微囊化人降钙素基因修饰细胞治疗绝经后骨质疏松症的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:原发性骨质疏松症为一种以骨量减少,骨微结构破坏,导致骨脆性增加,容易发生骨折为特征的全身代谢性骨病。绝经后骨质疏松症是最常见的一种原发性骨质疏松,该病的致残率及致死率较高,是严重威胁老年人生存质量的多发病,由此产生的医疗费用成为家庭和社会的沉重负担。绝经后骨质疏松症其特征是多在绝经后5~10年内发病,主要由绝经后雌激素减少引起。雌激素水平低下时骨转换速度加快。在骨重建高转换状态下,破骨细胞骨吸收形成的陷窝得不到充分的骨形成修复,骨小梁可穿孔、断裂,不连接的小梁数增多,是导致绝经后骨量大量流失和骨质量降低的主要病理机制。绝经后骨代谢为高转换型,骨吸收大于骨形成,因而发生骨量丢失。应用骨吸收抑制剂是合理的用药选择。骨吸收抑制剂主要有雌激素类、选择性雌激素受体调节剂、双膦酸盐类及降钙素类等。其中降钙素主要由哺乳动物甲状腺旁滤泡细胞(C细胞)分泌的多肽类激素,由32个氨基酸组成。降钙素对骨的作用是抑制破骨细胞的活性和增生,从而抑制骨吸收,降低骨转换率。因此降钙素作为抗骨吸收药物在骨质疏松症临床治疗中得以广泛应用。尽管降钙素在治疗骨代谢疾病方面效果良好,但是降钙素与绝经后骨量丢失之间的关系,尚存在争议。降钙素在体内的半衰期短,要达临床满意效果,必须长期反复应用。这使很多病人难以坚持。而且此类药物有一定的抗原性,限制其临床应用。
     目的:本研究首先拟观察去势大鼠基础值及其储备功能的改变;同时了解体内甲状腺C细胞形态变化特点。为进一步探讨降钙素在绝经后骨质疏松症发生中的作用提供试验依据。同时,拟微囊技术和转基因技术结合起来,通过脂质体转染方法建立降钙素基因高表达成肌细胞株,再将其微囊化,形成微囊化转降钙素基因修饰细胞。观察重组人降钙素对体外骨重建功能细胞的影响。进而将微囊化转基因修饰细胞移植体内,观察对去势大鼠的骨代谢与骨结构的影响。
     方法:6月龄清洁级健康雌性SD大鼠16只,随机均分为去卵巢组和假手术组。去势12周后用钙负荷-降钙素兴奋试验分别观察两组降钙素基础值及其储备功能的改变。并处死每组大鼠,留取甲状腺组织,采用免疫组织化学方法显示降钙素阳性细胞并对其进行细胞形态计量学分析。另外,利用脂质体介导法将人降钙素基因(hCT)转染成肌细胞,以G418筛选出阳性克隆并扩大培养。用逆转录-聚合酶链反应(RT-PCR)、Western Blot和免疫组织化学分析目的基因及其蛋白表达;并用ELISA法检测上清中分泌的人降钙素浓度。将转染有hCT cDNA的L6成肌细胞包被在具有免疫隔离作用的海藻酸钠-聚赖氨酸-海藻酸钠(APA)微囊内形成微囊化基因转染细胞。在体外培养的同时,应用原代培养成骨细胞和破骨细胞方法,观察重组人降钙素对细胞形态、功能的影响。而后将微囊化基因转染细胞移植到大鼠的腹腔,连续测定腰椎骨密度、腰椎和股骨骨生物力学性能和骨代谢生化指标改变,光镜及电镜观察骨组织病理改变并进行形态计量学分析, ELISA法检测血清人降钙素浓度。探讨研究植入微囊化的人降钙素(hCT)cDNA转染细胞对去势大鼠的治疗效果,为临床应用基因工程细胞治疗绝经后骨质疏松提供新方法。
     结果:⑴大鼠切除卵巢后12周,骨小梁数目减少,纤细,相互连接减弱,成功复制绝经后骨质疏松动物模型。去势大鼠体内降钙素基础值及其储备功能均低于对照组;体内甲状腺C细胞数目剧增。⑵阳性脂质体转染法将含人降钙素表达基因的质粒导入成肌细胞,G418加压筛选。RT-PCR检测从mRNA的水平证实染后的成肌细胞中有外源性人降钙素基因的转录;通过western blot和免疫组化的方法证实转染后的细胞有人降钙素蛋白表达的同时,ELISA法也可从五株抗性克隆培养上清中检测到一定水平的hCT,与对照组克隆相比差异有统计学意义。表明转染后的宿主细胞可以将胞质中合成的降钙素分泌至细胞外。⑶在体外、体内检测到人降钙素的持续分泌,说明重组人降钙素可渗透通过微囊壁,进而发挥其生理作用。⑷重组人降钙素显著促进体外培养成骨细胞的增殖、碱性磷酸酶的活性和矿化功能;呈剂量依赖关系。⑸重组人降钙素可减少破骨细胞数和骨吸收陷窝面积;呈剂量依赖性。⑹植入微囊化的人降钙素转染细胞后,去势大鼠骨转换率下降,改善骨小梁微结构,腰椎骨量和骨强度明显改善。对胫骨的松质骨量,部分地或有限度地防止骨丢失。
     结论:⑴去势后大鼠甲状腺C细胞的分泌功能失代偿也许是骨量降低的原因之一。⑵微囊化hCT cDNA转染细胞能合成和向囊外分泌人降钙素。⑶重组人降钙素对体外培养成骨细胞的增殖、分化和矿化功能有明显促进作用;可减少破骨细胞的数量,抑制其骨吸收功能。⑷微囊化转基因修饰的成肌细胞分泌的重组人降钙素可防止去势后中轴骨的骨丢失。
Background: Osteoporosis is a disease of reduced skeletal mass and microarchitectural deterioration of the skeleton, resulting in an increased risk of fractures. Postmenopausal osteoporosis is the most common type of the disease. Fractures associated with osteoporosis and osteopenia are associated with significant increases in morbidity and mortality. Fractures resulting from low bone mass also have a significant impact on life quality of patients and social health care cost. The loss of ovarian hormone production in menopause is the major risk factor for osteoporosis, causing increased skeletal resorption and relatively decreased bone formation, continuing until the end of life. The increased bone remodeling, due to excessive osteoclast activity and an insufficiency of bone formation, results in deep resorption cavities, trabecular plate perforation, wide separation and disconnection of trabecular, and enlargement and coalescence of subendocortical spaces. Due to bone high-turnover rate after the menopause, antiresorptive drugs are reasonable choice for physicians. Several alternative treatments are available,including established drug therapies such as hormone replacement therapy,bisphosphonates, selective estrogen receptor modulators as well as calcitonin. Calcitonin (CT) is a peptide hormone produced by the parafollicular cells of the thyroid gland in mammals, which directly inhibits osteoclastic bone resorption. In spite of the novel therapeutic effect of calcitonin on bone diseases, the exact role of calcitonin in the pathogenesis of postmenopausal osteoporosis remains controversial. While , the use of these therapeutic proteins in the treatment of postmenopausal osteoporosis is limited by the need for repeated protein administration, costly production methods and antigenicity.
