微尺度流动与传热传质的格子Boltzmann方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体在微机械装置、燃料电池、微燃烧器等系统中的流动、传热与传质等问题已经成为国际社会共同关注的话题。由于气体在这些系统中的输运过程一般发生在微米量级,通常表现出一些反常现象,比如:非连续效应、热蠕动效应以及扩散滑移效应等。需要指出的是最近发展起来的介观方法-格子Boltzmann方法(LBM),由于其微观粒子本质和介观特性,该方法已经被用来研究微尺度气体流动问题,但是对于微尺度传热传质方面的研究十分缺乏。并且我们也注意到不管是宏观大尺度还是微观尺度问题,LBM本身仍然存在众多理论不足。另外,在微尺度传热传质问题的研究中,LBM刚刚起步,还存在两个关键问题需要解决,即松弛时间与Knudsen数之间的关系以及LBM的边界处理问题。本文正是基于以上几个方面开展了相关的研究,并且基于多松弛格子Boltzmann模型的思想完善了LBM在传热、传质方面的相关理论。在此基础上对微尺度传热传质的LBM的两个关键问题进行了研究并且对微尺度传热传质的前沿问题进行了有益的探索。论文的主要工作包括以下两个方面:
     首先,在LBM的理论方面有如下几个方面的创新:
     (1)提出了耦合多松弛热格子Boltzmann模型,该模型通过对能量通量进行修正彻底克服了现有多速度模型中Prandlt数唯一以及粘性系数不一致的不足;
     (2)基于Boltzmann方程提出了两类轴对称热格子Boltzmann模型:无粘性耗散和压缩功的轴对称热LBM模型;含粘性耗散和压缩功的轴对称热LBM模型,有效克服现有热格子Boltzmann模型存在复杂外力梯度项等不足,完善了格子方法在轴对称流动中的理论;
     (3)基于单流体模型,本文提出了两组分多松弛格子Boltzmann模型有效克服了现有模型在处理不同分子质量时采用两套网格等不足。这些理论的完善和发展为推动LBM在传热传质领域的应用奠定了必要的基础。
     其次,在微尺度传热传质方面做出了如下几个方面的工作:
     (1)提出了两种边界处理格式,即:平衡态与镜面反射的组合边界条件以及平衡态与反弹的组合边界条件。
     (2)详细的分析了二维或三维微管道流动与传热传质的LBM边界处理格式并发现了离散效应,同时也给出相应的正确处理格式;
     (3)基于理论方面提出的基本模型成功捕捉了微尺度反常热蠕动现象,并且发现非耦合热模型不能捕捉热蠕动现象。最后对微尺度Kramer以及Poiseuille流随组分浓度变化的传质问题进行了初步的研究。
The fluid flow, heat and mass transfer in the Micro-electro-mechanical systems (MEMS), Fuel Cell and Micro-combustion have been obtained much more attentions in the world. Owing to the micro/nanometer scales appearing in such systems, the researches on the transports of gases should be considered such small scales effects. Recently, own to its kinetic background, the lattice Boltzmann method (LBM) has been applied to micro-scopic gas flows, however, the study of microscopic gas heat and mass transfer is quite rare. It is also observed that the LBM still has many fundamental problems at the macroscopic or microscopic gas flows. In addition, the application of LBE to the microscopic gas flows still has two critical problems, that is, the relation between relaxation time and Knudsen number, another is the boundary treatment of LBE. In sight of the above mentioned problems, this thesis will study such problems as following aspects:Firstly, we improve the theory of LBE in the field of heat and mass transfer, and then have a try to apply LBE models to investi-gating the microscopic heat and mass transfer problems. The contents of this thesis can be classified to two main aspects:
     (1) Theory of the LBE:First, a coupled multiple relaxation times (MRT) thermal LBE model is proposed, which overcome the fixed Prandt number and the inconsistent of the viscous coefficient in the existing multispeed LBE models; Second, two kinds of the ax-isymmetric thermal LBE models are introduced, which overcome the complex external force terms in the existing axisymmetric thermal LBE models; Then, under the single fluid assumption, a binary mixtures LBE model with MRT is proposed, which overcome the Schmidt and the viscosity problems in the existing LBE models; These theoretical works have provided a solid foundation for LBE to investigate the field of heat and mass transfer.
