髓核细胞诱导骨髓间充质干细胞的分化与永生化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:利用抽吸法诱导兔椎间盘椎退变模型
     目的:探讨利用抽吸法构建兔椎间盘退变模型,并观察其病理及影像表现。
     方法:10月龄健康新西兰大耳白兔28只,对照组7只,实验造模组21只。利用21G皮肤穿刺针分别在造模组兔L4/5单节段刺入,抽吸髓核越0.008-0.012g。造模完毕,实验兔继续培养4-20周。造模前后利用,X-ray平片、MRI及Alcian blue组织染色观察退变椎间盘的变化。
     结果:造模前后退变椎间盘高度指数百分比(DHI%):对照组、4周组、12周组、20周组分别为(100±0)%、(81±3.2)%、(75±2.5)%、(71±1.8)%(P<0.05)。退变椎间盘T2加权像信号明显降低,Alcian blue组织染色显示退变椎间盘组织中聚集蛋白多糖含量明显降低。
     结论:抽吸法构建兔椎间盘退变模型简便可靠,其退变过程的病理及影像表现与人椎间盘退变过程的病理及影像表现十分相似,该退变模型可用于人椎间盘退变的机制与临床治疗研究。
     第二部分:髓核细胞对骨髓基质干细胞的诱导作用
     目的:探讨在藻酸盐微球的介导下,髓核细胞与骨髓间充质干细胞(bone marrow stromal cells, BMSCs)非接触性共培养时,髓核细胞对骨髓间充质干细胞的诱导作用。
     方法:①4月龄健康新西兰大耳白兔5只,取髓核细胞与骨髓间充质干细胞原代培养,利用传代法分离纯化;②将纯化的骨髓间充质干细胞经胰蛋白酶消化、收集,并与适量的藻酸钠溶液混合,形成106个/ml的单细胞悬液,将混合好的单细胞悬液经注射器滴加至3.5%的CaCl2溶液中,形成海藻酸钙凝胶珠;③将海藻酸钙凝胶微球与髓核细胞共培养。在7天和15天时,分组溶解海藻酸钙凝胶珠,收集骨髓间充质干细胞,分别利用免疫组化技术、rt-PCR技术和、Western blot技术检测骨髓间充质干细胞中Ⅱ型胶原和聚集蛋白聚糖的表达,用以判断髓核细胞对骨髓基质干细胞在非接触条件下的诱导作用。
     结果:在骨髓间充质干细胞的细胞爬片免疫组化染色中可见,细胞Ⅱ型胶原和聚集蛋白聚糖染色阳性,rt-PCR和、Western blot结果显示经诱导后骨髓间充质干细胞中已有Ⅱ型胶原和聚集蛋白聚糖基因的表达,且诱导15天组的目的条带明显亮于诱导7天组的目的条带。
     结论:在体外非接触共同培养时,髓核细胞能够实现对骨髓基质干细胞的诱导作用,将骨髓基质干细胞分化为髓核细胞,这必将为椎间盘退行性变的移植治疗提供可靠的种子细胞来源。
     第三部分:骨髓间充质干细胞向类髓核细胞的分化及永生化
     目的:尝试利用共培养法和SV40Tag;永生化基因导入法构建一种来源于骨髓基质干细胞(MSCs)的永生化型类髓核细胞。
     方法:取实验白兔原代MSCs和髓核细胞(NPCs),荧光标记NPCs;将标记的NPCs与MSCs直接共培养6、9、12、15、18天;共培养完毕,利用流式细胞仪分选出荧光标记阴性细胞,即MSCs;观测共培养后MSCs细胞形态变化,检测胞内Ⅱ型胶原和聚集蛋白多糖mRNA及蛋白的表达变化;共培养15天时,将含有SV40Tag永生化基因的pCMVSV40T/PUR质粒转染MSCs,利用MTT法观测转染后MSCs增殖活性。
     结果:共培养后,MSCs胞内表达大量的Ⅱ型胶原和聚集蛋白多糖,细胞形态也从长椭圆形变为多角形;当共培养15天时,胞内Ⅱ型胶原和聚集蛋白多糖mRNA表达浓度达到最大值,但低于原代NPCs胞内Ⅱ型胶原和聚集蛋白多糖mRNA含量(P<0.05)。导入SV40Tag基因后,MSCs-SV增殖能力与原代NPCs相同,传代20次后其增殖能力无衰退(P<0.05)。
     结论:利用共培养法和SV40Tag永生化基因导入法可构建出一种来源于MSCs的永生化型类髓核细胞;该类髓核细胞可能会对椎间盘退变的细胞移植治疗研究起到一定得帮助作用。
PartⅠ:The Pathology and Imaging Performance of Rabbit Disc Degeneration Model Induced by the Aspiration of Nucleus Pulposus
     Objective:To investigate the use of liposuction to build rabbit model of disc degeneration and to observe the performance of its pathology and imaging.