     Objective: The purpose of the first part of this study was to investigate the changes of morphology and calcitonin secretory reserve of thyroid C cells in ovariectomized rats, in aiming to study the role of calcitonin in the pathogenesis of postmenopausal osteoporosis. Meanwhile,Mouse myoblasts strain which steadily expressed human calcitonin were established using the cationic liposome-based gene delivery technique. The hCT cDNA transfected myoblasts were encapsulated in non-antigenic biocompatible alginate-polylysine-alginate microcapsules. The effects of recombinant human calcitonin secreted from the cells on osteoblasts and osteoclasts were investigated in vitro. Then, Polymer microcapsules loaded with hCT-secreting myoblasts were implanted in the peritoneum of the ovariectomized rats to examine the therapeutic feasibility of the protocol.
     Method: Firstly, sixteen 6-month-old, female SD rats were divided into two groups. One was non-ovariectomized group (Sham) and the other was ovariectomized group (OVX). Twelve weeks after surgery, the alterations of thyroid C cell secretory reserve function in two groups were assessed by the calcium infusion test. A peroxidase–antiperoxidase method was applied for localization of calcitonin (CT) in the C cells. Morphometric changes in their volume、relative volume density and numerical density were evaluated in comparison with sham-operated control rats using a stereological method. Then, Mouse myoblasts were transfected with the cDNA for human calcitonin using the cationic liposome-based gene delivery technique and clones secreting high levels of human calcitonin were isolated. The expression and secretion of human calcitonin by myoblast cells was confirmed by RT-PCR、ELISA、Western blot analysis and immunohistochemical analyses. Upon enclosure in alginate-polylysine-alginate microcapsules, which are biocompatible membranes that permit exit of therapeutic protein but not entry of immune mediators, the encapsulated myoblasts were cultured in vitro. Primary osteoblasts and osteoclasts were subjected to recombinant human calcitonin secreted from the cells at different concentrations. The effects of recombinant peptide on proliferation and function of primary osteoblasts and osteoclasts were studied. Then, Polymer microcapsules loaded with hCT-secreting myoblasts were implanted in the peritoneum of the ovariectomized rats. The concentration of human calcitonin was measured by ELISA. Bone mineral density of lumbar was determined by DEXA. Biomechanical property of lumbar and femur were also examined. Some biochemical markers of bone metabolism as serum calcium、serum inorganic phosphorus、serum osteocalcin (BGP) and unrinary pyridinoline (PYD) were examined. Bone histomorphometry、Light microscope and Scanning Electronic Microscopy were used to investigated skeletal changes in cancellous bone in section of lumbar and tibia.
     Results:⑴Ovariectomy led to trabecular volume and number, wide separation and disconnection of trabecular in section of lumbar. The fact indicated the animal model of osteoporosis had been duplicated successfully. In ovariectomized rats, the three parameters as basal CT, the peak CT value and the CT increase range were significantly lower than those in normal controls. The number of thyroid C cells of the ovariectomized rats was markedly increased.⑵Reverse transcriptive-polymerase chain reaction (RT-PCR) and enzyme immunoassay confirmed that transgenes were expressed in the myoblast cells. Meanwhile, Western blot and immunohistochemical analyses detected significant increases in human calcitonin levels in the transfected myoblasts.⑶The encapsulated recombinant myoblasts continued to secrete human calcitonin in vivo and in vitro.⑷The recombinant protein showed marked increases in osteoblast proliferation, alkaline phosphates activity and formation of mineral nodules in dosage-dependant manner.⑸The recombinant human calcitonin decreased the number of osteoclasts and caused a dose-dependent decrease in mature osteoclasts activity as measured by the area of bone resorptive pits.⑹The bone turnover rate in ovariectomized rats had decreased after implantation. In comparison with the osteoporotic rats, those implanted with encapsulated recombinant myoblasts showed less bone loss; the reduction in bone loss was obvious in vertebral body, but this was hardly seen in the proximal tibial metaphases. Histological findings of lumbar vertebra revealed the improvement of bone architect of the axial bone.
