南丹部分尾矿区土壤及优势植物重金属含量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,土壤受重金属污染程度越来越严重,土壤重金属污染治理研究已经成为当前国内外的热点科学问题和前沿科研领域。近年来出现的植物修复技术由于成本低、效果好、不破坏环境等优点,正成为农业和环境科学领域研究和开发的热点,而植物修复的关键是找到重金属超富集植物。本课题对广西南丹部分尾矿区的土壤及优势植物进行调查研究,分析土壤及部分优势植物的重金属含量,从中筛选出胜红蓟、醉鱼草和野苎麻这三种植物进行盆栽试验,进一步验证它们在植物修复实践中的应用前景。具体研究结果如下:
     (1)各尾矿区土壤以酸性为主,土壤多属于复合型污染,尤其是Cd—Zn—Pb复合型污染。在所有被调查的尾矿区土壤样点都有不同程度的镉污染,尾矿区土壤以Cd—Zn—Pb复合污染型为主。各样点具体污染类型是1、4和9号样点为Cd污染型;3号样点为Cd—Zn复合污染型;2、7、8和13号样点为Cd—Zn—Pb复合污染型;5、10和11号样点为Cd—Zn—Pb—Ni复合型污染;12号样点为Cu—Cd—Zn—Pb复合型污染。由此可见12个尾矿区都有Cd污染;9个尾矿区有Zn污染;8个尾矿区有Pb污染;3个尾矿区有Ni污染;1个尾矿区有Cu污染。其中5号尾矿区样点的Cd、Zn和Ni污染最严重。
     (2)在所有被调查的样点上,共采集21个科的33种优势植物,其中以菊科(Composotae)的优势植物最多,达6种,其次是茄科(So/anaceae),有3种,荨麻科(Urticaceae),蓼科(Polygonaceae),豆科(Fabaceae),禾本科(Cramineae)和杜鹃科(Ericaceae)各2种,其余14科各有1种。野外调查显示:植物地上部Zn和Pb含量最高的是苎麻(2974.25mg/kg和583.85mg/kg),Ni含量最高的是何首乌(157.93mg/kg),Cd含量最高的是胜红蓟(131.50mg/kg),Cu含量最高的是商陆(61.24mg/kg)。表明胜红蓟对Cd表现较强的富集能力,具有植物修复前景的植物还有醉鱼草,商陆和土荆芥。
     (3)胜红蓟对Cd有较强的富集能力。野外调查显示:胜红蓟叶部Cd的含量最高可大131.50mg/kg;在盆栽条件下其地上部Cd含量也达到83.82mg/kg,表现出对Cd的累积特性。有关胜红蓟吸收累积Cd的内在机制还需要进一步研究。
     (4)醉鱼草对Pb有较大的富集能力。野外调查发现,在重金属Pb污染非常严重的5号样点,醉鱼草长势良好,而且形成优势植物,说明其耐胁迫能力很强。调查同时发现醉鱼草地上部Pb含量达348.25mg/kg,盆栽实验其地上部Pb含量最高达289.94mg/kg。无论是野外调查还是盆栽试验均表明醉鱼草是一种耐Pb胁迫并具有Pb富集能力的植物。
     (5)盆栽试验表明:在土壤2条件下野苎麻对Zn和Pb有较强的吸收值。
At present, heavy metal pollution is more and more serious. Phytoremediation mayoffer a new solution of this problem. Finding out a series of ideal hyperaccumulators isthe main groundwork of phytoremediation. The soils and dominant plants wereinvestigated at some mine tailing area of Nandan County in Guangxi Province. Theheavy metal concentrations of dominant species and associated soils were analyzed. Andthen Ageratum conyzoides, Buddleja lindleyana and Boehmeria frutescensvar viridulawere identified by soil pot experiment. The major results were summarized as follows:
     (1) The soils were investigated at some mine tailing area of Nandan County inGuangxi Province, the results showed that acid soil dominated mine tailing area. Andthe soils mainly belong to combined pollution, especially Cd—Zn—Pb combinedpollution. Concretely, 1st、4th and 9th sample point is Cd pollution; 3rd sample point isCd—Zn combined pollution; 2nd、7th、8th and 13th sample point is Cd—Zn—Pbcombined pollution; 5th、10th and 11th sample point is Cd—Zn—Pb—Ni combinedpollution; 12th sample point is Cu—Cd—Zn—Pb combined pollution. The 5th samplepoint pollution by Cd, Zn and Ni was the most serious.