     (2) Application of the LBE to microscopic problems:Firstly, two different boundary conditions have been proposed, i.e, one is the combination of the equilibrium distribution and the specular refection scheme, and another is the combination of the equilibrium distribution and the bounce back scheme. Then, the heat and mass transfer problems in two or three dimensional microscopic pipe flows have been investigated, and a detailed analysis for the discrete effects on the boundary conditions is discussed, and correct treatment schemes are proposed; Finally, we applied the proposed models in (1) to investigating the microscopic gas flow of heat transfer problems, and mass transfer in Kramer or Poiseuille flows, and found that the MRT thermal model could capture the thermal creep phenomena;
引文
[1]Karniadakis G. E., Beskok A., Microflows and Nanoflows:Fundamentals and Simulations. New York:Springer-Verlag,2005.
    [2]Bird G. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Science Publi-cations,1994.
    [3]Feynman R., There's plenty room at the bottom, J. Microelectromechanical System.1992,1:60-66.
    [4]Wu P. Y., Little W. A., Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators, Cryogenics,1983,23:273-277.
    [5]Pfahler J., Harley J., Bau H., Liquid transport in micron and submicron channels, Sensors and Actuators,1990, A21-A23,431-434.
    [6]Pfahler J., Harley J., Bau H., Zemel J. N., Liquid and gas transport in small channel Micro Struc-tures, Sensors, and Actuators ASME DSC,1990,19:149-157.
    [7]Pfahler J., Harley J., Bau H., Zemel J. N., Gas and Liquid flow in small channel Micromechanical Sensors, Actuators, and Systems ASME DSC,1991,32:49-60.
    [8]Tang G. H., Li Z., He Y. L., Zhao C. Y, Tao W. Q., Experimental observations and lattice Boltz-mann method study of the electroviscous effect for liquid flow in microchannels, J. Micromech. Microeng.,2007,17:539-550.
    [9]Cercignani C., Mathematical Methods in Kinetic Theory, Plenum, New York,1990.
    [10]Hadjiconstantinou, N. G., Comment on Cercignani's Second-Order Slip Coefficient, Physics of Fluids,2003,15:2352-2354.
    [11]Alder B. J. and Wainwright T. E., Phase transition for a hard sphere system. J. Chem. Phys.,1957, 27:1208.
    [12]温诗铸著,纳米摩擦学,北京:清华大学出版社,1980.
    [13]Koura K., Matsumoto H. Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential, Phys. Fluids A,1991,3:2459-2465.
    [14]Matsumoto H. Variable sphere molecular model for inverse power law and Lennard-Jones poten-tials in Monte Carlo simulations, Phys. Fluids,2002,14:4256-4265.
    [15]Hassan H. A., Hash D. B., A generalized hard-sphere model for Monte Carlo simulation, Phys. Fluids A,1993,5:738-744.
    [16]Fan J., A generalized soft-sphere model for Monte Carlo simulation. Physics of Fluids,2002,14: 4399-4405.
    [17]Wagner W., A convergence proof for Bird's direct simulation Monte Carlo method for the Boltz-mann equation, J. Stat. Phys.,1992,66:1011-1044.
    [18]Xu K., Super-Burnett solutions for Poiseuille flow, Phys. Fluids,2003,15:2077-2080.
    [19]Ohwada T., Xu K., The kinetic scheme for full Burnett equations, J. Comput. Phys.,2004,201: 315-332.
    [20]Li Q. B., Fu S., Xu K., Application of BGK scheme with kinetic boundary conditions in hypersonic flow, AIAA J.,2005,43:2170-2176.
    [21]Liao W., Luo LS., Xu K., Gas-kinetic scheme for continuum and near-continuum hypersonic flows, J. Spacecraft and Rockets,2007,44:1232-1240.
    [22]Xu K., Josyula E., Gas-kinetic scheme for rarefied flow simulation, Mathematics and Computers in Simulation 2006,72:253-256.
    [23]Lian Y. S., Xu K., A Gas-kinetic Schemes for Multimaterial Flows and Its Application in Chemical Reactions, J. Comput. Phys.,2000,163:349-375.
    [24]Xu K., H.W. Liu, A Multiple temperature kinetic model and its application-to near continuum flows, Commun. Comput. Phys.,2008,4:1069-1085.
    [25]Xu K., He X., Cai C., Multiple temperature kinetic model and gas-kinetic method for hypersonic nonequilibrium flow computations, J. Comput. Phys.,2008,227:6779-6794.
