微气体表面粗糙效应的格子Boltzmann模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统工业和微制造业的发展,对微流体的研究受到越来越多的关注。对于微通道中的液体流动的研究主要集中在表面张力、壁面可湿度等因素的影响,在理论或实验上的研究也取得了不少的进展。对于微通道中的气体流动的研究,情况又有些不同。因为在微通道的气体流动中,由于连续介质假设不成立导致基于Navier-Stokes方程(NSE)的解的可靠性受到了质疑。在微气体流动或稀薄气体流动的数值模拟中,我们需要求解一些基于分子(伪粒子)的模型,包括分子动力学(MD)模拟,Boltzmann方程(BE),直接Monte-Carlo模拟(DSMC)、信息保存(IP)方法等。
     近年来,格子Boltzmann方法(LBM)提供了一个有效的研究微流体系统的新工具。关于格子Boltzmann在微流体或稀薄气体上的研究已经取得了一些很好的成果。与分子动力学、直接Monte-Carlo模拟或其它同类型的方法相比,格子Boltzmann方法在计算效率上,在处理复杂边界问题上具有相当的优势。然而,尽管在小尺度中粗糙效应重要性增加,但由于缺乏有效的模拟工具,到目前为止对高Knudsen数的微气体流动中的粗糙效应的研究成果仍相对较少而且不能统一。为了研究氮气和氦气在微通道中的流动,本文设计了一个微通道模型,其高度为H=1.2μm,长度为L=5H或L=10H,对应氮气和氦气的Knudsen数分别为Kn_N_2=0.055和Kn_(He)=0.16。微通道粗糙表面的几何形状被分别设计成方形、Sin函数形、三角形和分形形状。利用这个模型,我们做了下面主要工作:
     1)在微流体格子Boltzmann模型的状态方程方面,我们从气体运动论出发,重新推导松弛时间因子以及它和Knudsen数的关系。通过设置具有物理意义的网格时间步长,使得Knudsen数的表达式与网格精度无关。同时,通过与实验比较我们验证了这一修正的松弛因子跟原模型相比可以消除高Knudsen数的微气体的人工粘性,得到和实验相比更吻合的而且具有明确物理意义的结果。
     2)在微流体格子Boltzmann模型的边界处理方面,我们考虑在微通道中由于摩擦或者流体杂质沉淀而形成的表面粗糙具有分形性质。所以我们在微流体格子Boltzmann方法中引进分形粗糙面并使用具有物理意义的参数如分维来控制粗糙面,我们认为它比其他学者使用的规则型,如矩形或三角形粗糙面更接近真实情况。此外,我们还计算并讨论了漫反射边界条件中粗糙表面的切向动量容许系数的影响,得到其在格子Boltzmann模型中对应的取值。
     3)利用修正的微流体格子Boltzmann模型,我们模拟了微通道中的氮气和氦气的流动,捕捉到了最小Knudsen数现象。我们计算并分析了固壁表面粗糙效应和粗糙面形状对流体速度、压力、质量流量以及摩阻系数的影响,讨论了微通道中粗糙效应与稀薄效应与可压缩效应的耦合作用,得到一些有意义的结论。对氮气和氦气的模拟表明表面粗糙不但影响微通道中的速度分布,而且影响其压力分布。随着相对粗糙度的增加质量流量快速下降,摩阻系数快速增加。微通道中稀薄性效应、可压缩性效应和表面粗糙效应的作用强烈耦合,综合影响宏观物理量的变化趋势。在微通道中氮气和氦气的稀薄性、可压缩性和表面粗糙效应强烈耦合。在模拟分形粗糙度时,我们也分析了分形层次和网格精度的影响。除了相对粗糙度之外,所使用的粗糙几何形状对结果的影响也很大。这些不同于宏观流动的特性对了解微流气体流动有着重要的意义。
Surface roughness is identified as an important factor in Knudsen flows of liquid or gas.As the development of Micro-Electro-Mechanical Systems(MEMS) and micro fabrication,micro flows have been receiving more and more attention.Liquid flows in microchannels are most concentrated on the effects of surface tension and wall wettability,and their experiments and theoretical analyses have made considerable successes.However,the way to study the roughness effect of micro gas flows(also rarefied gas flows) is quite different from that of micro liquid flows.Since the result based on the Navier-Stokes equation(NSE) is highly dubitable due to the invalidation of the continuum hypothesis in micro gas flows,the molecular-based models including molecular dynamics(MD) simulations,Boltzmann equation(BE) simulations,direct simulations Monte-Carlo(DSMC) and information preservation (IP) simulations have to be employed for numerical studies.
     Recently,the lattice Boltzmann method(LBM) provides a new effective way to study the micro flow systems.The researches indicate that the results by lattice Boltzmann method are consistent with the theoretical analyses and experiments. Compared with molecular dynamics simulations,direct simulations Monte-Carlo simulations and other related methods,the lattice Boltzmann method gains the advantages of computational efficiency and flexibility for complex boundary geometries.However,few studies up to now present a deep understanding of the effects of surface roughness on the micro gas flow systems at high Knudsen numbers. To understand the effect of various roughnesses and different geometries on the micro gas flow systems,we here design a lattice Boltzmann model and a microchannel with various roughness boundaries,and then a series of numerical simulations are taken. The surface roughness of the microchannel is modeled to be square,sinusoidal, triangular and fractal,respectively.By this model,the roughness effect combining with the effects of rarefaction and compressibility in different boundaries on the micro gas flows of nitrogen and helium are studied and analyzed.The main contents of this paper are as follows:
     1) The relaxation time and its relationship with the Knudsen number are re-deduced from gas dynamics.The relaxation time is determined from the physical properties of the investigated gas and cannot be freetly adjusted.The expression of the Knudsen number is independent of the grid size by setting a certain relaxation time. Compared with theoretical and experimental studies the effectiveness of the lattice Boltzmann model is validated.It is shown that the modified relaxation time is able to eliminate the unrealistically high value of the bulk viscosity and is in good agreement with experiments.
     2) The surface roughness is modeled by a self-affine fractal which is a reasonable tool to produce suitable surface of controlled roughness to describe the wall boundary of the microchannel.The height of the rough microchannel is H=1.2μm and the length is L=5H or L=10H.Correspondly,the Knudsen numbers of nitrogen and helium are Kn_N_2=0.055 and Kn_(He)=0.16.Importantly,the thoee boundary conditions are discussed and the influence of the tangential momentum accommodation coefficient(TMAC) on the slip velocity near the rough boundary is measured.
     3) The effects of relative roughness and Knudsen number in the micro flows of nitrogen and helium are studied and analyzed.Numerical simulations show that the surface roughness influences not only velocity distribution but also pressure distribution.In addition,the relative mass flow rate decreases greatly and the relative resistance coefficient rises rapidly as the relative roughness increases.The effects of rarefaction,compressibility and roughness are strongly coupled.To measure the effect of roughness geometry,the result of fractal roughness is also compared with that of square,sinusoidal,triangular roughness.The comparisons and analyses of velocity and resistance coefficient show that the roughness geometry is an important factor besides the relative roughness in studying the effects of surface roughness.These phenomena above different from macroscopic flows are of great importance in understanding the characteristics of micro gas flows.
引文
[1]Neto C,Evans D R,Bonaccurso E,Butt H J,Craig V S J.Boundary slip in Newtonian liquids:a review of experimental studies[J].Reports on Progress in Physics,2005,68(12):2859-2897
    [2]Moody L F.Friction factors for pipe flow[J].ASME Trans,1944,66:671-683
    [3]Taylor J B,Carrano A L,Kandlikar S G.Characterization of the effect of surface roughness and texture on fluid flow - past,present,and future[J].International Journal of Thermal Sciences,2006,45(10):962-968
    [4]Mala G M,Li D Q.Flow characteristics of water in microtubes[J].International Journal of Heat and Fluid Flow,1999,20(2):142-148
    [5]Shen S,Xu J L,Zhou J J,Chen Y.Flow and heat transfer in microchannels with rough wall surface[J].Energy Conversion and Management,2006,47(11-12):1311-1325
    [6]Cao B Y,Chen M,Guo Z Y.Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation[J].International Journal of Engineering Science,2006,44(13-14):927-937
    [7]Rawool A S,Mitra S K,Kandlikar S G.Numerical simulation of flow through microchannels with designed roughness[J].Microfluidics and Nanofluidics,2006,2(3):215-221
    [8]Hsu T R,MEMS & microsystems:design and manufacture.McGraw-Hill:Boston,2002.
    [9]Gatzen H H.Rigid disk slider micromachining challenges to meet microtribology needs [J].Tribology International,2000,33(5-6):337-342
    [10]路新春,王吉会,温诗铸.软磁盘、硬盘的表面形貌和微摩擦特性[J].清华大学学报(自然科学版),1998,38(10):5-8
    [11]Gad-el-Hak M.The fluid mechanics of microdevices - The Freeman Scholar Lecture[J].Journal of Fluids Engineering-Transactions of the Asme,1999,121(1):5-33
    [12]樊青,沈青.微尺度气体流动[J].力学进展,2002,32(3):321-336
    [13]章维一,侯丽雅.微流体数字化的科学与技术问题:概念、方法和效果[J].科技导报,2005,23(8):4-9
    [14]Gad-el-Hak M.Comments on "critical view on new results in micro-fluid mechanics"[J].International Journal of Heat and Mass Transfer,2003,46(20):3941-3945
    [15]Nie X B,Doolen G D,Chen S Y.Lattice-Boltzmann simulations of fluid flows in MEMS [J]. Journal of Statistical Physics, 2002, 107(1-2): 279-289
    