     (2) There were 33 species of dominant plants belonging to 21 families wereinvestigated. Among them, Compositae was the family with most species, its 6; andSolanaceae had 3; Urticaceae, Polygonaceae, Fabaceae, Cramineae and Ericaceaef had 2 respectively and the others had only 1. The investigation showed that the plantof the highest Zn and Pb in shoots is Boehemeria nivea(2974.25mg/kg、583.85mg/kg), theplant of the highest concentration of Ni in shoots was Polygonum multiflorm(157.93mg/kg), the plant of the highest concentration of Cd in shoots was Ageratumconyzoides(131.50mg/kg), the plant of the highest concentration of Cu is Phytolaccaacinosa (61.24mg/kg)。And also showed that Ageratum conyzoides, Phytolacca acinosa,Chenopodium ambrosioides, and Buddleja lindleyana Fort, could be useful inphytoremediation.
     (3) Ageratum conyzoides had strong accumulation capability of Cd. The fieldinvestigation showed that the concentration of Cd in leaf of Ageratum conyzoides was131.50mg/kg. Soil pot experiment showed that Ageratum conyzoides' shoot had highconcentration Cd (83.82mg/kg) growing in the soil 2.
     (4) Buddleja lindleyana Fort had strong accumulation capability of Pb, especiallygrow in the soil 2. The result agreed with the investigating conclusion.
     (5) Boehmeria frutescensvar viridula had strong accumulation capability of Pb andZn when growing in the soil 2.
引文
[1] 周启星,污染土壤及地下水修复的PRB技术及展望,环境污染治理技术与设备,2001,2(5),48~53
    [2] 夏星辉,陈静生.土壤重金属污染治理方法研究进展,环境科学,1997,18(3),72~75
    [3] Salt D E, Smith R D, Raskin L, Phytoremediation, Annu Rev Plant Physiol Mole Biol, 1998, 49, 643~668
    [4] Pulford I D, Watson C, Phytoremediation of heavy metal-contaminated land by trees——areview, Environment International, 2003, 29, 529~540
    [5] 唐世荣,污染环境植物修复的原理与方法,北京,科学出版社,2006
    [6] 窦贻俭,李春华,环境科学原理,南京,南京出版社,1998
    [7] Baker AJM, Brooks RR, Posse Al.,and F.Malaisse, Studies on copper and cobalt tolerance, in: throeclosely related taxa wthin the genus Silence L. (Caryophyllaceae) from Zaire, Plant andSoil, 1993, 73, 377~385
    [8] Miller KG, Essential and toxic heavy metal in soil and their ecological relevance, Transactions XJJ1, Cotigress of the International Soe. Gf Sol Sci, Plenary Paper, 1986, 11, 45~60
    [9] Chaney RL, Minnie M, Li YM., et al, Phytoremediation of soil metals, Current Opinions in Biotechnology, 1997, 8, 279~284
    [10] Brooks RR., Chambers MF, Nicks LJ, et al, Phytomining Trends in Plant Science, 1998, 3(9), 359~362
    [11] Reeves RD, Baker AJM, Metal-accumulating plants, In: Raskin I,Ensley BT, Phytoremediation of toxic metals using plants to clean up the environment, New York, John Wiley Press, 2000, 193~230