     Conclusion:⑴The deficiency of synthesis and release of calcitonin in the thyroid C cells may account partially for the bone loss in ovariectomized rats.⑵The encapsulated recombinant myoblasts can serve as an efficient and stable delivery vehicle producing human calcitonin.⑶The recombinant protein has positive effects on proliferation, ALP activity and mineralizing nodules formation in osteoblasts. It decreases the number of osteoclasts and inhibited their bone resorptive function.⑷The recombinant human calcitonin secreted from the encapsulated myoblasts can reverse the bone loss in axial bone due to ovariectomy.
引文
1. Fitzpatrick LA. Estrogen therapy for postmenopausal osteoporosis. Arq Bras Endocrinol Metabol. 2006, 50(4):705-719.
    2. Agnusdei D, Civitelli R, Camporeale A, et al. Calcitonin and estrogens. J Endocrinol Invest. 1990, 13 (8):625-630.
    3. Body JJ. Calcitonin: from the determination of circulating levels in various physiological and pathological conditions to the demonstration of lymphocyte receptors. Horm Res. 1993(3-4), 39:166-170.
    4. 郑富盛. 细胞形态立体计量学. 北京: 北京医科大学等联合出版社, 1990.67.
    5. Parfitt AM, Mathews CH, Villanueva AR, et al. Relationship between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis: implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983, 72: 1396-1409.
    6. Wallach S, Farley JR, Baylink DJ, et al. Effects of calcitonin on bone quality and osteoblastic function. Calcif Tissue Int. 1993, 52(5):335-339.
    7. Farley J, Dimai HP, Stilt-Coffing B, et al. Calcitonin increases the concentration of insulin-like growth factors in serum-free cultures of human osteoblast-line cells. Calcif Tissue Int. 2000, 67(3):247-254.
    8. Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest.1999, 104 (10):1363-1374.
    9. Chestnut CH 3rd, Silverman S, Andriano K, et al. A randomized trial of nasal sp ray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med. 2000, 109(2): 267-276.
    10. Chesnut CH 3rd, Majumdar S, Newitt DC, et al.Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res. 2005, 20(9):1548-1561.
    11. Majeska RJ, Ryaby JT, Einhorn TA. Direct modulation of osteoblastic activity with estrogen. J Bone Joint Surg Am. 1994, 76(5):713-721.
    12. Kameda T, Mano H, Yuasa T, et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorption osteoclasts. J Exp Med. 1997, 186(4):489-495.
    13. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005, 115(12):3318-3325.
    14. Tsai JA, Rong H, Torring O, et al. Interleukin-1 beta upregulates PTHrP-mRNA expression and protein production and decreases TGF-beta in normal human osteoblast-like cells. Calcified Tissue In. 2000, 66(5):363-369.
    15. Sakai K, Yamada S, Yamada K. Effect of ovariectomy on parafollicular cells in the rat. Okajimas Folia Anat Jpn. 2000, 76(5):311-319.
    16. Filipovic B, Sosic-Jurjevic B, Nestorovic N, et al. The thyroid C cells of ovariectomized rats treated with estradiol. Histochem Cell Biol. 2003, 120(5):409-414.
    17. Dick IM, Prince RL. Transdermal estrogen replacement does not increase calcitonin secretory reserve in postmenopausal women. Acta Endocrinol (Copenh). 1991, 125(3):241-245.
    18. Mano H, Yuasa T, Kameda T, et al. Mammalian mature osteoclast as estrogen target cells. Biochem Biophys Res Commun.1996, 223(3):637-642.
    19. Greig IR, Idris AI,Ralston SH, et al. Development and characterization of biphenylsulfonamides as novel inhibitors of bone resorption. J Med Chem. 2006, 49(25):7487-7492.
    20. Gennari C, Agnusdei D. Calcitonin, estrogens and the bone. J Steroid BiochemMol Biol. 1990, 37(3):451-455.
    21. Naveh-Many T, Almogi G, Livni N, et al. Estrogen receptors and biologic response in rat parathyroid tissue and C cells. J Clin Invest. 1992, 90(6):2434-2438.
    22. Yang K, Pearson CE, Samaan NA. Estrogen receptor and hormone responsiveness of medullary thyroid carcinoma cells in continuous culture. Cancer Res. 1988, 48(10): 2760-2763.
    23. Banu KS, Govindarajulu P, Aruldhas MM. Testosterone and estradiol have specific differential modulatory effect on the proliferation of human thyroid papillary and follicular carcinoma cell lines independent of TSH action. Endocr Pathol. 2001, 12(3):315-327.
    24. Naveh-Many T, Raue F, Grauer A, Silver J. Regulation of calcitonin gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Bone Miner Res. 1992, 7(10):1233-1237.
