基于变分问题和偏微分方程的图像处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理是一个光学、电子学、数学、成像学和计算机技术学的交叉学科,并且在众多科学与工程领域有重要应用。目前在图像处理领域有随机建模、小波理论和偏微分方程三大类方法。本论文集中探讨了变分偏微分方程方法在图像增强、融合、去噪和图像分解方面的一些关键问题,主要工作和创新成果如下:
     图像中的邻域变化对应着一些重要的内容,据此首先设计了一种简单的梯度场线性放大的图像增强方法;其后考虑红外图像噪声较大的特点,针对噪声作了特殊的抑制之后设计了一个随梯度变化而自适应改变的梯度放大系数,这个系数对于大的梯度几乎不放大,防止了梯度场所反映的动态范围过大而带来的伪影效应,同时在重构时加入了图像的全变差约束,进一步抑制了噪声,有效地增强了红外图像;针对电视图像增强中的均值保持的要求,设计了一个均值约束下的最大熵问题,即把均衡的直方图理解成最大熵的直方图,利用变分方法求出了这个直方图的闭式解,然后利用直方图规定化进行变换,在保持均值的条件下对图像进行了有效的增强;另外,关于目标直方图的确定,选择了一个更为直观的平坦性描述,利用凸优化求出了最佳目标直方图,根据这个目标直方图的结果特点,设计了求取目标的简化算法,在对图像做目标直方图的变换时,借用了一种精确的直方图映射算法,在严格保持均值的条件下对图像进行了有效的增强。
     将现有的变分偏微分方程图像融合方法从二维推广到三维,定义了多波段三维图像的对比度,再利用变分方法对多波段三维医学图像实现了有效的融合;结合Weber定律中的临界感知变化(JND)概念,将主观对比度的概念引入到现有变分偏微分方程图像融合中来,设计了基于主观对比度的变分图像融合算法;对于不同波段,不同点的梯度反映的信息具有不同的重要性,采用各点自身的重要性对于各波段进行加权处理,求取加权数据的统计量作为融合目标,设计了具备重要特征保持能力的图像融合方法;由于图像中的重要信息是局部变化,所以我们设计了根据源/结果图像梯度的幅度和方向相似性的图像融合质量评估方法,这种方法在理论上可以衡量结果中大部分点的灰度逆序情况,避免现有一些算法的错误评价。
     关于椒盐噪声去除问题,我们利用自适应中值滤波检测图像中可能的噪声点,然后采用全变差结构图像修复方法对检测出的噪声点做填充,这种填充本身是与噪声值无关的,可以很好的恢复被椒盐噪声严重污染的图像,恢复效果优于现有算法;对于随机值冲击噪声,设计了自适应噪声图来检测可能的噪声点,然后进行全变差恢复,这种方法可以避免传统迭代式检测-恢复方法所固有的“恶性循环”的弊端,去噪效果也优于现有方法。
     根据现有对结构和纹理描述的分析,将Mumford-Shah模型和G空间结合起来,提出了Mumford-Shah-G图像纹理/结构分解算法,该算法分解得到的结构成分在边缘点以外的部分非常光滑,没有TV模型在噪声下的阶梯效应,同时纹理成分也可以得到充分的分离,其分解结果可能被其他的图像处理算法使用;给出了纹理/结构分解后两个成分分别处理的一种改进压缩算法,这种改进算法将结构成分压缩所产生的误差叠加到纹理成分中,减少了误差来源,同时在理论上证明了该算法相对于现有两种成分分别压缩的方法始终具有信噪比增益;考虑到结构型图像中重要的信息是边缘信息,只利用边缘及邻域的信息就可以用图像修复的方法恢复出原始图像,提出了针对边缘及邻域信息的结构图像压缩方法,这种方法结合了边缘跟踪、游程编码和矢量量化技术,有效做到了边缘图像的压缩,对于结构图像最终的压缩结果,具有很好的主观视觉效果,没有低码率下JPEG压缩的块效应,也没有JPEG2000的振铃效应。
Image processing is an interdisciplinary topic, which is connected to photology, electronics, mathematics, imaging and computer techniques. There are lots of important applications about image processing in many scientific areas and engineering fields. In the current stage, image processing approaches can be divided mainly into three classes, i. e., stochastic modelling, wavelets theory, and partial differential equations (PDEs). This thesis focuses on some key issues of PDEs, in the topics of image enhancement, image fusion, impulsive noise removal and structure-texture decomposition. The main work and innovations are listed as follows:
     According to the observation that local variation is the important issue in an image, a simple method for image enhancement is designed, which linearly magnifying the gradient; considering the serious noise in infrared images, we design, to the gradient, a new magnification factor, which is adaptive to the gradient itself, such a factor makes the large gradient almost unchanged, which can avoid the halo from large dynamic range, meanwhile, an extra term, TV norm, is involved into the reconstruction to further compress the noise; according to the high demands of brightness preservation of image enhancement in consumer electronics, we interpret the histogram equalization as the maximum entropy, and using the variational perspective, we find the close-form solution for the optimal histogram, and a histogram transform is employed to enhance the image with brightness preservation; furthermore, about the determination of the target histogram, we select a more intuitive way to measure the flatness, and the convex optimization can help us determine such a solution, based on the characteristics of the solution, we design a simplified algorithm for the target histogram, and also an exact histogram specification algorithm is employed to better our enhancement result.