    [12] Baker AJM, McGraph SP, Reeves RD, et al. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils, In: Terry N and Banuelos G. Lewis.Boca Raton, Phytoremediation of Contaminated Soiland Water.Eds., Florida, Aidiano, 2000, 85~108
    [13] 薛生国,超积累植物商陆的锰富集机理及其对污染水体的修复潜力,杭州:浙江大学博士学位论文,2005
    [14] 唐世荣,超积累植物在时空、科属内的分布特点及寻找方法,农村生态环境,2001,(4),56~60
    [15] Baker AJM, Brooks RR, Pease AJ, and F.Malaisse, Studies on copper and cobalt toler ance in three closely related taxa within the genus Silence L. (Caryophyllacese) from Zaire, Plant and Soil, 1983, 73, 377~385
    [16] Robinson BH, Brooks RR, Howes A W. et al. The potential of the high-biomaas nichel Pyeraccumulator Berhheya coddii for phytoremediation and phytoming, Journal of Geochemical Exploration, 1997, 60, 115~125
    [17] 陆引罡,黄建国,滕应等,重金属富集植物车前草对镍的响,水土保持学报,2004,18(1),108~110
    [18] 唐世荣,富铜植物及其研究意义,见:黄昌勇、谢正苗、徐建明主编,土壤化学研究与应用,北京,中国环境科学出版社,1997,59~64
    [19] 唐世荣,B.M.Bilke,植物修复技术与农业生物环境工程,农业工程学报,1999,15(2),21~26
    [20] Tang SR, Wilke BM and HuangCY, The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze Rive, the People's Republic of China, Plant and Soil, 1999, 209(2), 225~232
    [21] LillY, TangSR, ZhengJM, Copper contents in two species plants of compositae growing on copper mining spoils, Rural Eco-Environment, 2003, 19(4), 53~55
    [22] 何冰,铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较,农业环境科学学报,2003,22(3),174~278
    [23] 刘秀梅,聂俊华,王庆仁,6种植物对Pb的吸收与耐性研究,植物生态学报,2002,26(5),533~537
    [24] 吴双桃,吴晓芙,铅锌冶炼厂土壤污染及重金属富集植物的研究,生态环境,2004,13(2),156~157,160
    [25] 杨肖峨,龙新宪,东南景天(Sedum alfredii H)——一种新的锌超积植物,科学通报,2002,747(13),1003~1007
    [26] 刘威,束文圣,蓝崇钰,宝山堇菜(Viola baoshanensis)——种新的镉超富集植物, 科学通报,2003,48(1 9),2046~2040
    [27] 黄会一,木本植物对土壤镉的吸收、累积、耐性,中国环境科学,1989,9(5),323~330
    [28] 魏树和,某铅锌矿坑口周围具有重金属超积累特征植物的研究,环境污染治理技术与设备,2004(3),33~39
    [29] 魏树和,周启星,王新,18种杂草对重金属的超积累特性研究,应用基础与工程科学学报,2003,11(2),152~158
    [30] 魏树和,周启星,王新等,一种新发现的镉超积累植物龙葵(SolanumnigrumL),科学通报,2004,19(24),2568~2573
    [31] 陈同斌,韦朝阳,砷超富集植物蜈蚣草及其对砷的富集特征,科学通报,2002,3,2,47
    [32] 韦朝阳,陈同斌,大叶井口边草——一种新发现的富集砷的植物,生态学报,2002,22(5),777~778
    [33] Lasat MM, Baker AJM, Kochian LV, Physiologicalcharacterization of root Zn~(2+) absorption and translocationto shoots in Zn hyperaccumulator and non-accumulatorspecies of Thlapi, Plant Physiol, 1996, 112, 1715~1722
    [34] Pineros MA, ShaffJE, Kochian LV, Development, characterization and application of a cadmium-selectivemic roelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat, Plant Physiol, 1998, 116, 1393~1401