    [16] Lim C Y, Shu C, Niu X D, Chew Y T. Application of lattice Boltzmann method to simulate microchannel flows [J]. Physics of Fluids, 2002, 14(7): 2299-2308
    
    [17] Zhang Y H, Qin R S, Sun Y H, Barber R W, Emerson D R. Gas flow in microchannels -A lattice Boltzmann method approach [J]. Journal of Statistical Physics, 2005, 121(1-2): 257-267
    
    [18] Zhang Y H, Qin R S, Emerson D R. Lattice Boltzmann simulation of rarefied gas flows in microchannels [J]. Physical Review E, 2005, 71(4): 047702
    
    [19] Succi S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis [J]. Physical Review Letters, 2002, 89(6): 064502
    
    [20] Sbragaglia M, Succi S. Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions [J]. Physics of Fluids, 2005, 17(9): 093602
    
    [21] Sbragaglia M, Succi S. A note on the lattice Boltzmann method beyond the Chapman-Enskog limits [J]. Europhysics Letters, 2006, 73(3): 370-376
    
    [22] Tang G H, Tao W Q, He Y L. Lattice Boltzmann method for simulating gas flow in microchannels [J]. International Journal of Modern Physics C, 2004, 15(2): 335-347
    
    [23] Guo Z L, Zhao T S, Shi Y. Generalized hydrodynamic model for fluid flows: From nanoscale to macroscale [J]. Physics of Fluids, 2006, 18(6): 067107
    
    [24] Jun C, Peng X F, Lee D J. Diffusion coefficient of Brownian particle in rough micro-channel [J]. Journal of Colloid and Interface Science, 2006, 296(2): 737-742
    
    [25] Niu X D, Shu C, Chew Y T. A lattice Boltzmann BGK model for simulation of micro flows [J]. Europhysics Letters, 2004, 67(4): 600-606
    
    [26] Shu C, Niu X D, Chew Y T. A lattice Boltzmann kinetic model for microflow and heat transfer [J]. Journal of Statistical Physics, 2005, 121(1-2): 239-255
    
    [27] Niu X D, Shu C, Chew Y T. A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows [J]. Computers & Fluids, 2007, 36(2): 273-281
    
    [28] Chew Y T, Niu X D, Shu C. Three-dimensional lattice Boltzmann BGK model and its application to flows with heat transfer in a rectangular microchannel [J]. International Journal for Numerical Methods in Fluids, 2006, 50(11): 1321-1334
    