     Methods:Healthy 10-month-old New Zealand rabbits 28,7 for control group and 21 for experimental group.21-gauge hypodermic needle was used to aspirate nucleus pulposus from L4/5 disc about 0.008~0.012g. All the experimental rabbits were continued to foster for 4-20 weeks. X-ray plain film, MRI and Alcian blue staining were used to observe the organizational changes in the intervertebral disc degeneration.
     Results:The percentage of disc height index (DHI%) of control group,4-week group, 12-week group and 20-week group respectively was (100±0)%, (81±3.2)%, (75±2.5)% and (71±1.8)% (P<0.05). T2-weighted image showed that the signal of the discs was significantly decreased, and the content of aggrecan was also significantly decreased.
     Conclusion:The puncture and aspiration is a reliable and convenient way to construct rabbit models of intervertebral disc degeneration, and these models can be used for the research of human the mechanism and clinical therapeutic research.
     PartⅡ:The Induction of Nucleus Pulposus Cells to Bone Marrow Stem Cells by Co-cultured
     Objective:To research the effect of nucleus pulposus cells to bone marrow stem cells which were encapsulated in alginate beads when they were co-cultured in vitro.
     Methods:①we got the primary nucleus pulposus cells and bone marrow stem cells from 5 healthy New Zealand rabbits of 4-month-old, and the nucleus pulposus cells and bone marrow stem cells were selected by their adherence to tissue culture flasks.②Cultures of MSCs were trypsinized, centrifuged, and mixed homogeneously into 1.2% alginate solution at 106 cells/mL. The alginate solution was injected into 3.5% CaCl2 solution by injector forming small droplets of cell-alginate beads.③The nucleus pulposus cells and cell-alginate beads were co-cultured in Six-well plates. At the 7th day and the 15th day, we collected the bone marrow stem cells from the cell-alginate beads. Immunohistochemical techniques, rt-PCR and Western blot technique was used to study the expression of collagen-Ⅱand aggrecan.
     Results:The immunohistochemical stain show that collagen-Ⅱand aggrecan has been expressed in the MSCs, and we also find that both of the collagen-Ⅱand aggrecan, our purpose strips of the 15th day's rt-PCR result are brighter than those of the 7th day's rt-PCR result.
     Conclusion:In vitro, bone marrow stem cells can be differentiated into the nucleus pulposus cell-like cells by been co-cultured with the nucleus pulposus cells. It can be served as optimal cell source for therapy of the degeneration disc.
     PartⅢ:Differentiation and Immortalization of Bone Marrow Strom Cells toward to Nucleus Pulposus Cell-Like Cells
     Objective:To attempt to use the way of co-culture and transfecting plasmid pCMVSV40T/PUR to get a type of immortalized Nucleus Pulposus Cell like cells, which came from Bone Marrow Strom Cells (MSCs).
     Methods:Primary Nucleus Pulposus Cells (NPCs) and primary bone Marrow Strom Cells (MSCs) were got from 20 rabbits. The NPCs were fluorescence-labeled, and were co-cultured with MSCs(co-culture ratio 1:1).After been co-cultured for 6,9,12,15 and 18 days, the MSCs (fluorescent-negative cells) were selected by Flow Cytometry from the co-culture system. Morphological changes of MSCs were observed, and real-time PCR reaction was performed to assess the mRNA expression of maker genes (Collagen II and Aggrecan) in MSCs.In the co-culture 15 days group, plasmid pCMVSV40T/PUR containing SV40Tag gene was transfected into MSCs, and the MTT assay was carried out to observe the MSCs proliferative ability.