     We extend the variational image fusion from 2D to 3D, define the contrast of the multi-channel 3D image, and a variational method help us effectively fuse the multichannel 3D medical images; with the concept of Just-Noticeable-Differences in the Weber's law, we introduce the perceptual contrast into the variational PDE image fusion, and derive the perceptual contrast based variational image fusion method; according to the different importance of each channel, we set different weights to each pixel in different channels, and the statistics are extracted to make the result preserve the salience well; since local variation is very important in image fusion, we design a measure to evaluate the quality of the fusion results, which employs the similarity of the gradient amplitude and direction between the source and the result, such a method has some desired property in differentiating the inverse direction.
     About the two kinds of impulse noise removal, we employ a two-steps approach, i.e., detection and restoration, among which, the restoration is achieved by the edge preserving TV image inpainting technique. As for the salt-and-pepper noise, since its value has some distinct characteristics, an adaptive median filter is employed to identify them, and the result is better than the state-of-the-art methods; for the random valued impulse noise, we design an adaptive neighborhood noise map to identify the corrupted pixels, with a TV inpainting followed, it can overcome some weakness of existing methods and the performance is better.
     According to the description ability of the existing model for characterizing structure and texture, we combine the Mumford-Shah model in modelling structure and G-space in modelling texture, and advance a structure-texture decomposition method, namely Mumford-Shah-G method, it can make the resultant structure component piece-wise smooth except some simple edges without the staircase effect from the TV-type model, while the texture can be well separated from the source image; when we consider to compress the structure and texture component of an image respectively, we propose an improved method, which adds the error from structure compression to the texture component to reduce the error source, such a scheme has a theoretical boost in performance, comparing to the existing method; for a structure image, edge is important, we can restore the whole image using only edge together with its neighborhood by structure inpainting, upon which we propose a compression method to such edge-like information, it combines edge tracking, running length encoding and vector quantization technique, and effectively compress the structure image, the result has a perceptually good performance.
引文
[1] W. K. Pratt. Digital Image Processing, 2nd Ed. John Wiley, New York, 1991.
    [2] 章毓晋.图象工程(上册)-图象处理和分析.清华大学出版社,北京,1999.
    [3] 高鑫.基于小波变换和PDE模型噪声与模糊图像恢复.博士学位论文,北京师范大学,北京,2001.
    [4] S. Z. Li. Markov Random Field Modeling in Computer Vision. Springer-Verlag, New York, US, 1995.
    [5] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998.
    [6] S. Geman, D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 6: 721-741, 1984.
    [7] T. F. Chan, J. Shen. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic methods. Society for Industrial and Applied Mathematics(SIAM), Philadelphia, 2005.
    [8] V. Caselles, J. -M. Morel, G. Sapiro, and et al. Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Transactions on Image Processing, 7(3): 269-273, 1998.
    [9] G. Aubert, P. Kornprobst. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, volume 147. Applied Mathematical Sciences: Springer-Verlag, New York, US, 2001.
    [10] G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge, UK, 2001.
    [11] S. Osher, N. Paragios. Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer-Verlag, New York, US, 2003.