    25. Fernandez-Santos JM, Utrilla JC, Conde E, et al. Decrease in calcitonin and parathyroid hormone mRNA levels and hormone secretion under long-term hypervitaminosis D3 in rats. Histol Histopathol. 2001, 16(2):407-414.
    26. Prince RL. Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis. Endocr Rev. 1994, 15(3):301-309.
    27. Silver J, Naveh-Many T. Calcitonin gene regulation in vivo. Horm Metab Res. 1993, 25(9):470-472.
    28. 刘金宝,董春敏,梁玉等. 雌激素和孕激素对雌性小鼠甲状腺C细胞的影响. 中国组织化学与细胞化学杂志.2001,10(3):279-281.
    29. Body JJ, Struelens M, Borkowski A, et al. Effects of estrogens and calcium on calcitonin secretion in postmenopausal women. J Clin Endocrinol Metab. 1989, 68(1):223-226.
    30. Frolich A, Christensen L, Andersen J. Estrogen receptors appear undetectable in the C-cells of the human thyroid gland. Bone. 1990, 11(6):393-396.
    1. 李宁华,区品中,朱汉民等. 中国部分地区中老年人群原发性骨质疏松症患病率研究.中华骨科杂志.2001,21(5):275-278.
    2. 黄公怡. 骨质疏松症骨的组织结构和力学特性. 中华骨科杂志.2004,24(11):687-691.
    3. Stepan JJ, Alenfeld F, Boivin G, et al. Mechanisms of action of antiresorptive therapies of postmenopausal osteoporosis. Endocr Regul.2003, 37(4):225-238.
    4. Kapurniotu A, Kayed R, Taylor JW, et al. Rational design, conformational studies and bioactivity of highly potent conformationally constrained calcitonin analogues. Eur J Biochem.1999, 265(2):606-618.
    5. Handy AA, Hortelano G, Tannenbaum GS. Correction of the growth defect in dwarf mice with nanautologous microencapsulated myobalsts-an alternate approach to somatic gene therapy. Hum Gene Ther. 1995, 6(2):165-175.
    6. Orive G, De Castro M, Ponce S, et al. Long-Term Expression of Erythropoietin from Myoblasts Immobilized in Biocompatible and Neovascularized Microcapsules. Mol Ther.2005,12(2):283-289.
    7. Hortelano G, Al-Hendy A, Ofosu FA, et al. Delivery of Human Factor IX in Mice by Encapsulated Recombinant Myoblasts: A Novel Approach Towards Allogeneic Gene Therapy of Hemophilia B. Blood. 1996, 87(12):5095-5103.
    8. 孟国林,胡蕴玉.基因治疗在骨科疾病治疗中的探索性应用.中国矫形外科杂志.2000,7(10):1005-1007.
    9. Winn SR, Hu Y, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliv Rev. 2000, 42(1-2):121-138.
    10. Gafni Y, Pelled G, Zilberman Y, et al. Gene therapy platform for boneregeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther. 2004, 9(4):587-595.
    11. Felgner PL, Ringold GM. Cationic liposome-mediated transfection. Nature. 1989, 337: 387-388.
    12. Zhu XM, Chu ZM, Hu YL, et al. In vitro and in vivo transfection and expression of plasmid-based non-viral vector for erythropoietin gene therapy. Biotechnol. Lett. 2002, 249(11): 943-947.
    13. Walker BE.Skeletal muscle regeneration in young rats.Am J Anat.1972,133:369-378.
    14. Partridge TA, Morgan J E, Coulton GR, et al. Conversion of mdx myofibres from dystrophin - negative to - positive by injection of normal myoblasts. Nature. 1989, 337(6203):176 -179.
    15. Salminen A, Elson HF, Mickley LA, et al. Implantation of recombinant rat myocytes into adult skeletal muscle: A potential gene therapy. Hum Gene Ther. 1991, 2(1):15-26.
    16. Barr E, Leiden JM. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science. 1991, 254(5037):1507-1509.
    17. Dhawan J, Pan LC, Pavlath GK, et al. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science. 1991, 254(5037):1509-1512.
    18. Al-hendy A, Hortelano G, Tannenbaum GS, et al. Correction of the growth defect in dwarf mice with nonautologous microencapsulated myoblasts—analternate approach to somatic gene therapy. Hum Gene Ther. 1995, 6(2):165-175.
    19. Hortelano G, Wang L, Xu N, et al. Sustained and therapeutic delivery of factor IX in nude haemophilia B mice by encapsulated C2C12 myoblasts: concurrent tumourigenesis. Haemophilia. 2001, 7(2):207-214.
    20. Baltzer AW, Whalen JD, Wooley P, et al. Gene therapy for osteoporosis: evaluation in a murine ovariectomy model. Gene Ther.2001, 8(23):1770-1776.
    21. Kostenuik PJ, Bolon B, Morony S, et al. Gene therapy with human recombinant osteoprotegerin reverses established osteopenia in ovariectomized mice. Bone. 2004, 34(4): 656-664.
    22. Hiltunen MO, Ruuskanen M, Huuskonen J, et al. Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo. FASEB J. 2003, 17(9):1147-1149.