    [26]Guo Z.L., Liu H.W., Luo LS., Xu K., A comparative study of the LBM and GKS methods for 2D near incompressible flows, J. Comput. Phys.,2008,227:4955-4976.
    [27]苏铭德,黄素逸.计算流体力学基础.(第一版).北京:清华大学出版社,1997.
    [28]张涵信,沈孟育.计算流体力学:差分方法的原理和应用.(第一版).北京:国防工业出版社,2003.
    [29]李元香.格子气自动机.(第一版).北京:清华大学出版社,1994.
    [30]Frish U., Hasslacher B., Pomeau Y., Lattice-gas automata for the Navier-Stokes equations. Phys. Rev. Lett.,1986,56:1505-1508.
    [31]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法.(第一版).武汉:湖北科学技术出版社,2002.
    [32]Wolf-Gladrow D. A., Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Springer-Verlag Berlin Heidelberg,2000.
    [33]Succi S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford:Clarendon Press,2001.
    [34]Benzi R., Succi S., Vergassola M. The lattice Boltzmann equation:theory and applications. Phys. Rep.,1992,222(3):145-197.
    [35]Qian Y. H., Succi S., Orszag S. A., Recent advances in lattice Boltzmann computing, Annu. Rev. Comp. Phys.,1995,3:195-242.
    [36]Chen S., Doolen G., Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech.,1998,30: 329-364.
    [37]He X., Luo LS., Theory of lattice Boltzmann method:From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E,1997,56(6):6811-6817.
    [38]Shan X., He X., Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett.,1998,80(1):65-68.
    [39]Benzi R., Struglia M. V., Tripiccione R., Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence, Phys. Rev. E,1996,53:R5565-5568.
    [40]Chen S., Wang Z., Shan X., Doolen G. D., Lattice Boltzmann computational fluid dynamics in three dimensions, J. Stat. Phys.,1992,68:379-400.
    [41]Succi S., d'Humires D., Qian Y. H., Orszag S. A., On the small-scale dynamical behavior of lattice BGK and lattice Boltzmann schemes, J. Sci. Comput.,1993,8(3):219-230.
    [42]Martinez D. O., Matthaeus W. H., Chen S., Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Phys. Fluids,1994,6:1285-1298.
    [43]Amati-G.,Succi S., Piva R., Massively parallel lattice Boltzmann simulation of turbulent channel flow, Int. J. Mod. Phys. C,1997,8:869-77.
    [44]Hayot F., Levy walk in lattice gas hydrodynamics, Phys. Rev. A,1991,43(2):806-810.
    [45]Eggels J. G. M., Direct and large-eddy simulation of turbulent fluid flow using lattice-Boltzmann scheme, Int. J. Heat Fluid Flow,1995,16:357-364.
    [46]Chen H., Orszag S. A., Staroselsky IY, Succi S. Expanded analogy between Boltzmann kinetic theory of fluids and turbulence, J. Fluid Mech.,2004,519:301-314.
    [47]Chen H., Kandasamy S., Orszag S. A., Shock R., Succi S., Yakhot V., Extended Boltzmann kinetic equation for turbulent flows, Science,2003,301:633-636.
    [48]Dienidi L., Lattice-Boltzmann simulation of grid-generated turbulence, J. Fluid Mech.,2006,552: 13-35.
    [49]Girimaji SS., Boltzmann kinetic equation for filtered fluid turbulence, Phys. Rev. Lett.,2007,99: 034501.
    [50]Dong Y.H.,Sagaut P., Marie S., Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method, Phys. Fluids,2008,20:035104.
    [51]Dong Y. H., Sagaut P., A study of time correlations in lattice Boltzmann-based large-eddy simula-tion of isotropic turbulence, Phys. Fluids,2008,20:035105.
    [52]Gunstensen D., Chen S., Eggert K., A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids A,1993,5(10):2557-2562.
    [53]Shan X., Chen H., Lattice Boltzmann model for simulating flows with multiple phases and compo-nents, Phys. Rev. E,1993,47:1815-1819.
    [54]Shan X., Chen H., Simulation of nonideal gases and liquid-gas phase-transitions by the lattice Boltzmann equation, Phys. Rev. E,1994,49:2941-2948.
    [55]Swift M. R., Osborn W. R., Yeomans J. M., Lattice Boltzmann simulations of nonideal fluids, Phys. Rev. Lett.,1995,75:830-833.