    [12] J. A. Sethian. Level Set Methods and Fast Marching Methods, 2nd Ed. Cambridge University Press, Cambridge, UK, 1999.
    [13] M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4): 321-331, 1987.
    [14] S. Osher, J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulation. Journal of Computational Physics, 79: 12-49, 1988.
    [15] A. N. Tikhonov, V. Y. Arsenin. Solutions of Ill-Posed Problems. Winston and Sons, Washington, D. C., 1977.
    [16] L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60: 259-268, 1992.
    [17] T. F. Chan, J. Shen. Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics, 62: 1019-1043, 2002.
    [18] J. Shen. Inpainting and the fundamental problem of image processing. SIAM News, 36(5): 1-4, 2003.
    [19] T. F. Chan, J. Shen, L. Vese. Variational pde models in image processing. Notice of the AMS, 50(1): 14-26, 2003.
    [20] T. F. Chan, S. H. Kang, J. Shen. Euler's elastica and curvature based inpaintings. SIAM Journal on Applied Mathematics, 63(2):564-592, 2002.
    [21] M. Bertalmio, G. Sapiro, V. Caselles, and et al. Image inpainting. Proceedings of ACM SIGGRAPH, also ACM Transactions on Graphics, 19(3): 417-424, 2000.
    [22] G. Sapiro. Image inpainting. SIAM News, 35(4): 1-2, 2002.
    [23] S. D. Rane, G. Sapiro, M. Bertalmio. Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. IEEE Transactions on Image Processing, 12(3):296-303, 2003.
    [24] R Perez, M. Gangnet, A. Blake. Poisson image editing. Proceedings of ACM SIGGRAPH, also ACM Transactions on Graphics, 22(3): 313-318, 2003.
    [25] T. F. Chan, S. Esedoglu, F. E. Park. A fourth order dual method for staircase reduction in texture extraction and image restoration problems. Technical Report, UCLA, cam05-28, 2005.
    [26] M. Nikolova. A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision, 20:99-120, 2004.
    [27] A. Abubakar, P. M. van den Berg, T. M. Habashy, and et al. A multiplicative regularization approach for deblurring problems. IEEE Transactions on Image Processing, 13(11): 1524-1532, 2004.
    [28] C. R. Vogel, M. E. Oman. Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Transactions on Image Processing, 7(6): 813-824, 1998.
    [29] D. Mumford, J. Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Communication on Pure and Applied Mathematics, 42(5): 577-685, 1989.
    [30] L. Ambrosio, V. Tortorelli. Approximation of functionals depending on jumps by elliptic functionals via γ-convergence. Communication on Pure and Applied Mathematics, 43(8): 999-1036, 1990.
    [31] P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7): 629-639, 1990.
    [32] J. Weickert. Anisotropic Diffusion in Image Proceesing. Teubner-Verlag, Stuttgart, 1998.
    [33] V. Caselles, R. Kimmel, G. Sapiro. Geodesic active contours. International Journal on Computer Vision, 22(1): 61-79, 1997.
    [34] 徐建平,桂子鹏.变分方法.同济大学出版社,上海,1999.
    [35] 苏家铎.泛函分析与变分法.中国科学技术大学出版社,合肥,1993.
    [36] C. Wang, Z. Ye. Weberized total variation model with an eye movement background, in preparation, 2007.
    [37] J. Shen. On the foundations of vision modeling i. weber's law and weberized tv restoration. Physica D, 175: 241-251, 2003.
    [38] R. H. Sherrier, G. A. Johnson. Regionally adaptive histograme equalization of the chest. IEEE Transactions on Medical Imagimg, MI-6: 1-7, 1987.
    [39] J. Silverman. Signal processing algorithms for display and enhancement of ir images. In Proceedings of SPIE, volume 2020, pages 440-450, 1993.
    [40] V. E. Vickers. Plateau equalization algorithm for real-time dispaly of highquality infrared imagery. Optical Engineering, 35 (7): 1921-1926, 1996.
    [41] 陈钱,柏连发,张保民.红外图像直方图双向均衡技术研究.红外与毫米波学报,22(6):428-430,2003.
    [42] Y. -T. Kim. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1): 1-8, 1997.
    [43] Y. Wang, Q. Chen, B. M. Zhang. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics, 45(1): 68-75, 1999.