    23. Turgeman G, Pittman DD, Muller R, et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med. 2001, 3(3):240-251.
    24. Evans CH, Robbins PD. Gene therapy in orthopedics. Orthop Nurs. 2000, 19(1):16-22.
    25. Chang PL, Shen N, Westcott AJ. Delivery of recombinant gene products with microencapsulated cells in vivo. Hum Gene Ther. 1993, 4(4):433-440.
    26. Shingo T, Date I, Yoshida H, et al. Neuroprotective and restorative effects ofintrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson's disease. J Neurosci Res. 2002, 69(6):946-954.
    27. Davidson MR. Pharmacotherapeutics for osteoporosis prevention and treatment. J Midwifery Women Health. 2003, 48(1):39-52.
    28. Dursun N, Dursun E, Yalcin S. Comparison of alendronate, calcitonin and calcium treatments in postmenopausal osteoporosis. Int J Clin Pract. 2001, 55(8):505-509.
    29. 朱建民,吴晔,周秦. 骨质疏松症的治疗及其进展. 中国新药与临床杂志. 1999, 18(6):389-393.
    30. Kapurniotu A. Contribution of conformationally constrained calcitonin (Ct) analogs to the understanding of the structural and conformational requirements of calcitonin bioactivity and to the design of potent agonists. Curr Med Chem. 2004, 11(21):2845-2865.
    1. Pavlath GK, Rando TA, Blau HM. Transient immunosuppressive treatment leads to long-term retention of allogeneic myoblasts in hybrid myofibers.J Cell Biol. 1994,127(6 Pt 2):1923-1932.
    2. Omer A, Duvivier-Kali VF, Trivedi N, et al. Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice.Diabetes.2003,5 2(1):65-75.
    3. 武林枫,翟博. 微囊化移植的研究进展. 国外医学生物医学工程分册.2005,28(1):37-39.
    4. 张阳德,马仁,何剪等. 微囊化同系,同种异体,异种肝细胞腹腔移植对急性肝衰的治疗作用. 中华实验外科杂志.2001,18(1):47-49.
    5. Chang PL. Microcapsules as bio-organs for somatic gene therapy. Ann N Y Acad Sci.1997, 831:461-473.
    6. Wen J, Vargas AG, Ofosu FA, et al. Sustained and therapeutic levels of human factor IX in hemophilia B mice implanted with microcapsules: key role of encapsulated cells. J Gene Med. 2006, 8(4):362-369.
    7. Orive G, De Castro M, Ponce S, et al.Long-Term Expression of Erythropoietin from Myoblasts Immobilized in Biocompatible and Neovascularized Microcapsules. Mol Ther. 2005,12(2):283-289.
    8. Shen F, Li AA, Gong YK, et al. Encapsulation of recombinant cells with a novel magnetized alginate for magnetic resonance imaging. Hum Gene Ther. 2005, 16(8):971-984.
    9. 幸浩洋,陈立国,肖静,等. 微囊化人类心房肽cDNA重组质粒转染细胞对实验性高血压大鼠肾组织学改变的影响. 生物医学工程杂志.2004,21(4):541-545.
    10. 宋玫,陈绍宗,韩骅,等. 微囊化转NGF基因3T3细胞修复大鼠周围神经损伤的实验研究. 中华整形外科杂志.2005,21(1):53-58.
    11. 潘月龙,郑树,孝作祥等. 微囊化转mIL212基因CHO细胞皮下移植及联合5-FU 对荷瘤小鼠的治疗作用.中华医学杂志.2003 83(1):51-55.
    12. Chestnut CH 3rd, Silverman S, Andriano K, et al. A randomized trial of nasal sp ray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med. 2000, 109(2): 267-276.
    13. 李保国, 华泽钊, 张洪德等. 胰岛移植用免疫隔离微胶囊的牢固度、生物相容性和通透性研究. 中国免疫学杂志.2001,17(2):85-89.
    14. Taniguchi H, Fukao K, Nakauchi H.Constant delivery of proinsulin byencapsulation of transfeeted cells.J Surg Res.1997,70(1): 41-45.
    15. Uteza Y, Rouillot JS, Kobetz A, et a1. Infravitreous transplantation of encapsuLated fibrobiasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats.Proc NatL Acad Sci USA.1999,96(6):3126-3131.
    16. Isobe M,Yamazaki Y, M ori M, et a1. The role of recombinant human bone morphogenetic protein-2 in PLGA capsules at an extraskeletal site of the rat.J Biomed Mater Res.1999, 45(1):36-41.
    17. Meinel L, llli o E, Zapf J, et a1. Stabilizing insulin-like growth factor-I in poly(D,L-lactide-co-glycolide) microspheres.J Control Release. 2001,70(4):193-200.
    18. Akiyama H, Fukumoto A, Shigeno C, et a1.TAK-778:a novel synthetic 3-benzothiepin derivative,promotes chondrogenesis vitro and in vivo. Biochem Biophys Res Commun.1999,261(1):131-138.
    19. 蒋毅珑.重视微囊化人工细胞在医学中应用的研究.解放军医学杂志.1999,24(4):235-237.
    20. Matthew IR, Browne RM, Frame JW, et al. Tissue response to a haemostatic alginate wound dressing in tooth extraction sockets. Br J Oral Maxillofac Surg. 1993, 31(3): 165-169.
