-chemokine receptor 4. J Biol Chem.1998;273(26):15883-6.
    [49]Marchese A, Raiborg C, Santini F, Keen JH, Stenmark H, Benovic JL. The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell.2003;5(5):709-22.
    [50]Marchese A, Benovic JL. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem. 2001;276(49):45509-12.
    [51]Diaz GA, Gulino AV. WHIM syndrome:a defect in CXCR4 signaling. Curr Allergy Asthma Rep.2005;5(5):350-5.
    [52]Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood.2004;104(2):444-52.
    [53]Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood.2005;105(6):2449-57.
    [54]Zlotnik A. Chemokines and cancer. Int J Cancer.2006;119(9):2026-9.
    [55]Ara T, Itoi M, Kawabata K, Egawa T, Tokoyoda K, Sugiyama T, et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol.2003;170(9):4649-55.
    [56]Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA, et al. Stromal cell-derived factor-1 alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma:von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res.2005;65(14):6178-88.
    [57]Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood.2002;100(7):2597-606.
    [58]Castellone MD, Guarino V, De Falco V, Carlomagno F, Basolo F, Faviana P, et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene.2004;23(35):5958-67.
    [59]Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell.2004;6(5):459-69.
    [60]Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene. 2005;24(27):4462-71.
    [61]Wright N, Hidalgo A, Rodriguez-Frade JM, Soriano SF, Mellado M, Parmo-Cabanas M, et al. The chemokine stromal cell-derived factor-1 alpha modulates alpha 4 beta 7 integrin-mediated lymphocyte adhesion to mucosal addressin cell adhesion molecule-1 and fibronectin. J Immunol. 2002;168(10):5268-77.
    [62]Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature.2001;410(6824):50-6.
    [63]Burger M, Glodek A, Hartmann T, Schmitt-Graff A, Silberstein LE, Fujii N, et al. Functional expression of CXCR4 (CD 184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene. 2003;22(50):8093-101.
    [64]Kato M, Kitayama J, Kazama S, Nagawa H. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res.2003;5(5):R144-50.
    [65]Schimanski CC, Bahre R, Gockel I, Muller A, Frerichs K, Homer V, et al. Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. Br J Cancer.2006;95(2):210-7.
    [66]Zhou Y, Larsen PH, Hao C, Yong VW. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem.2002;277(51):49481-7.
    [67]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet.2002;3(6):415-28.
    [68]Wendt MK, Johanesen PA, Kang-Decker N, Binion DG, Shah V, Dwinell MB. Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene.2006;25(36):4986-97.
    [69]Sato N, Matsubayashi H, Fukushima N, Goggins M. The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther. 2005;4(1):70-6.
    [70]Ueda Y, Neel NF, Schutyser E, Raman D, Richmond A. Deletion of the COOH-terminal domain of CXC chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Res.2006;66(11):5665-75.
    [71]Holland JD, Kochetkova M, Akekawatchai C, Dottore M, Lopez A, McColl SR. Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells. Cancer Res.2006;66(8):4117-24.
    [72]Hargreaves DC, Hyman PL, Lu TT, Ngo VN, Bidgol A, Suzuki G, et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med.2001;194(1):45-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700