    [44] S. -D. Chen, A. R. Ramli. Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Transactions on Consumer Electronics, 49(4): 1310-1319, 2003.
    [45] S. -D. Chen, A. R. Ramli. Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4): 1301-1309, 2003.
    [46] 王超,叶中付.基于变分的图像增强算法和伪彩色映射.数据采集与处理,20(1):18-22,2005.
    [47] 王超,叶中付.红外图像的变分增强算法.红外与毫米波学报,25(4):306-310.2006.
    [48] C. Wang, Z. Ye. Brightness preserving histogram equalization with maximum entropy: a variational perspective. IEEE Transactions on Consumer Electronics, 51(4): 1326-1334, 2005.
    [49] C. Wang, J. Peng, Z. Ye. Flattest histogram specification with accurate brightness preservation. IEEE Transactions on Consumer Electronics, Submitted, 2006.
    [50] V. Ysagaris, V. Anastassopoulos. Multispectral image fusion method using perceptual attributes. In Image and Signal Processing for Remote Sensing Ⅸ, Proceedings of SPIE, volume 5328, pages 357-367, 2004.
    [51] D. A. Socolinsky. A variational approach to image fusion. PhD thesis, The Johns Hopkins University, Baltimore, Maryland, 2000.
    [52] D. A. Socolinsky. Dynamic range constraints in image fusion and visualization. In Proceedings of Signal and Image Processing. IASTED, Las Vegas, NV 2000.
    [53] R. Highnam, M. Brady. Model-based image enhancement of far infrared images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4): 410-415, 1997.
    [54] M. Tang, S. D. Ma, J. Xiao. Model-based adaptive enhancement of far infrared image sequences. Pattern Recognition Letters, 21: 827-835, 2000.
    [55] R. C. Gonzalez, R. E. Woods. Digital Image Processing, 2nd Ed. the Prentice Hall, 2002.
    [56] J. B. Zimmerman, S. M. Pizer, E. V. Staab, and et al. An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Transactions on Medical Imaging, 7(4): 304-312, 1988.
    [57] T. M. Cover, J. A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc. 1991, and also Tsinghua University Press, Beijing, China, 2003.
    [58] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and et al. Numerical Recipes in C++-The Art of Scientijic Computing, 2nd Ed. Electronics Industry Press, Beijing, China, 2003.
    [59] Y. J. Zhang. Improving the accuracy of direct histogram specification. Electronics Letters, 28(3): 213-214, 1992.
    [60] S. Boyd, L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.
    [61] M. Grant, S. Boyd, Y. Y. Ye. CVX: Matlab Software for Disciplined Convex Programming, volume Version 1.0 beta 3. [online], available at: http://www.stanford.edu/~boyd/cvx/,2006.
    [62] D. Coltuc, P. Bolon, J. -M. Chassery. Exact histogram specification. IEEE Transactions on Image Processing, 15(5): 1143-1152, 2006.
    [63] M. Aguilar, and A. L. Garrett. Neurophysiologically-motivated sensor fusion for visualization and characterization of medical imagery. In Proceedings, 4th International Conference on Information Fusion, volume 1, pages WeC3-11-WeC3-18, 2001.
    [64] H. Li, B. S. Manjunath, S. K. Mitra. Multisensor image fusion using the wavelet transform. Graphical Models and lmage Processng, 57(3): 235-245, 1995.
    [65] L. J. Chipman, T. M. On, L. N. Graham. Wavelets and image fusion. In IEEE Proceedings, International Conference on Image Processing, volume 3, pages 248-251, 1995.
    [66] W. Wang, P. Shui, G. Song. Multifocus image fusion in wavelet domain. In IEEE Proceedings, International Conference on Machine Learning and Cybernetics, volume 5, page 2887-2890, 2003.
    [67] Z. Li, Z. Jing, G. Liu, and et al. Pixel visibility based multifocus image fusion. In IEEE Proceedings, International Conference on Neural Network and Signal Processing, volume 2, pages 1050-1053, 2003.
    [68] 李树涛,王耀南,龚理专.多聚焦图像融合中最佳小波分解层数的选取.系统工程与电子技术,24(6):45-48,2002.
    [69] 李树涛,王耀南,张昌凡.基于视觉特性的多聚焦图像融合.电子学报,29(12):1699-1701,2001.