    [56]Swift M. R., Orlandini E., Osborn W. R., Yeomans J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E,1996,54(5):5014-5052.
    [57]He X., Shan X., Doolen G., Discrete Boltzmann equation model for non-ideal gases, Phys. Rev. E, 1998,57:R13-16.
    [58]Luo LS. Theory of lattice Boltzmann method:lattice Boltzmann models for nonideal gases, Phys. Rev. E,2000,62:4982-4996.
    [59]Hou S., Shan X., Zou Q., Doolen G. D., Soll W. E., Evaluation of two lattice Boltzmann models for multiphase flows, J. Comput. Phys.,1997,138:695-713.
    [60]Inamuro T., Konishi N., Ogino F., A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Computer, Phys. Communications,2000,129: 32-45.
    [61]Hazi G., Imre A. R., Mayer G., Farkas I., Lattice Boltzmann methods for two-phase flow modeling, Ann. Nucl. En.,2002,29:1421-1453.
    [62]Nourgaliev R. R., Dinh T. N., Theofanous T. G., Joseph D., The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. Multiphase Flow,2003,29:117-169.
    [63]Guo Z. L., Zhao T. S., Discrete velocity and lattice Boltzmann models for binary mixtures of non-ideal fluids, Phys. Rev. E,2003,68:035302(R).
    [64]Guo Z. L., Zhao T. S., Finite-difference-based lattice Boltzmann models for dense binary mixtures, Phys. Rev. E,2005,71:026701.
    [65]Ladd A. J. C., Short-time motion of colloidal particles:numerical simulation via a fluctuating lattice Boltzmann equation, Phys. Rev. Lett.,1993,70:1339-1342.
    [66]Ladd A. J. C., Numerical simulation via a discretized Boltzmann equation, Part 1:theoretical foun-dation, J. Fluid. Mech.,1994,271:285-309.
    [67]Ladd A. J. C., Numerical simulation via a discretized Boltzmann equation, Part 2:numerical results, J. Fluid. Mech.,1994,271:311-339.
    [68]Aidun C. K., Lu Y. N., Ding E. J., Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid. Mech.,1998,373:287-311.
    [69]Qi D., Lattice Boltzmann simulations of particles in non-zero-Reynolds number flows, J. Fluid. Mech.,1999,385:41-62.
    [70]Qi D., Lattice Boltzmann simulations of rectangular particles, Int. J. Multiphase flow,2000,26: 421-433.
    [71]Heemels M. W., Hagen M. H. J., Lowe C. P., Simulating solid colloidal particles using the lattice-Boltzmann method, J. Comput. Phys.,2000,164:48-61.
    [72]Segre P. N., Behrend O. P., Pusey P. N., Short-time Brownian motions in collidal suspensions: experiment and simulation, Phys. Rev. E,1998,52:5070-5083.
    [73]Ladd A. J. C., Sedimentation of homogeneous suspension of non-Brownian, Phys. Fluids,1997,9: 491-499.
    [74]Dawson S. P., Chen S., Doolen G. D., Lattice Boltzmann computations for reaction-diffusion equa-tions, J. Chem. Phys.,1993,98:1514-1523.
    [75]Chen S., Dawson S. P., Doolen G. D., et al. Lattice methods and their applications to reacting systems, Comp. Chem. Eng.,1995,19:617-646.
    [76]Succi S., Bella G., Papetti F., Lattice kinetic theory for numerical combustion, J. Sci. Comput., 1997,12:395-408.
    [77]Filippova O., Hanel D., A novel lattice BGK approach for low Mach number combustion, J. Com-put. Phys.,2000,158:139-160.
    [78]Yamamoto K., He X., Doolen G. D., Simulation of combustion field with lattice Boltzmann method, J. Stat. Phys.2002,107(1/2):367-383.
    [79]Yamamoto K., Takada N., Misawa M., Combustion simulation with lattice Boltzmann method in a three-dimensional porous structure, Proc. Comb. Ins.,2005,30:1509-1515.
    [80]Yamamoto K., LB simulation on combustion with turbulence, Int. J. Modern Phys. B,2003,17(1/2): 197-200.
    [81]Lee T, Lin C. L., Chen L. D., A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame, J. Comput. Phys.,2006,215:133-152.
    [82]Chen S., Liu Z. H., Zhang C., He Z., Tian Z. W., Shi B. C., Zheng C. G., A simple lattice Boltzmann scheme for low Mach number reactive flows, Sci. China Ser. E,2006,49(6):714-726.