     Results:Co-cultured with NPCs, MSCs began to express maker genes.15 days later, the mRNA expression of maker genes in MSCs reached the peak level at 0.90 and 0.93.But this peak level was still lower than the mRNA expression of maker genes in primary NPCs (P<0.05).Cell morphology also changed from a spindle into a polygon. After been transfected with plasmid pCMVSV40T/PUR, the MSCs almost had the same proliferative ability with the primary NPCs, and this ability would not decline in the next 20 passages (P<0.05).
     Conclusion:By co-cultured with NPCs and transfected with SV40Tag gene, we can get a kind of NPC-like cell. This NPC-like cell may be helpful to the cell-based therapy of intervertebral disc degeneration.
引文
1.胡有谷主编.腰椎间盘突出症[M].北京:人民卫生出版社,1995:118-131.
    2.Leino PI, MA Berg, Puska P.Is back pain increasing? Results from national surveys in Finland during 1978/9-1992.Scand J Rheumatol 1994;23:269-76.
    3.Bressler HB, Keyes WJ, Rochon PA, et al. The prevalence of low back pain in the elderly. A systematic review of the literature. Spine 1999; 24:1813-9.
    4.吕游,陈辉,郑召民。椎间盘退变实验动物模型的研究进展[J]。中国脊柱脊髓杂志,2006,16(1):68-71.
    5.Wang J, Tang T, Yang H, et al.The expres s ion of Fas ligand on normal and s tabbed-disc cells in a rabbit model of intervertebral disc degeneration:a pos s ible pathogenes is. J Neurosurg Spine 2007; 6(5):425-430
    6.Wang YJ, Shi Q, Lu WW, et al.Cervical intervertebral disc degeneration induced by unbalanced dynamic and s tatic forces:a novel in vivo rat model. Spine 2006;31 (14):1532-1538
    7.Han, Bin; Zhu, Kai; Li, Fang-cai;et al. A Simple Disc Degeneration Model Induced by Percutaneous Needle Puncture in the Rat Tail.2008; 33(18):1925-1934.
    8.Guder E, Hill S,Kandziora F, Schnake KJ. Partial nucleotomy of the ovine disc as an in vivo model for disc degeneration. Z Orthop Unfall.2009; 147(1):52-8.
    9.吴健,唐天驷,王根林,赖震,殷浩;针刺抽吸法诱导建立椎间盘退行性变的动物模型;中国组织工程研究与临床康复,2007(11):NO.45,9116-9119.
    10. Moore MJ, Banie VR, Robert DF, et al. The origin and fate of herniated lumbar intervertebral disc tissue, Spine,1996,21:2149-2155.
    11.田庆显,胡有谷,郑洪军等.白细胞介素1a对椎间盘蛋白多糖代谢的影响.中华骨科杂志,2000,20(4):242~244.
    12.Hoogendoorn RJ, Wuisman PI, Smit TH, et al.Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat. Spine,2007 Aug 1;32(17): 1816-25.
    13.Wada E. Experimental spondylosis in the rabbit spine:Overuse could accelerate the spondylosisc [J].Spine,1992,17:126.
    14. Schendel M J, Dekutoski MB.Kinemat ic of the canine lumbar intervertebral joint:An in vivo study before and after adjacent intruementation [J].Spine,1995,20: 2555-2564.
    15.Anderson DG, Izzo M W, Hall D J, et al.Comparative gene expression profiling of normal and degeneration disc:analysis of a rabbit annular laceration model[J].Spine, 2002,27:1291-1296.
    16.吕浩然,刘尚礼,丁悦,等.兔腰椎间盘退变模型的建立及影像学分析[J].中国临床解剖学杂志,2005,23:643-647.
    17. Yang F, Leung VY, Luk KD,et al. Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse.. J Pathol.2009,218(1):113-21.