    21. Barnett SE, Varley SJ. The effects of calcium alginate on wound healing. Ann R Coll Surg Engl. 1987, 69(4): 153-155.
    22. Vanstraelen P. Comparison of calcium sodium alginate and porcine xenograft inthe healing of split-thickness skin graft donor sites. Burns. 1992, 18(2): 145-148.
    23. Anastassiou ED, Karaliulakis G, Missirlis E, et al. Comparative evaluation of mitogenicity and basement-membrane-degrading activity of pseudomonas aeruginosa slime glycolipoprotein and alginate. J Clin Microbiol.1989, 27(3): 490-494.
    24. Robert PL, Robert J, Alison S, et al. Xenotransplantation of cells using biodegradable microcapsules. Transplantation.1999, 67(8): 1105-1111.
    25. Al-Shamkhani A, Duncan R. Radioiodination of agginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J Bioact Compat Polymers. 1995, 10(1): 4-8.
    26. Zimmemerman U, Klock G, Federlin k, et a1. Production of mitogen contamination free alginate with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis.Electrophoresis.1992,13(5):269-274.
    27. Klock G, Pfeffermann A, Ryser C, et a1.Biocompatibility of mannuronic acid-rich alginates.Biomaterials.1997,18(10):707-7l3.
    28. Reach G.Bioartificial pancreas.Diabetes Medicine.1993,10(1):105-109.
    29. 王勇,解玉冰,马小军.壳聚糖/海藻酸钠生物微胶囊的研究进展.生物工程进展.1999,19(2):13-16.
    30. 于德民,高伟,尹雌等.琼脂糖散囊人工膜制备的实验研究.中华内分泌代谢杂志.1996,12(4):218-221.
    31. Chang TM, Prakash S. Therapeutic uses of microencapsulated genetically engineered cell. Mol Med Today.1998, 4(5): 221-227.
    32. 朱宪彝. 临床内分泌学. 天津科学技术出版社,1993,359-360.
    33. Arnett TR, Dempster DW. A comparative study of disaggregated chick and rat osteoclasts in vitro: effects of calcitonin and prostaglandins. Endocrinology. 1987, 120(2):602-608.
    34. Nicholson GC, Moseley JM, Sexton PM, et al. abundant calcitonin receptors in isolated rat osteoclasts. J Clin Invest. 1986, 78(2):355-360.
    35. Davidson MR. Pharmacotherapeutics for osteoporosis prevention and treatment. J Midwifery Women Health. 2003, 48(1):39-52.
    36. Ito N, Yamazaki H, Nakazaki M, et al Response of osteoblastic clonal cell line (MC3T3-El) to eel calcitonin at a specific cell density or differentiation stage. Calcif Tissue Int.1987, 40(4):200-205.
    37. Farley JR, Hall SL, Tarbaux NM.Calcitonin (but not calcitonin gene-related peptide) increases mouse bone cell proliferation in a dose-dependent manner, and increases mouse bone formation, alone and in combination with fluoride. Calcif Tissue Int.1989, 45(4):214-221.
    38. Farley JR, Hall SL, Herring S, et al. Two biochemical indices of mouse bone formation are increased in vivo in response to calcitonin. Calcif Tissue Int.1992, 50(1):67–73.
    39. Kobayashi T, Sugimoto T, Saijoh K, et al. Calcitonin directly acts on mouse osteoblastic MC3T32E1 cells to stimulate mRNA expression of c-fos, insulin-like growth factor-I and osteoblastic phenotypes (type I collagen and osteocalcin). Biochem Biophys Res Commun, 1994, 199(2): 876-880.
    40. Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999 104(10):1363-1374.
    41. Farley JR, Wergedal JE, Hall SL, et al. Calcitonin has direct effects on 3[H]-thymidine incorporation and alkaline phosphatase activity in human osteoblast-line cells. Calcif Tissue Int.1991, 48(5):297-301.
    42. Villa I, Dal Fiume C, Maestroni A, et al. Human osteoblast-like cell proliferation induced by calcitonin-related peptides involves PKC activity. Am J Physiol Endocrinol Metab.2003, 284(3):E627-633.
    43. Kessler PD, Podsakoff GM, Chen X, et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A.1996, 93(24):14082-14087.
    44. 高建军,金慰芳,王洪复.骨片吸收陷窝光镜计数法定量测定破骨细胞功能. 上海医科大学学报.1998,25(1):71-73.
    45. Chambers TJ, Revell PA, Fuller K, et al. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci. 1984, 66(1):383-399.
    46. Boyde A, Ali NN, Jones SJ. Resorption of dentine by isolated osteoclasts in vitro. Br Dent J. 1984, 156(6):216-220.
    1. Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis.Am J Med.1993,94(6):646-650.
    2. NIH Consensus Development Panel on Osteoporosis Prevention, diagnosis and therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA.2001,285 (6):785-795.
    3. 王 洪 复 . 老 年 人 骨 质 疏 松 的 诊 断 与 筛 查 . 中 华 老 年 医 学 杂志.2006,25(6):407-410.
    4. 郭 世 绂 . 骨 质 疏 松 症 的 药 物 治 疗 及 其 理 论 基 础 . 中 华 骨 科 杂志.2004,24(11):691-696.
    5. 王红武,辜金莲,吴新达等. 降钙素治疗老年骨质疏松症的临床研究. 中华老年医学杂志.2003,22(6):345-348.
    6. 刘 建 立 . 绝 经 后 骨 质 疏 松 症 的 诊 断 与 防 治 . 中 华 妇 产 科 杂志.2005,40(12):793-796.