    [83]Chen S., Liu Z. H., Zhang C., He Z., Tian Z. W., Shi B. C., Zheng C. G., A novel coupled lattice Boltzmann model for low Mach number combustion simulation, Appl. Math. Comput.,2007,193: 266-284.
    [84]Chen S, Chen H., Martinez DO, Matthaeus W. H., Lattice Boltzmann model for simulating of magnetohydrodynamics, Phys. Rev. Lett.,1991,67:3776-3779.
    [85]Martinez D. O., Chen S., Lattice Boltzmann magnetohydrodynamics, Phys. Plasmas,1997,1:1850-1867.
    [86]Dellar J., Lattice kinetic scheme for magnetohydrodynamics, J. Comput. Phys.,2002,179(1):95-126.
    [87]Chen X. W., Shi B. C., A new lattice Boltzmann model for incompressible nagnetohydrodynamics, Chin. Phys.,2005,17(7):1398-1406.
    [88]Feng S. D., Dong P., Zhong L. H., A lattice Boltzmann model for two-dimensional Magnetohydro-dynamics,2006,23(10):2823-2826.
    [89]Breyiannis G., Valougeorgis D., Lattice kinetic simulations of 3-D MHD turbulence, Comput. Flu-ids,2006,38(8/9):920-924.
    [90]Pattison M. J., Premnath K. N., Mortey N. B., Abdou M. A., Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications, Fusion Eng. Des.,2008,83(4): 557-572.
    [91]Nie X. B., Doolen G. D. and Chen S. Lattice Boltzmann simulations of fluid flows in MEMS. J. Stat. Phys.,2002,107:279-289.
    [92]Succi S., Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. Phys. Rev. Lett.,2002,89:064502.
    [93]Lim C. Y., Shu C., Niu X. D. and Chew Y. T., Application of lattice Boltzmann method to simulate microchannel flows. Phys. Fluids,2002,14:2299-2308.
    [94]Zhang Y. H., Qin R. S. and Emerson D. R., Lattice Boltzmann simulation of rarefied gas flows in microchannels. Phys. Rev. E,2005,71:047702.
    [95]Lee T. and Lin C. L., Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel. Phys. Rev. E,2005,71:046706.
    [96]Sofonea V. and Sekerka R. F., Boundary conditions for the upwind finite difference lattice Boltz-mann model:Evidence of slip velocity in micro-channel flow. J. Comput. Phys.,2005,207:639-659.
    [97]Szalmas L., Slip-flow boundary condition for straight walls in the lattice Boltzmann model. Phys. Rev. E,2006,73:066710.
    [98]Benzi R., Biferale L., Sbragaglia M., Succi S. and Toschi F., Mesoscopic modelling of heteroge-neous boundary conditions for microchannel flows. J. Fluid Mech.,2006,548:257.
    [99]Ansumali S. and Karlin I. V., Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E,2002,66:026311.
    [100]Tang G. H., Tao W. Q. and He Y. L., Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Phys. Rev. E,2005,72:056301.
    [101]Shan X., Yuan X.F. and Chen H. D., Kinetic theory representation of hydrodynamics:a way beyond the Navier-Stokes equation. J. Fluid Mech.,2006,550:413-441.
    [102]Sofonea V. and Sekerka R. F., Diffuse-reflection boundary conditions for a thermal lattice Boltz-mann model in two dimensions:Evidence of temperature jump and slip velocity in microchannels. Phys. Rev. E,2005,71:066709.
    [103]Shu C., Niu X. D. and Chew Y. T., A lattice Boltzmann kinetic model for microflow and heat transfer. J. Stat. Phys.,2005,121:239-245.
    [104]Toschi F. and Succi S., Lattice Boltzmann method at finite Knudsen numbers. EPL,2005,69: 549-555.
    [105]Zhang R. Y, Shan X. W. and Chen H. D., Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation. Phys. Rev. E,2006,74:046703.
    [106]Zhang Y. H., Gu X. J., Barber R. W. and Emerson D. R. EPL,2007,77:30003.
    [107]Guo Z. L., Zhao T. S. and Shi Y, Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. J. Appl. Phys.,2006,99:074903.
    [108]Guo Z. L., Shi B. C., Zhao T. S. and Zheng C. G., Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys. Rev. E,2007,76:056704.