    18.Boxberger JI, Auerbach JD, Sen S,et al. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine,2008,15; 33(2):146-54.
    19.Lu DS, Luk KD,Lu WW, et al.Spinal flexibility in ovease after chymopapain injection is dose dependent:a possible alteract to antervior release in sodisis[J].Spine, 2004,29:123-128.
    20. Yoon SH, Miyazaki M, Hong SW, et al. A porcine model of intervertebral disc degeneration induced by annular injury characterized with magnetic resonance imaging and histopathological findings Laboratory investigation. J Neurosurg Spine,2008; 8(5):450-7.
    1.Sun M、Li W, Markovic P、et al. The potential and limitations of a cell-seeded colla--gen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 2001; 28:446-54
    2. Nomura T, Mochida J, Okuma M, et al.Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res 2001;389(2):94-101
    3.Gan JC, Ducheyne P, Vres ilovic E J, et al. Intervertebral disc tissue engineering Ⅱ: cultures of nucleus pulposus cells.Clin Orthop Relat Res 2003;411:315-324
    4. Tao H,Ma DD. Evidence for transdifferentiation of human bone marrow-derived s tem cells:recent progress and controversies. Pathology 2003;35(1):6-13
    5.Thomas S, Alginate dressings in surgery and wound management—Part 1 [J].J Wound Care,2000,9 (2):56-60.
    6. Couch L, Cierny G, Mader J T. Inpatient and outpatient use of the Hickman catheter for adults with osteomyelitis [J].Clin Orthop Relat Res,1987, (219):226-235.
    7.Heald KA, Jay T R, Downing R. Assessment of the reproducibility of alginate encapsulation of pancreatic islets using the MTT colorimetricassay [J].Cell Transp lant, 1994,3 (4):333-337.
    8.Ueng SW, Lee S S,Lin S S, et all Biodegradable alginate antibiotic beads[J].Clin Orthop Relat Res,2000, (380):250-259.
    9. Juliaf M, Christopher M, Mark C, et al. Behavior of Adult Human Mesenchymal Stem Cells Entrapped in Alginate-GRGDY Beads[J].Tissue engineering.2006,12(4): 821-830.
    10.侯天勇,许建中,吴雪峰等.藻酸盐微球的制备及其对共培养的MSCs的影响.第三军医大学学报.2007,29(3):199-202.
    11.Iwashina T, Mochida J, Sakai D, et al.Feas ibility of us ing a human nucleus pulposus cell line as a cell source in cell transplantation therapy for intervertebral disc degeneration. Spine 2006; 31 (11):1177-1186.
    1.Christopher Evans, Potential Biologic Therapies for the Intervertebral Disc,J Bone Joint Surg Am.2006 Apr; 88 Suppl 2:95-98.
    2.Stephen M. Richardson, Judith M. Curran, Rui Chen, et al. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds,Biomaterials.2006;27:4069-4078.
    3.Stephen M. Richardson, Nesta Hughes, John A. Hunt, et al. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels, Biomaterials.2008;29:85-93.
    4. Hiyama A, Mochida J, Iwashina T, et al. Transplantation of mesenchymal stem cells in a canine disc degeneration model, J Orthop Res.2008;26:589-600.
    5.Zhou Song, Li Feng, Chen Wen-jian, et al.Effects of alginate beads mediated nucleus pulposus cells on differentiation of bone marrow mesenchymal stem cells. Journal of Clinical Rehabilitative Tissue Engineering Research,2008;49:9678-9682.
    6. Shuwei Zhang, Anmin Chen,Weihua Hu, et al. Immunological purification of rat precartilaginous stem cells and construction of the immortalized cell strain. Arch Orthop Trauma Surg,2008 Nov; 128(11):1339-1344.
    7.Mwale F, Roughley P, Antoniou J. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage:a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 2004; 8:58-63.
    8.Gruber HE, Norton HJ, Ingram JA, et al. The SOX9 transcription factor in the human disc:decreased immunolocalization with age and disc degeneration. Spine 2005;30: 625-630.
    9.Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1955; 20:1307-1314.