    [29] Jeong N, Lin C L, Choi D H. Lattice Boltzmann study of three-dimensional gas microchannel flows [J]. Journal of Micromechanics and Microengineering, 2006, 16(9): 1749-1759
    
    [30] Chen H, Zhang R, Staroselsky I, Jhon M. Recovery of full rotational invariance in lattice Boltzmann formulations for high Knudsen number flows [J]. Physica a-Statistical Mechanics and Its Applications, 2006, 362(1): 125-131
    
    [31] Zhou Y, Zhang R, Staroselsky I, Chen H, Kim W T, Jhon M S. Simulation of micro- and nano-scale flows via the lattice Boltzmann method [J]. Physica a-Statistical Mechanics and Its Applications, 2006, 362(1): 68-77
    
    [32] Szalmas L. Slip-flow boundary condition for straight walls in the lattice Boltzmann model [J]. Physical Review E, 2006, 73(6):
    
    [33] Ansumali S, Karlin I V. Consistent lattice Boltzmann method [J]. Physical Review Letters, 2005, 95(26): 260605
    
    [34] Ansumali S, Karlin I V, Frouzakis C E, Boulouchos K B. Entropic lattice Boltzmann method for microflows [J]. Physica a-Statistical Mechanics and Its Applications, 2006, 359: 289-305
    
    [35] Ansumali S, Karlin I V, Arcidiacono S, Abbas A, Prasianakis N I. Hydrodynamics beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy [J]. Physical Review Letters, 2007, 98(12):
    
    [36] Karlin I V, Ansumali S. Renormalization of the lattice Boltzmann hierarchy [J]. Physical Review E, 2007, 76(2):
    
    [37] Shen C, Tian D B, Xie C, Fan J. Examination of the LBM in simulation of microchannel flow in transitional regime [J]. Microscale Thermophysical Engineering, 2004, 8(4): 423-432
    
    [38] Tuckerman D B, Pease R F W. High-Performance Heat Sinking for Vlsi [J]. Electron Device Letters, 1981, 2(5): 126-129
    
    [39] Wu P, Little W A. Measurement of the Heat-Transfer Characteristics of Gas-Flow in Fine Channel Heat-Exchangers Used for Microminiature Refrigerators [J]. Cryogenics, 1984, 24(8): 415-420
    
    [40] Pfahler J, Harley J, Bau H, Zemel J. Liquid Transport in Micron and Submicron Channels [J]. Sensors and Actuators a-Physical, 1990, 22(1-3): 431-434
    
    [41] Choi S B, Barron R F, Warrington R Q. Fluid Flow and Heat Transfer in Microtubes [J]. ASME DSC, 1991,32: 123-134
    
    [42] Pong K C, Ho C M, Liu J, Tai Y C. Nonlinear Pressure Distribution in Uniform MicroChannel [J]. ASME FED, 1994, 196: 51-56
    
    [43] Shih J C, Ho C, Liu J, Tai Y. Monatomic and Polyatomic Gas Flow through Uniform Microchannels [J]. National Heat Transfer Conference,DSC, 1996, 59: 197-203
    