    7. Orive G,Gascon AR,Hemandez RM, et a1.Cell Microencapsulation technology for biomedical purposes:Novel insights and challenges.Trends Pharmaeol Sci. 2003,24(5):207-210.
    8. Sakai S, Ono T, Ijima H, et a1.Synthesis and transport characterization of alginate/aminopropyl-silicate/alginate microcapsule: Application to bioartificial pancreas.Biomaterials. 2001,22(21):2827-2834.
    9. 高林峰, 王洪复.大鼠骨基质形态增龄性改变及其与骨代谢指标的相关性研究. 中华老年医学杂志.2004, 23 (9):656-659.
    10. Seeman E. Invited review:pathogenesis of osteoporosis. J Appl Physio1. 2003, 95 (5):2142-215l.
    11. Chang TM, Prakash S. Therapeutic uses of microencapsulated genetically engineered cell. Mol Med Today.1998, 4(5):221-227.
    12. Jindal R, Gray D. Preservation and storage of pancreatic islets. Transplantation. 1994, 57(3):317-321.
    13. Thompson DD.Simmons HA.Pirie CM ,et a1.FDA Guidelines and animal models for osteoporosis.Bone. 1995,17(4 Supp1):l25S-133S.
    14. Ii N.Ezawa I.The effect of ovariectomy on bone metabolism in rats.Bone.1995,17(4 Supp1):163S-168S.
    15. 戴 克 戎 . 骨 质 疏 松 症 导 致 骨 力 学 性 能 下 降 的 机 理 . 中 华 骨 科 杂志.1997,17(6):405-406.
    16. 黄 公 怡 . 骨 质 疏 松 症 骨 的 组 织 结 构 和 力 学 特 性 . 中 华 骨 科 杂志.2004,24(11):687-690.
    17. Abbasi-Jahromi Sh, Matayoshi A, Kimble R, et al. Bone quality factor analysis: a new noninvasive technique for the measurement of bone density and bone strength. J Bone Miner Res.1996, 11(5):594-599.
    18. 盛志峰,戴如春,王鹏. 去卵巢大鼠骨小梁的纳米力学性能.中华医学杂志.2006,86(8):515-519.
    19. Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fracture in male osteoporosis. J Bone Miner Res. 2000, 15(1):13-19.
    20. Dempster DW. The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res. 2000, 15(1):20-23.
    21. Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2003, 14 Suppl 3:S13-18.
    22. Ammann P, Rizzoli R, Bonjour JP. Preclinical evaluation of new therapeutic agents for osteoporosis. In: Meunier PJ.Osteoporosis: diagnosis and management. London, Martin Dunitz, 1998:257-273.
    23. 邱明才, 朱梅. 如何正确理解骨质量. 中华医学杂志.2005,85(11):273-274.
    24. 郭世绂. 骨质量与骨质疏松症. 国外医学内分泌学分册.2005, 25(5):295-297.
    25. 谢肇, 李起鸿, 孟萍等. 去卵巢大鼠骨质疏松模型的特点.中国临床康复.2006,10(28):79-82.
    26. 章明放, 张乃鑫,谭郁彬. 降钙素对去卵巢大鼠骨转换的作用. 中华内分泌代谢杂志,1999,15(1):55.
    27. Shen Y, Li M, Wronski TJ. Calcitonin provides complete protection against cancellous bone loss in the femoral neck of ovariectomized rat. Calcif Tissue Int. 1997, 60(5):457-461.
    28. Mochizuki K, Inoue T. Effect of salmon calcitonin on experimental osteoporosis induced by ovariectomy and low-calcium diet in the rats. J Bone Miner Metab. 2000, 18(4):194-207.
    1. Peacock M, Turner CH, Econs MJ, et a1.Genetics of osteoporosis. Endocr Rev. 2002, 23(3):303-326.
    2. Thakkinstian A,D.Este C,Eisman J,et a1.Meta analysis of molecular association studies:vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res. 2004, 19(3):419-428.
    3. Gennari L, Becherini I, Mansani R, et a1.FokI polymorphism at translation initiation site of the vitamin D receptor gene predicts bone mineral density and vertebral fractures in postmenopausal Italian women. J Bone Miner Res.1999,14 (8):1379-1386.
    4. Eisman JA.Pharmacogenetics of the vitamin D receptor and osteoporosis.J Drug Metab Dispos.2001, 29(4):505-512.
    5. Marc J, Prezelj J, Komel R, et al. VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporos Int.1999, 10(4):303-306.
    6. Palomba S, Orio F Jr, Russo T, et a1. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women. A 1-year multicenter randomized and controlled trial. Osteoporos Int. 2005, 16(8):943-952.
    7. Uitterlinden AG, Ralston SH, Brandi ML, et a1. The association between common vitamin D receptor gene variations and osteoporosis: a participant-levelmeta-analysis. Ann Intern Med. 2006, 145(4):255-264.
    8. Ensrud KE, Stone K, Cauley JA, et a1.Vitamin D receptor gene polymorphisms and the risk of fractures in older women. J Bone Miner Res.1999, 14(10):1637-1645.
    9. 章振林,孟迅吾,周学瀛等.北京地区汉族妇女维生素D 受体基因和降钙素受体基因多态性与骨密度的关系.中华内分泌代谢杂志.2002,18(2):90-94.