    10. Hirach C, Paulson S,sylvan B, et al. Biophysical and physiological investigation on cartilage and other mesenchymal tissues. VI; characteristics of human nuclei pulposi during aging. Acta Orthop Scand 1953;22:175-183.
    11.Crevensten G, Walsh AJ, Ananthakrishnan D, Intervertebral disc cell therapy for regeneration:mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng,2004; 32:430-434
    12. Gu nther Paesold, Andreas G Nerlich, Norbert Boos. Biological treatment strategies for disc degeneration:potentials and shortcomings.Eur Spine J 2007; 16:447-468.
    13.Thompson AD,Betz MW, Yoon DM, et al. Osteogenic differentiation of bone marrow stromal cells induced by coculture with chondrocytes encapsulated in three-dimensional matrices. Tissue Eng Part A.2009 May; 15(5):1181-1190.
    14. Wang TZ, Ma AQ, Xu ZY, et al.Differentiation of mesenchymal stem cells into cardiomyocytes induced by cardiomyocytes. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2005 Jun;30(3):270-275.
    15.Rangappa S, Entwistle JW, Wechsler AS, et al.Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg.2003 Jul; 126(1):124-132.
    16. Wang T, Xu Z, Jiang W, et al. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell.Int J Cardiol.2006 Apr 28; 109(1):74-81.
    17. O'Hare, M.J, Bond. J, Clarke. C, et al. Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc. Natl. Acad. Sci.U.S.A.2001; 98:646-651.
    18.Obinata, M. Possible applications of conditionally immortalized tissue cell lines with differentiation functions. Biochem. Biophys. Res. Commun.2001;286:667-672.
    19. Lidington, Marelli-Berg, Haskard, et al. Conditional immortalization of growth factor-responsive cardiac endothelial cells from H-2K(b)-tsA58 mice. Am. J. Physiol. Cell Physiol.2002; 282:C67-C74.
    1.Christopher Evans, Potential Biologic Therapies for the Intervertebral Disc,J Bone Joint Surg Am.2006 Apr; 88 Suppl 2:95-98.
    2.Stephen M. Richardson, Judith M. Curran, Rui Chen, et al. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA)scaffolds,Biomaterials.2006;27:4069-4078.
    3.Stephen M. Richardson, Nesta Hughes, John A. Hunt, et al. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels, Biomaterials.2008;29:85-93.
    4. Hiyama A, Mochida J, Iwashina T, et al. Transplantation of mesenchymal stem cells in a canine disc degeneration model, J Orthop Res.2008;26:589-600.
    5.Zhou Song, Li Feng, Chen Wen-jian, et al. Effects of alginate beads mediated nucleus pulposus cells on differentiation of bone marrow mesenchymal stem cells. Journal of Clinical Rehabilitative Tissue Engineering Research,2008;49:9678-9682.
    6. Shuwei Zhang, Anmin Chen, Weihua Hu, et al. Immunological purification of rat precartilaginous stem cells and construction of the immortalized cell strain. Arch Orthop Trauma Surg,2008 Nov; 128(11):1339-1344.
    7. Mwale F, Roughley P, Antoniou J. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage:a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 2004;8:58-63.
    8.Gruber HE, Norton HJ, Ingram JA, et al.The SOX9 transcription factor in the human disc:decreased immunolocalization with age and disc degeneration. Spine 2005;30: 625-630.
    9. Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1955; 20:1307-1314.
    10. Hirach C, Paulson S, sylvan B, et al. Biophysical and physiological investigation on cartilage and other mesenchymal tissues. VI; characteristics of human nuclei pulposi during aging. Acta Orthop Scand 1953;22:175-183.
    11.Crevensten G, Walsh AJ, Ananthakrishnan D, Intervertebral disc cell therapy for regeneration:mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng,2004; 32:430-434
    12.Gu nther Paesold, Andreas G Nerlich, Norbert Boos. Biological treatment strategies for disc degeneration:potentials and shortcomings. Eur Spine J 2007;16:447-468.