    [44] Harley J C, Huang Y H, Bau H, Zmel J N. Gas flow in microchannels [J]. Journal of Fluid Mechanics, 1995, 284: 257-274
    [45]Arkilic E B,Schmidt M A,Breuer K S.Gaseous slip flow in long microchannels[J].Journal of Microelectromechanical Systems,1997,6(2):167-178
    [46]Ikegawa M,Kobayashi J,Maruko M.Study on the deposition profile characteristics in the micron-scale trench using direct simulation Monte Carlo method[J].Journal of Fluids Engineering-Transactions of the Asme,1998,120(2):296-302
    [47]李志辉,张涵信.稀薄流到连续流的气体运动论统一算法研究[J].空气动力学学报,2003,21(3):255-266
    [48]沈青.认识稀薄气体动力学[J].力学与实践,2002,24(6):1-14
    [49]Benzi R,Succi S,Vergassola M.The Lattice Boltzmann Equation - Theory and Applications[J].Physics Reports-Review Section of Physics Letters,1992,222(3):145-197
    [50]He X Y,Luo L S.Theory of the lattice Boltzmann method:From the Boltzmann equation to the lattice Boltzmann equation[J].Physical Review E,1997,56(6):6811-6817
    [51]Abe T.Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation[J].Journal of Computational Physics,1997,131(1):241-246
    [52]He X,Chen S,Doolen G D.A novel thermal model for the lattice Boltzmann method in incompressible limit[J].Journal of Computational Physics,1998,146(1):282-300
    [53]He X Y,Chen S Y,Zhang R Y.A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J].Journal of Computational Physics,1999,152(2):642-663
    [54]Junk M,Klar A.Discretizations for the incompressible Navier-Stokes equations based on the lattice Boltzmann method[J].Siam Journal on Scientific Computing,2000,22(1):1-19
    [55]Guo Z L,Shi B C,Wang N C.Lattice BGK model for incompressible Navier-Stokes equation[J].Journal of Computational Physics,2000,165(1):288-306
    [56]Nourgaliev R R,Dinh T N,Theofanous T G,Joseph D.The lattice Boltzmann equation method:theoretical interpretation,numerics and implications[J].International Journal of Multiphase Flow,2003,29(1):117-169
    [57]Yu D Z,Mei R W,Luo L S,Shyy W.Viscous flow computations with the method of lattice Boltzmann equation[J].Progress in Aerospace Sciences,2003,39(5):329-367
    [58]Inamuro T,Ogata T,Tajima S,Konishi N.A lattice Boltzmann method for incompressible two-phase flows with large density differences[J].Journal of Computational Physics,2004,198(2):628-644
    [59]Raabe D.Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering[J].Modelling and Simulation in Materials Science and Engineering, 2004, 12(6): R13-R46
    
    [60] Luo L S. Analytic solutions of linearized lattice Boltzmann equation for simple flows [J]. Journal of Statistical Physics, 1997, 88(3-4): 913-926
    
    [61] Xuan Y M, Yao Z P. Lattice Boltzmann model for nanofluids [J]. Heat and Mass Transfer, 2005,41(3): 199-205
    
    [62] Xuan Y M, Yu K, Li Q. Investigation on flow and heat transfer of nanofluids by the thermal Lattice Boltzmann model [J]. Progress in Computational Fluid Dynamics, 2005, 5: 13-19
    
    [63] Zhou J G Lattice Boltzmann simulations of discontinuous flows [J]. International Journal of Modern Physics C, 2007, 18(1): 1-14
    
    [64] Fang H P, Wang Z W, Lin Z F, Liu M R. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels [J]. Physical Review E, 2002, 65(5):
    
    [65] Li H B, Fang H P, Lin Z F, Xu S X, Chen S Y. Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery [J]. Physical Review E, 2004, 69(3):
    
    [66] Yi H H, Xu S X, Qian Y H, Fang H P. Lattice Boltzmann simulation of blood flow in blood vessels with the rolling massage [J]. Chinese Physics Letters, 2005, 22(12): 3210-3213
    
    [67] Xu Y S, Liu C Q, Yu H D. New studying of lattice Boltzmann method for two-phase driven in porous media [J]. Applied Mathematics and Mechanics-English Edition, 2002, 23(4): 387-393
    
    [68] Xu Y S, Zhong Y J, Huang G X. Lattice Boltzmann method for diffusion-reaction-transport processes in heterogeneous porous media [J]. Chinese Physics Letters, 2004, 21(7): 1298-1301
    
    [69] Ni Y S, Liu C F, Lin D S. A lattice Boltzmann model of statistical evolution of microvoids [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 423(1-2): 79-83
    
    [70] Succi S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis [J]. Physical Review Letters, 2002, 89(6):
    
    [71] Jiaung W S, Ho J R. Lattice Boltzmann study on size effect with geometrical bending on phonon heat conduction in a nanoduct [J]. Journal of Applied Physics, 2004, 95(3): 958-966
    