    [70] K. Kazemi, H. A. Moghaddam. Fusion of multifocus images using discrete multiwavelet transform. In IEEE Proceedings, International Conference on Multisensor Fusion and Integration for Intelligent Systems, pages 167-172, 2003.
    [71] Z. Zhang, R. S. Blum. A categorization of multiscale decomposition-based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, 87(8): 1315-1326, 1999.
    [72] G. Pajares, J. M. Cruz. A wavelet-based image fusion tutorial. Pattern Recognition, 37: 1855-1872, 2004.
    [73] S. G. Nikolov, D. R. Bull, C. N. Canagarajah, and et al. Image fusion using a 3-d wavelet transform. In IEEE Proceedings, 7th International Conference on mage Processing and its Application, volume 1, pages 235-239, 1999.
    [74] J. L. Starck, E. J. Candes, D. L. Donoho. The curvelet transform for image denoising. IEEE Transactions on Image Processing, 11(6):670-684, 2002.
    [75] V. S. Petrovic, C. S. Xydeas. Gradient-based multiresolution image fusion. IEEE Transactions on Image Processing, 13(2): 228-237, 2004.
    [76] B. Hou, F. Liu, L. Jiao. Linear feature detection based on ridgelet. Science in China(Series E), 46(2): 141-152, 2003.
    [77] S. Li, James T. K., Y. Wang. Multifocus image fusion using artificial neural networks. Pattern Recognition Letters, 23: 985-997, 2002.
    [78] I. Bloch, H. Maitre. Data fusion in 2d and 3d image processing: an overview. In Computer Graphics and Image Processing, Proceedings X Brazilian Symposium on, pages 127-134, 1997.
    [79] M. Aguilar, J. R. New. Fusion of multi-modality volumetric medical imagery. In Information Fusion, Proceedings of Fifth International Conference on, volume 2, pages 1206-1212, 2002.
    [80] D. A. Socolinsky, L. B. Wolff. Multispectral image visualization through firstorder fusion. IEEE Transactions on Image Processing, 11(8): 923-931, 2002.
    [81] D. A. Socolinsky, L. B. Wolff. A new visualization paradigm for multispectral imagery and data fusion. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 319-324, 1999.
    [82] C. Wang, Z. Ye. First-order fusion of volumetric medical imagery. IEE Proceedings-Vision, Image, and Signal Processing, 153(2): 191-198, 2006.
    [83] C. Wang, Z. Ye. Perceptual contrast-based image fusion: a variational approach. Acta Automatica Sinica, 33(2): 132-137, 2007.
    [84] C. Wang, Q. Yang, X. Tang, and et al. Salience preserving image fusion with dynamic range compression. In Proceedings of lEEE, International Conference on Image Processing, pages 989-992, 2006.
    [85] 王超,叶中付.基于相似性的图像融合质量的客观评估方法.软件学报,17(7):1580-1587,2006.
    [86] S. H. Jeffereys, B. Swirles. Methods of mathematical physics. Cambridge University Press, Cambridge, UK, 1972.
    [87] R. Vincent. Brain Web: Simulated Brain Database. [online], availible at: http://www.bic.mni.mcgill.ca/brainweb/, 2003.
    [88] S. Hecht. The visual discrimination of intensity and the weber-fechner law. The Jounal of General Physiology, 7:235-267, 1924.
    [89] Z. Xie, T. G. Stockham Jr. Toward the unification of three visual laws and two visual models in brightness perception. IEEE Transactions on Systems, Man, and Cybernetics, 19(2): 379-387, 1989.
    [90] E. H. Weber. De pulsu, resorptine, auditu et tactu. Annotationes anatomicae et physiologicae, 1834.
    [91] Z. Wang, A. C. Bovik, H. R. Sheikh, and et al. Image quality assesment: from error visibility to structual similarity. IEEE Transactions on Image Processing, 13(4): 600-612, 2004.
    [92] K. K. Ma, L. Huang. Perceptually based subband ambtc image coder. In Proceedings of IEEE, International Conference on Information, Communication and Signal Processing, pages 505-509, 1997.
    [93] P. Scheunders, S. D. Backer. Multispectral image fusion fusion and merging using multiscale fundamental forms. In Proceedings of IEEE International Conference on Image Processing, pages 902-905, 2001.