    13.Thompson AD,Betz MW, Yoon DM, et al. Osteogenic differentiation of bone marrow stromal cells induced by coculture with chondrocytes encapsulated in three-dimensional matrices. Tissue Eng Part A.2009 May; 15(5):1181-1190.
    14. Wang TZ, Ma AQ, Xu ZY, et al.Differentiation of mesenchymal stem cells into cardiomyocytes induced by cardiomyocytes. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2005 Jun;30(3):270-275.
    15.Rangappa S,Entwistle JW, Wechsler AS, et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg.2003 Jul; 126(1):124-132.
    16. Wang T, Xu Z, Jiang W, et al. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol.2006 Apr 28; 109(1):74-81.
    17.O'Hare, M.J, Bond. J, Clarke. C, et al. Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc. Natl.Acad. Sci. U.S.A.2001; 98:646-651.
    18.Obinata, M. Possible applications of conditionally immortalized tissue cell lines with differentiation functions. Biochem. Biophys. Res. Commun.2001;286:667-672.
    19. Lidington, Marelli-Berg, Haskard, et al. Conditional immortalization of growth factor-responsive cardiac endothelial cells from H-2K(b)-tsA58 mice. Am. J. Physiol. Cell Physiol.2002;282:C67-C74.
    1.Urban JP, Maroudas A. Swelling of the intervertebral disc in vitro.Connect Tissue Res 1981;9:1-10.
    2.Trout JJ, Buckwalter JA, Moore KC, Landas SK. Ultrastructure of the human intervertebral disc. I:changes in notochordal cells with age. Tissue Cell 1982:14: 35969.
    3.Traut JJ, Buckwalter JA, Moore KC.Ultrastructure of the human intervertebral disc. II: cells of the nucleus pulposus. Anat flee 1982:204:307-14.
    4. Johnstone B,Bayliss MT. The large proteoglycans of the human intervertebral disc: changes in their biosynthesis and structure with age, topography, and pathologySpine 1995:20:2781-84.
    5.Naylor A. Intervertebral disc prolapse and degeneration:the biochemical and biophysical approach. Spinel 976:1:108-14.
    6.Deshmukh K, KEina WH.Characterization of collagen and its precursors synthesized by rabbit-articular-cartilage cells in various culture systems. Etir J Biochem 1976:69: 117-23.
    7. Hirsch C, Schajowicz F. Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand 1953:22:184-9.
    8.Gruber HE, Ingram JA, Norton HJ, Hanley EN Jr. Senescence in cells of the aging and degenerating intervertebral disc:immunolocalization of senescenceassociated beta-galactosidase in human and sand rat discs, Spine 2007:32:321-7.
    9. West MD,Peraira-Smith OM,Smith JR. Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res 1989:184:138-47.
    10. Videman T. Leppavuori J, Kaprio J, et al. lntragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine 1998:23:2477-85.
    11.Cheung KMC, Chan D, Karppinen J, et al.Association of the Tag I allele in vitamin D receptor with degenerative disc disease and disc bulge in Chinese. Spine 2006:31: 1143-8.
    12.Ye S, Watts GF, Mandalia S, Humphries SE, Henney AM.Preliminary report:genetic variation in the human stromelysin promoter is associated with progression of coronary athersclerosis. Bi Heart J 1995:73:209-15.
    13.Takahashi M, Hero H, Wakabayashi Y, et al.The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg IBr] 2001;83-B:491-5.
    14. Annunen S, Paassilta P, Lohiniva J, et al. An allel of COL9A2 associated with intervertebral disc disease. Science 1999:285:409-12.
    15.Persikov AV, Ramshaw JA, Brodsky B.Collagen model peptides:sequence dependence of triple-helix stability. Biopolymers 2000:55:436-50.
    16. Kawaguchi Y, Osada R, Kanamori M, et al. Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine 1999:24:2456-60.
    17.Solovieva S,Kouhia S, Leino-Arjas P, et al. Interleukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology 2QQW 5:626-33.
    18.Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition:diffusion versus convection. CUn Orthop 1986:210:243-5.
    19. Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs. Spine2002:27:2631-44.
    20. Hassler O. Tfie human intervertebral disc:a micro-angiographical study on its vascular supply at various ages. Acta Orthop Scano 1969:40:765-72.