    [72] Tang G H, Tao W Q, He Y L. Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions [J]. Physics of Fluids, 2005, 17(5): 058101
    
    [73] Toschi F, Succi S. Lattice Boltzmann method at finite Knudsen numbers [J]. Europhysics Letters, 2005, 69(4): 549-555
    [74]Croce G,D'Agaro P.Numerical analysis of roughness effect on microtube heat transfer [J].Superlattices and Microstructures,2004,35(3-6):601-616
    [75]Mayeed M S,Newaz G M.Effects of surface roughness on flows through nano/micro channel based biomedical devices - A study by lattice Boltzmann method[J].Proceedings of the 2nd Frontiers in Biomedical Devices Conference,2007:153-154
    [76]Varnik F,Raabe D.Scaling effects in microscale fluid flows at rough solid surfaces[J].Modelling and Simulation in Materials Science and Engineering,2006,14(5):857-873
    [77]Wang M R,Wang J K,Chen S Y.Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods[J].Journal of Computational Physics,2007,226:836-851
    [78]Cercignani C,Daneri A.Flow of a Rarefied Gas between 2 Parallel Plates[J].Journal of Applied Physics,1963,34(12):3509-&
    [79]Cercignani C,Lampis M.Kinetic Models for Gas-Surface Interactions[J].Transport Theory and Statistical Physics,1971,1(2):101-&
    [80]Cercignani C,Greenberg W,Zweifel P F.Global Solutions of the Boltzmann-Equation on a Lattice[J].Journal of Statistical Physics,1979,20(4):449-462
    [81]Nordsieck A,Hicks B L,Monte Carlo evaluation of the Boltzmann collision integral.In Rarefied gas dynamics,Brundin,C.L.,Ed.Academic Press:New York,1967;pp 675-710.
    [82]Yen S M.Monte Carlo Solutions of Nonlinear Boltzmann Equation for Problems of Heat Transfer in Rarefied Gases[J].International Journal of Heat and Mass Transfer,1971,14(11):1865-&
    [83]Tcheremissine F G,Fast solutions of the Boltzmann equation.In Rarefied gas dynamics,Beylich,A.E.,Ed.VCH:Weinheim,1991;pp 273-284.
    [84]Tan Z,Chen Y K,Varghese P L.New Numerical strategy to evaluate the collision integral of the Boltzmann equation[J].Prog.In Astro.and Aero,1989,118:359-373
    [85]Bhatnagar P L,Gross E P,Krook M.A model collision processes in gases[J].Physcal Review,1954,94:511-525
    [86]Maxwell J C.On stresses in rarefied gases arising from inequalities of temperature[J].Philosophical Transactions of the Royal Society,1879,170:231-256
    [87]Wang M,Li Z X.Similarity of ideal gas flow at different scales[J].Science in China Series E-Technological Sciences,2003,46(6):661-670
    [88]王沫然.微纳尺度气体流动和换热的Monte Carlo模拟.博士学位论文,清华大学,北京,2004.
    [89] Beskok A, Karniadakis G E, Trimmer W. Rarefaction and compressibility effects in gas microflows [J]. Journal of Fluids Engineering-Transactions of the Asme, 1996, 118(3): 448-456
    
    [90] Frisch U, D'Humieres D, Hasslacher B. Lattice gas hydrodynamics in two and three dimensions [J]. Complex System, 1987, 1: 649-707
    
    [91] Rothman D H, Keller J M. Immiscible Cellular-Automaton Fluids [J]. Journal of Statistical Physics, 1988, 52(3-4): 1119-1127
    
    [92] Hardy J, Pazzis O d, Pomeau Y. Molecular dynamics of a classical latticegas: transport properties and time correlation functions [J]. Physcal Review A, 1976, 13: 1949-1961
    
    [93] Frisch U. Lattice Gas Automata for the Navier-Stokes Equations - a New Approach to Hydrodynamics and Turbulence [J]. Physica Scripta, 1989, 40(3): 423-423
    