    [94] P. R. Burt, E. H. Adelson. The laplacian pyramid as a compact image code. IEEE Transactions on Communications, COM-31(4): 532-540, 1983.
    [95] Z. Liu, K. Tsukada, K. Hanasaki, and et al. Image fusion by using steerable pyramid. Pattern Recognition Letters, 22: 929-939, 2001.
    [96] G. Qu, D. Zhang, P. Yan. Information measure for performance of image fusion. Electronics Letters, 38(7): 313-315, 2002.
    [97] A. Goshtasby. Image fission systems research. [online], availible at:http://www.ablen.com/hosting/imagefusion/resources/images/imgfsr/,2006.
    [98] Y. -F. Ma, H. -J. Zhang. Contrast-based image attention analysis by using fuzzy growing. In Proceedings ofA CM Multimedia, pages 374-381, 2003.
    [99] R. Fattal, D. Lischinski, M. Werman. Gradient domain high dynamic range compression. Proceedings of ACM SIGGRAPH, also ACM Transactions on Graphics, 21(3):249-256, 2002.
    [100] A. A. Gooch, S. C. Olsen, J. Tumblin, and et al. Color2gray: salience-preserving color removal. Proceedings of ACM SIGGRAPH, also ACM Transactions on Graphics, 24(3): 634-639, 2005.
    [101] C. S. Xydeas, V. Petrovic. Objective image fusion performance measure. Electronics Letters, 36(4):308-309, 2000.
    [102] Z. Wang, A. C. Bovik. A universal image quality index. IEEE Signal Processing Letters, 9(3): 81-84, 2002.
    [103] L. Alparone, S. Baronti, A. Garzelli, and et al. A global quality measurement of pan-sharpened multispectral imagery. IEEE Geoscience and Remote Sensing Letters, 1(4): 313-317, 2004.
    [104] H. Hwang, R. A. Haddad. Adaptive median filters: New algorithms and results. IEEE Transactions on Image Processing, 4(4):499-502, 1995.
    [105] S. -J. Ko, Y. -H. Lee. Center weighted median filters and their applications to image enhancement. IEEE Transactions on Circuits and Systems, 38(9): 984-993, 1991.
    [106] Z. Wang, D. Zhang. Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Transactions on Circuits and Systems Ⅱ, 46(1): 78-80, 1999.
    [107] T. Chen, H. R. Wu. Space variant median filters for the restoration of impulse noise corrupted images. IEEE Transactions on Circuits and Systems Ⅱ, 48(8): 784-789, 2001.
    [108] T. Chen, H. R. Wu. Adaptive impulse detection using center-weighted median filters. IEEE Signal Processing Letters, 8(1): 1-3, 2001.
    [109] G. Gilboa, N. Sochen, Y. Y. Zeevi. Variational denoising of partly textured images by spatially varying constraints. IEEE Transactions on Image Processing, 15(8): 2281-2289, 2006.
    [110] C. Wang, Z. Ye. Salt-and-pepper noise removal by adaptive median filter and tv inpainting.中国科学技术大学学报,已录用,2007.
    [111] C. Wang, Z. Ye. Random valued impulse noise removal by adaptive neighbor detection and tv inpainting, in preparation, 2007.
    [112] R. H. Chan, C. -W. Ho, M. Nikolova. Salt-and-pepper noise removal by mediantype noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(10): 1479-1485, 2005.
    [113] R. H. Chan, C. -W. Ho, M. Nikolova. Convergence of newton's method for a minimization problem in impulse noise removal. Journal of Computational Mathematics, 22: 168-177, 2004.
    [114] C. Hu, S. H. Lui. Variational approach for restoring random-valued impulse noise. Lecture Notes in Computer Science, 3401: 312-319, 2005.
    [115] T. F. Chan, S. Osher, J. Shen. The digital tv filter and nonlinear denoising. IEEE Transactions on Image Processing, 10(2): 231-241,2001.
    [116] R. H. Chan, C. -W. Ho, M. Nikolova. An iterative procedure for removing random-valued impulse noise. IEEE Signal Processing Letters, 11(12): 921-924, 2004.
    [117] W. B. Luo. A new efficient impulse detection algorithm for the removal of impulse noise. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E88-A: 2579-2586, 2005.