    10. Albagha OM, McGuigan FE, Reid DM,et a1 . Estrogen receptor a gene polymorphisms and bone mineral density: haplotype analysis in women from the United Kingdom.J Bone Miner Res.2002,16(1):128-134.
    11. 刘建民,朱汉民,朱晓颖等. 白细胞介素6与雌激素受体基因对绝经后妇女骨密度的联合效应. 中华妇产科杂志.2003,38(1):24-27.
    12. Ioannidis JP,Stavrou I,Trikalinos TA,et a1.Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density and fracture risk in women:a meta-analysis.J Bone Miner Res.2002, 17(11):2048-2060.
    13. Mitra S, Desai M, Khatkhatay MI. Association of estrogen receptor alpha gene polymorphisms with bone mineral density in postmenopausal Indian women. Mol Genet Metab. 2006, 87(1):80-87.
    14. Wang CL, Tang XY, Chen WQ, et a1. Association of estrogen receptor alpha gene polymorphisms with bone mineral density in Chinese women: a meta-analysis. Osteoporos Int. 2007, 18(3):295-305.
    15. Silvestri S, Thomsen AB, Gozzini A, et a1. Estrogen receptor alpha and beta polymorphisms: is there an association with bone mineral density, plasma lipids, and response to postmenopausal hormone therapy? Menopause.2006, 13(3):451-561.
    16. Efstathiadou Z, Tsatsoulis A, Ioannidis JP. Association of Collagen Iα 1 Sp1 Polymorphism with the Risk of Prevalent Fractures: A Meta-Analysis. J Bone Miner Res. 2001, 16(9):1586-1592.
    17. McGuigan FE,Armbreht G,Smith R, et a1.Prediction of osteoporotic fractures by bone densitometry and COLI A1 genotyping: a prospective, population-based study in men and women. Osteoporos Int. 2001, 12(2):91-96.
    18. MacDonald HM, McGuigan FA,New SA,et a1. COL1 A1 Sp1 polymorphism predicts perimenopausal and early postmenopausal spinal bone loss. J Bone Minet Res.2001, 16(9):1634-1641.
    19. Gerdhem P, Brandstrom H, Stiger F, et a1.Association of the collagen type 1 (COL1 A1) Sp1 binding site polymorphism to femoral neck bone mineral density and wrist fracture in 1044 elderly Swedish women. Calcif Tissue Int. 2004, 74 (3):264-269.
    20. Qureshi AM,Herd RJ,Blake GM,et a1.COLI A1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcif Tissue Int.2002, 70 (3):158-163.
    21. Mann V,Hobson EE,Ij B,et al. A COL1 A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest.2001, 107(7):899-907.
    22. Giannoudis PV, Tzioupis CC, Tsiridis E. Gene therapy in orthopaedics. Injury. 2006, 37 Suppl 1:S30-40.
    23. Evans CH, Ghivizzani SC, Herndon JH,et al. Gene therapy for the treatment of musculoskeletal diseases. J Am Acad Orthop Surg. 2005, 13(4):230-242.
    24. 高 艳 虹 , 李 定 国 . 基 因 治 疗 靶 向 方 法 的 研 究 进 展 . 中 华 内 科 杂志.2006,45(5):432-435.
    25. 徐少文, 喻任, 赵光锋. 去势对骨折早期愈合过程的影响.中华骨科杂志.2003,23(7):439-443.
    26. Rodriguez JP, Montecinos L, Rios S, et al. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem. 2000, 79(4):557–565.
    27. Egermann M, Schneider E, Evans CH, et al. The potential of gene therapy for fracture healing in osteoporosis. Osteoporos Int. 2005, 16 Suppl 2:S120-128.
    28. Egermann M, Baltzer AW, Adamaszek S, et al. Direct adenoviral transfer of bone morphogenetic protein-2 cDNA enhances fracture healing in osteoporotic sheep. Hum Gene Ther. 2006,17(5):507-517.
    29. 韩剑锋, 林欣, 王立春等.BMP-2 重组腺病毒转染肌源细胞体内外成骨的实验研究. 中华显微外科杂志.2005, 28(2):54-55.
    30. Turgeman G, Pittman DD, Muller R, et al.Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med. 2001, 3(3):240-251.
    31. Hiltunen MO, Ruuskanen M, Huuskonen J, et al. Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo. FASEB J. 2003, 17(9):1147-1149.
    32. Baltzer AW, Whalen JD, Wooley P, et al. Gene therapy for osteoporosis: evaluation in a murine ovariectomy model. Gene Ther. 2001, 8(23):1770-1776.
    33. Paul J. Kostenuik, Brad Bolon, Sean Morony, et al. Gene therapy with human recombinant osteoprotegerin reversesestablished osteopenia in ovariectomized mice. Bone. 2004, 34(4): 656-664.
    34. Kim D, Cho SW, Her SJ, et al. Retrovirus-mediated gene transfer of receptor activator of nuclear factor-kappaB-Fc prevents bone loss in ovariectomized mice.Stem Cells. 2006, 24(7):1798-1805.
    35. Chen W, Liu J, Diao W, et al. Bone loss induced by ovariectomy in rats is prevented by gene transfer of parathyroid hormone or an Arg-Gly-Asp-containing peptide. Biotechnol Lett. 2005, 27(1):41-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700