    [94] D'Humieres D, Lallemand P, Frisch U. Lattice gas model for 3D hydrodynamics [J]. Europhysics Letters, 1986, 2: 291-297
    
    [95] Higuera F J, Succi S. Simulating the Flow around a Circular-Cylinder with a Lattice Boltzmann-Equation [J]. Europhysics Letters, 1989, 8(6): 517-521
    
    [96] Higuera F J, Jimenez J. Boltzmann Approach to Lattice Gas Simulations [J]. Europhysics Letters, 1989, 9(7): 663-668
    
    [97] Chen S Y, Chen H D, Martinez D, Matthaeus W. Lattice Boltzmann Model for Simulation of Magnetohydrodynamics [J]. Physical Review Letters, 1991, 67(27): 3776-3779
    
    [98] Chen H D, Chen S Y, Matthaeus W H. Recovery of the Navier-Stokes Equations Using a Lattice-Gas Boltzmann Method [J]. Physical Review A, 1992, 45(8): R5339-R5342
    
    [99] Qian Y H, Dhumieres D, Lallemand P. Lattice Bgk Models for Navier-Stokes Equation [J]. Europhysics Letters, 1992, 17(6BIS): 479-484
    
    [100] Qian Y H, Orszag S A. Lattice Bgk Models for the Navier-Stokes Equation - Nonlinear Deviation in Compressible Regimes [J]. Europhysics Letters, 1993, 21(3): 255-259
    
    [101] Rakotomalala N, Salin D, Watzky P. Simulations of viscous flows of complex fluids with a Bhatnagar, Gross, and Krook lattice gas [J]. Physics of Fluids, 1996, 8(11): 3200-3202
    
    [102] Hoogerbrugge P J, Koelman J. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics [J]. Europhysics Letters, 1992, 19(3): 155-160
    
    [103] Koelman J, Hoogerbrugge P J. Dynamic Simulations of Hard-Sphere Suspensions under Steady Shear [J]. Europhysics Letters, 1993, 21(3): 363-368
    