    [118] 李厚强,王超,叶中付,王劲松.一种改进的基于gabor滤波器的纹理分割方法.电路与系统学报,8(6):82-86,2003.
    [119] F. G. Meyer, A. Z. Averbuch, R. R. Coifman. Multilayered image representation: application to image compression. IEEE Transactions on Image Processing, 11(9): 1072-1080, 2002.
    [120] L. A. Vese, S. J. Osher. Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing, 19(1-3): 553-572, 2003.
    [121] M. Elad, J. -L. Starck, P. Querre, and et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (inca). Applied and Computational Harmonic Analysis, 19(3): 340-358, 2005.
    [122] J. -L. Starck, M. Elad, D. L. Donoho. Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing, 14(10):1570-1582, 2005.
    [123] 王超,方璐,叶凤芹,叶中付.基于mumford-shah模型和g空间的图像结构纹理分解.数据采集与处理,已录用,2007.
    [124] 王超,叶凤芹,叶中付.基于结构纹理分解的改进图像压缩算法.中国科学技术大学学报,已录用,2007.
    [125] 方璐,王超,叶中付.基于边缘信息的结构图像压缩方法.中国科学技术大学学报,已投出,2007.
    [126] Y. Meyer. University Lecture Series-Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, volume 22. Amer. Math. Soc., US, 2001.
    [127] A. Said, W. A. Pearlman. A new fast and efficient image codec based on set partioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3): 243-250, 1996, Code availible at: http://www.cipr.rpi.edu/research/SPIHT/spiht3.html.
    [128] F. G. Meyer. Image compression with adaptive local cosines: a comparative study. IEEE Transactions on Image Processing, 11(6): 616-629, 2002.
    [129] F. G. Meyer, A. Z. Averbuch, J. -O. Stromberg. Fast adaptive wavelet packet image compression. IEEE Transactions on Image Processing, 9(5): 792-800, 2000, Code availible at: http://ece-www.colorado,edu/~fmeyer/Software/distrib.html.
    [130] M. Bertalmio, L. Vese, G. Sapiro, S. Osher. Simultaneous structure and texture image inpainting. IEEE Transactions on Image Processing, 12(8):882-889, 2003.
    [131] N. Sprljan, E. Izquierdo. New perspectives on image compression using a cartoon-texture decomposition model. In Proceedings of 4th EURASIP Conf on Video/Image Processing and Multimedia Communications, volume 1, pages 359-368. Croatia, 2003.
    [132] N. Sprljan, M. Mark, E. Izquierdo. Image compression using a cartoon-texture decomposition technique. In Proceedings of 5th European workshop on Image Analysis for Multimedia Interactive Services, pages 91-94. Portugal, 2004.
    [133] J. Capon. A probabilistic model for ran-length coding of pictures. IEEE Transactions on Information Theory, 5(4): 157-163, 1959.
    [134] Y. Linde, A. Buzo, R. M. Gray. An algorithm for vector quantizer design. IEEE Transactions on Communications, Com-28: 84-95, 1980.
    [135] I. Katsavounidis I, C. -C. J. Kuo, Z. Zhang. A new initialization technique for generalized lloyd iteration. IEEE Signal Processing Letters, 1(10): 144-146, 1994.
    [136] JPEG.[online], http://www.jpeg.org.
    [137] JPEG2000. [online], http://www.jpeg.org/jpeg2000/.
    [138] Y. Boykov, V. Kolmogorov. An experimental comparison of rain-cut/max-flow algorithms for energy minimization in vision. IEEE Transaction on Pattern Analysis and Machine Intelligence, 26(9): 1124-1137, 2004.
    [139] Y. Li, J. Sun, C. -K. Tang, and et al. Lazy snapping. Proceedings of ACM SIGGRAPH, also ACM Transactions on Graphics, 23(3): 303-308, 2004.
    [140] C. Rother, V. Kolmogorov, A. Blake. "grabcut"——interactive foreground extraction using iterated graph cuts. Proceedings of ACM SIGGRAPH, also ACM Transactions on Graphics, 23(3): 309-314, 2004.
    [141] C. Wang, Q. Yang, M. Chen, and et al. Progressive cut. In ACM Multimedia, pages 251-260. Santa Barbara, CA, USA, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700