    [35] Salt DE, Kramaer U, Mechanisms of metalhyperaccumulation in plants, Raskin H, Ensley BD, Phytore Mediation of Toxic Metals: Using Plants to Clear up the Environment, New York, John Wiley &Sons, 2000, 231~246
    [36] 沈振国,刘友良,重金属超量积累植物研究进展,植物生理学通讯,1998,34(2),133~139
    [37] 沈振国,陈怀满,植物修复和重金属超量积累植物,见:冯锋,张福锁,杨新泉编著,植物营养研究进展与展望,北京,中国农业大学出版社,2000,216~229
    [38] Kupper H, Zhao FJ, McGrath SP, Cellular compartmentation of Zinc in leaves of the hyperaccumulator Thlaspi caerulescens, Plant Physiol, 1999, 119, 305~311
    [39] Kramer U, Cotter-Howells JD, Charnock JM et. al, Free histidine as a metal chelator in plants that accumulate nickel, Nature, 1996, 379, 635~638
    [40] 沈德中,污染环峨的生物修复,北京,化学工业出版社,2002,3,1~312
    [41] 沈振国,陈怀满,土壤金属污染生物修复的研究进展,农村生态环境,2000,16(2),39~44
    [42] Chaudhry GR, Biological degradation and bioremediation of toxic chemicals, Dioscorides Press Portland, Oregon, 1994, 7~17
    [43] 龙新宪,杨肖娥,倪吾仲,重金属污染土壤修复技术研究的现状与展望,应用生态学报,2002,13(6),757~762
    [44] 孟庆强,利用超富集植物处理重金属污染土壤和污泥:广州:华南农业大学硕士论文,2002
    [45] 唐世荣,超积累植物,农业环境与发展,1996,49(3),14~18
    [46] 国家环保总局,生物多样性履行简报,2003,第1期
    [47] 南丹县土地管理局,南丹县土地志,南宁,广西人民出版社,1999,1~76
    [48] 广西壮族自治区南丹县土壤普查办公室编,南丹土壤,1985年11月
    [49] 鲍士旦,土壤农化分析(第三版),北京,中国农业出版社,2000
    [50] 强胜,曹学章,外来杂草在我国的危害性及其管理对策,生物多样性,2001,9(2),188~195
    [51] 中国科学院西北植物研究所,秦岭植物志,第一卷,第四册,北京,科学出版社,1983
    [52] 李其林,赵中金,黄昀,重庆市近郊蔬菜基地土壤和蔬菜中重金属的质量现状,重庆环境科学,2000,22(6),33~36
    [53] Luo Y and D. L. Rimmer, Zinc-copper interaction affecting plants growth on a metalcontaminated soil, Environ. Pollut. 1995, 88, 79~83
    [54] BAKER AJM, BROOKS RR, Terrestrial higher plants which hyperaccumulate elements-A review of their ditribution, ecology and phytochemistry, Biorecovery, 1989, 1, 86~126
    [55] ZU YQ, LI Y, CHRISTIAN S et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China, Environment International, 2004, 30(4), 567~576
    [56] Salt ED, Blaylock MB, Kumar NPBA, et al. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants, Biotechnology, 1995, 13,468~ 474
    [57] Salt ED, Phytoremediation:Present applications and future promise, In: Wise DL, et al.(Eds.), Bioremediation of Contaminated Soils, New York, Marcel Dekker Press, 2000
    [58] 郭水良,金华市郊杂草对土壤重金属元素的吸收与富集作用(Ⅰ)——6种重会属元素在杂草和土壤中的含量分析,上海交通大学学报(农业科学版),2002,20(1),22~29
    [59] 王庆仁,崔岩山,董艺婷,植物修复一重金属污染土壤整治有效途径,生态学报,2001,21(2),326~331
    [60] 于法钦,云南兰坪铅锌矿区植被及优势植物重金属含量研究,广州:中山大学硕士学位论文,2005
    [61] Gambrell RP, Trace and toxic metals in wetlands—a review, Environ. Qual., 1994, 23, 883~891
    [62] Wang H X ed, Pollution Ecology, Beijing, Higher Education Press, 2000
    [63] 杨久流,尾矿中有价矿产资源的综合回收与利用,有色金属(选矿部分),2002,(8)1
    [64] 曾清如,周细红,铁柏清等,铅锌矿自然扩散晕内重金属的污染特征及其防治技术,农村生态环境,1997,13(1),12~15