    [104] Groot R D, Warren P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. Journal of Chemical Physics, 1997, 107(11): 4423-4435
    [105]Oran E S,Oh C K,Cybyk B Z.Direct simulation Monte Carlo:Recent advances and applications[J].Annual Review of Fluid Mechanics,1998,30:403-441
    [106]Lallemand P,Luo L S.Theory of the lattice Boltzmann method:Dispersion,dissipation,isotropy,Galilean invariance,and stability[J].Physical Review E,2000,61(6):6546-6562
    [107]Banda M K,Yong W A,Klar A.A stability notion for lattice Boltzmann equations[J].Siam Journal on Scientific Computing,2006,27(6):2098-2111
    [108]Cao N Z,Shen S Y,Jin S,Martinez D.Physical symmetry and lattice symmetry in the lattice Boltzmann method[J].Physical Review E,1997,55(1):R21-R24
    [109]Hou S L,Zou Q,Chen S Y,Doolen G,Cogley A C.Simulation of Cavity Flow by the Lattice Boltzmann Method[J].Journal of Computational Physics,1995,118(2):329-347
    [110]王兴勇.Lattice Boltzmann方法的理论及其在水力计算中应用的研究.博士学位论文,河海大学,南京,2003.
    [111]郭照立.模拟不可压流体流动的格子Boltzmann方法研究.博士学位论文,华中理工大学,武汉,2000.
    [112]许友生.用晶格Boltzmann方法研究多孔介质内流体的复杂动力学特征.博士学位论文,华东师范大学,上海,2006.
    [113]He X Y,Luo L S,Dembo M.Some progress in lattice Boltzmann method.1.Nonuniform mesh grids[J].Journal of Computational Physics,1996,129(2):357-363
    [114]Chen S,Doolen G D.Lattice Boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30:329-364
    [115]Jang J,Wereley S T.Pressure distributions of gaseous slip flow in straight and uniform rectangular microchannels[J].Microfluidics and Nanofluidics,2004,1(1):41-51
    [116]Succi S,Smith G,Kaxiras E.Lattice Boltzmann simulation of reactive microflows over catalytic surfaces[J].Journal of Statistical Physics,2002,107(1-2):343-366
    [117]Feng S D,Michihisa T,Ji Z Z.Some progress in the lattice Boltzmann model[J].Chinese Physics,2001,10(7):587-593
    [118]Zou Q S,He X Y.On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J].Physics of Fluids,1997,9(6):1591-1598
    [119]Hsieh S S,Tsai H H,Lin C Y,Huang C F,Chien C M.Gas flow in a long microchannel [J].International Journal of Heat and Mass Transfer,2004,47(17-18):3877-3887
    [120]Knudsen M.Experimental determination of the pressure of saturated mercury steam at 0 degrees and at higher temperatures[J].Annalen Der Physik,1909,29(6):179-193
    [121]Cercignani C,Sernagiotto F.The Method of Elementary Solutions for Time-Dependent Problems in Linearized Kinetic Theory[J].Annals of Physics,1964,30(1):154-167
    [122]Ohwada T,Sone Y,Aoki K.Numerical-Analysis of the Poiseuille and Thermal Transpiration Flows between 2 Parallel Plates on the Basis of the Boltzmann-Equation for Hard-Sphere Molecules[J].Physics of Fluids a-Fluid Dynamics,1989,1(12):2042-2049
    [123]Noble D R,Chen S Y,Georgiadis J G,Buckius R O.A Consistent Hydrodynamic Boundary-Condition for the Lattice Boltzmann Method[J].Physics of Fluids,1995,7(1):203-209
    [124]Skordos P A.Initial and Boundary-Conditions for the Lattice Boltzmann Method[J].Physical Review E,1993,48(6):4823-4842
    [125]Inamuro T,Yoshino M,Ogino F.A non-slip boundary condition for lattice Boltzmann simulations(vol 7,pg 2928,1995)[J].Physics of Fluids,1996,8(4):1124-1124
    [126]Maier R S,Bernard R S,Grunau D W.Boundary conditions for the lattice Boltzmann method[J].Physics of Fluids,1996,8(7):1788-1801
    [127]Chen S Y,Martinez D,Mei R W.On boundary conditions in lattice Boltzmann methods [J].Physics of Fluids,1996,8(9):2527-2536
    [128]Barnsley M F,Sloan A D.A Better Way to Compress Images[J].Byte,1988,13(1):215-223
    [129]谢和平.分形的力学基础[J].力学进展,1995,25(2):174-184
    [130]谢和平,孙洪泉.分形插值曲面理论及应用[J].应用数学和力学,1998,19(4):297-306
    [131]Massopust P R.Smooth interpolating curves and surfaces generated by iterated function systems[J].Z.Anal.Anwendungen,1993,(12):201-210
    [132]刘孝贤,张风山.对分形参数施加随机性影响的研究[J].山东大学学报(工学版),2002,(8):358-363
    [133]Feder J,Fractals.Plenum Press:New York,1988.
    [134]Voss R,Fractals in nature.In:Peitgen H.and Saupe D.ed.The Science of Fractal Images.Springer:Berlin,1988.
    [135]He X Y,Zou Q S,Luo L S,Dembo M.Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J].Journal of Statistical Physics,1997,87(1-2):115-136
    [136] Hadjiconstantinou N G Comment on Cercignani's second-order slip coefficient [J]. Physics of Fluids, 2003, 15(8): 2352-2354
    
    [137] Sazhin O V, Borisov S F, Sharipov F. Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces [J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 2001, 19(5): 2499-2503
    
    [138] Maurer J, Tabeling P, Joseph P, Willaime H. Second-order slip laws in microchannels for helium and nitrogen [J]. Physics of Fluids, 2003, 15(9): 2613-2621
    
    [139] Chen Y P, Cheng P. Fractal characterization of wall roughness on pressure drop in microchannels [J]. International Communications in Heat and Mass Transfer, 2003, 30(1): 1-11
    
    [140] Sharipov F, Seleznev V. Data on internal rarefied gas flows [J]. Journal of Physical and Chemical Reference Data, 1998, 27(3): 657-706

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700