    21.Nachemson A, Lewin T, Maraudas A, Freeman MA. In vitro diffusion of dye through the end-plates and anuius fibrosus of human fumbar inter-vertebral discs. Ada Orthop Scand 1970:41:589-607.
    22. Kauppila U.Tallroth K. Postmortem angiographie findings for arteries supplying the
    lumbar spine:their relationship to low-back symptoms. J Spinai Disord 1993:6:124-9.
    23.Chandraraj S,Briggs CA, Opeskin K. Disc herniations in the young and end-plate vascularity. Clin Anal 1998:11:171-6.
    24. Gruber HE, Ashraf N, Kilbum J, at al. Vertebral endplate architecture and vascularization:application of micro-computerized tomography, a vascular tracers, and immunocytochemistry in analyses of disc degeneration in the aging sand rat. Spine 2005:30:2593-600.
    25.Kelsey JL, Githens PB, O'Connor T, et al. Acute prolapsed lumbar intervertebral disc: an epidemiological study with special reference to driving automobiles and cigarette smoking. Spine 1984;9:608-13.
    26. Lotz JC, Colliou OK, Chin JR, Duncan NA, liedenberg E. Compression-induced degeneration of the intervertebral disc:an in vivo mouse model and finite-element study. Spine 1998:23:2493-506.
    27.Mutton WC, Ganey TM, Elmer WA, et al. Does long-term compressive loading on the intervertebral disc cause degeneration? Spine 2000:25:2993-3004.
    28.Handa T, Ishihara H, Ohshima H, et al. Effects of hydrostatic pressure on matrix synthesis and matric metalloproteinase production in the human lumbar intervertebral disc. Spine 1997:22:1085-91.
    29.Ohshima H, Urban JPG. Effect of lactate concentrations and pH on matrix synthesis rates in the intervertebral disc. Spine 1992:17:1079-82.
    30. Akmal M, Kesani A, Anand B, et al. Effect of nicotine on spinal disc cells:a cellular mechanism for disc degeneration. Spine 2004;29:568-75.
    31.Usi H, Matsuzaki H, Oda H, et al.Gene expression changes in an early stage of intervertebral disc degeneration induced by passive cigarette smoking. Spine 2006:31: 510-14.
    32.Aufdemuur M, Fehr K, Lesker P, Silberberg R. Quantitative histochemical changes in intervertebral discs in diabetes. Exp Cell Biol 1980:48:89-94.
    33.Stirling A, Worthington T, Rafiq M, Lambert PA, Elliott TS.Association between sciatica and Propionibacterium acnes. The Lancet 2001;357:2024-5.
    34. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999:340:448-54.
    35.Weinstein J. Mechanisms of spinal pain:the dorsal root ganglion and its role as a mediator of low-back pain. Spine 1986:11:999-1001.
    36. Pedrini-Mille A, Weinstein JN, Found EM, Cnung CB, Goal VK. Stimulation of dorsal root ganglia and degradation of rabbit annulus fibrosus. Spine 1990:15:1252-6.
    37.Gertzbein SD, tile M, Gross A, Falk R. Autoimmuntty in degenerative disc disease of the lumbar spine. Orthop Clin North Am 1975;6:67-73.
    38.Adams MA, Freeman BJ, Morrison HP,Nelson IW, Dolan P.Mechanical initiation of intervertebral disc degeneration. Spine 2000:25:1625-36.
    39. Hanssort TH, Keller TS,Spengler DM. Mechanical behaviour of the human lumbar spine. Ⅱ:fatigue strength during dynamic compressive loading. J Orthop Res 1987:5: 479-87.
    40. Goel VK, Monroe BT, Gilbertson LG, Brinckmann P.Interlaminar shear stresses and laminae separation in a disc:finite element analysis of L3-L4 motion segment subjected to axial compressive loads. Spine 1995:20:689-98.
    41.Hilton RC, Ball J, Benn RT. Vertebral end-plate lesions (Schmorl's nodes) in the dorsolumbar spire. Ann Rheum Dis 1976:35:127-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700