    [65] 孙庆业,蓝崇任,杨林章,铅锌尾矿废弃地的化学性质研究,农村生态环境,2000,16(4),36~39
    [66] 李永丽,矿山尾矿铅污染植物修复及EDTA强化技术研究,长沙:湖南大学硕士论文,2006
    [67] Peng S L, Restoration ecology and vegetation reconstruction, Ecologic Science, 1996, 15 (2), 26~31
    [68] Bai ZK, Zhao JQ, Ecological Construction and Reclam ation of Industrial and Mining Wastelands, Beijing, China Agricultural Press, 2000
    [69] Shu WS, Zhang ZQ, Lain CY, Strategies for restoration of mining wastelands in China(I), Ecological Science, 2000, 19 (2), 25~29
    [70] Dobson AP, Bradshaw AD and Baker AJM, Hopes for further, restoration ecology and conservationbiology.Science, 1997, 277, 515~522
    [71] Jordan WRⅢ, Gilp in M E and Abet JD, Restoration Ecology: A Synthetic Approach to Ecological Research Cambridge, Cambridge University Press, 1987
    [72] Bradshaw AD and Chadwick MJ, The Restoration of Land, the Ecology and Reclam ation of Derelic and Degraded and. Berkeley, University of California Press, 1980
    [73] Baker AJM, Reeves RD, Hajar ASM, Phytoremediation potential of T. caerulescens and bladder campion for zinc-and cadmium-contaminated soil, Envirom Qual, 1994, 23, 1151~1157
    [74] Lombi E, Zhao FJ, Dunham SJ et. al., Cadmium accumulation in populations of Thlaspi caerulescen and Thlaspi goesingense, New Phytologist, 2000, 145, 11~20
    [75] Reeves RD, Brooks RR, Hyperaccumulation of lead and zinc by two metallophytes from a mine area in Central Europe, Environmental Pollution Ser A, 1983, 31,275~283
    [76] Xiong ZT, Bioaccumualtion and physilolgical effects of excess lead in a roadside pioneer species Sonchus oleraceus L, Environmental Pollution, 1997, (3), 275~279
    [77] 何冰,东南景天对铅的耐性和富集特性及其对污染土壤修复效应的研究,杭州:浙江大学博士论文,2003
    [78] WENZEL WW, JOCKWER F, Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps, Environmental Pollution, 1999, 104, 145~155
    [79] BROOKSR R, Biological Methods of Prospecting forMinerals, John wiley and Sons, NewYork, 1983, 322
    [80] BAKER AJM., BROOKS RR, Terrestrial higher plants which hyperaccumulate elements-A review of their ditribution, ecology and phytochemistry, Biorecovery, 1989, 1, 86~126
    [81] Srivastav.RK, S.K.Gupta. KDP. Nigam and P. Vasudevan, Treatment of chromiumand nichel in wastewater by using aquatic plants, War. Res., 1994, 28, 1631~1638
    [82] Malaisse F, Gregoire J, Brooks RR, et. al., Aeolanthus biformifolius: hyperaccumulator of copper from Zaire, Science, 1978, 199, 887~888
    [83] 张娜,郭素华,胜红蓟的研究进展,药品评价,2004,1(3),219~221
    [84] 郝建华,强胜,外来入侵性杂草—胜红蓟,杂草科学,2005,4,54~56
    [85] 孔垂华,胜红蓟化感物质之间相互作用的研究,植物生态学报,1998,22(5),403~408

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700