    [109]Guo Z. L., Zheng C. G. and Shi B. C., Lattice Boltzmann equation with multiple effective relax-ation times for gaseous microscale flow. Phys. Rev. E,2008,77:036707.
    [110]Zheng L., Guo Z. L. and Shi B. C., Discrete effects on thermal boundary condition for thermal Lattice Boltzmann method in simulating microscale gas flow, EPL,2008,82:44002.
    [111]Tang G. H., Gu X. J., Barber R. W., et al., Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Phys. Rev. E,2008,78:026706.
    [112]Sirovich L., Kinetic modelling of gas mixtures. Phys. Fluids.,1962,5:908-918.
    [113]Andries P., Aoki K., and B. Perthame, A consistent BGK-type model for gas mixtures. J. Stat. Phys.,2002,106:993-1018.
    [114]Hamel B. B., Kinetic model of binary mixtures. Phys. Fluids.,1965,8:418-425.
    [115]Xu A. G., Gonnella G., and Lamura A., Phase-separating binary fluids under oscillatory shear. Phys. Rev. E,2003,67:056105.
    [116]Sofonea V., Lamura A., Gonnella G., and Cristea A., Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor system Phys. Rev. E,2004,70:046702.
    [117]Asinari P., Luo LS., A consistent lattice Boltzmann equation with baroclinic coupling for mixtures. J. Comput. Phys.,2008,227:3878-3895.
    [118]Luo LS., Girimaji S. S., Lattice Boltzmann model for binary mixtures. Phys. Rev. E,2002,66: 035301.
    [119]Xu A. G., Finite-difference lattice-Boltzmann methods for binary fluids. Phys. Rev. E,2005,71: 066706.
    [120]McCracken ME, Abraham J. Lattice Boltzmann methods for binary mixtures with different molec-ular weights. Phys. Rev. E,2005,71:046704.
    [121]Asinari P., Viscous coupling based lattice Boltzmann model for binary mixtures. Phys. Fluids., 2005,17:067102.
    [122]Asinari P., Semi-implicit-linearized multiple-relaxation-time formulation of lattice Boltzmann schemes for mixture modeling. Phys. Rev. E,2006,73:056705.
    [123]Sofonea V. and Sekerka R. F., BGK models for diffusion in isothermal binary fluid systems. Phys-ica. A,2001,299:494-520.
    [124]Alexander F. J., Chen S.and Sterling J. D., Lattice Boltzmann thermo-hydrodynamics. Phys. Rev. E,1993,47:R2249-2252.
    [125]Qian YH, Simulating thermohydrodynamics with lattice BGK models. J. Sci. Comput.,1993,8(3): 231-242.
    [126]Chen Y., Ohashi H. and Akiyama M., Thermal latticeBhatnagar-Gross-Krook model without non-linear deviations in macrodynamic equations. Phys. Rev. E,1994,50:2776-2783.
    [127]Chen Y., Ohashi H. and Akiyama M., Two parameters thermal lattice BGK model with controllable prandtl number. J. Sci. Comput.,1997,12:169-185.
    [128]Chen H., Teixeira C. and Molving K., Digital physics approach to computational fluid dynamics: Some basic theoretical features. Int. J. Mod. Phys. C,1997,8:675-684.
    [129]Soe M., Vahala G., Pavlo, Vahala P, L. and Chen H., Thermal lattice Boltzmann simulations of variable Prandtl number turbulent flows Phys. Rev. E,1998,57:4227-4237.
    [130]Watari M. and Tsutahara M., Finite difference lattice Boltzmann method with arbitrary specific heat ratio applicable to supersonic flow simulations. Physica. A,2007,382:502-510.
    [131]Shan X., Simulation of Rayleigh-Benard convection using a lattice Boltzmann method. Phys. Rev. E,1997,55:2780-2788.
    [132]He X., Chen S.and Doolen G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys.,1998,146:282-300.
    [133]Guo Z. L., Shi B. C. and Zheng C. G., A coupled lattice BGK model for the Boussinesq equations. Int. J. Numer. Meth. Fluids,2002,39:325-342.
    [134]Shi Y., Zhao T. S. and Guo Z. L., Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit. Phys. Rev. E,2004,70:066310.
    [135]Guo Z. L., Zheng C. G., Shi B. C. and Zhao T. S., Thermal lattice Boltzmann equation for low Mach number flows:Decoupling model. Phys. Rev. E,2007,75:036704.
    [136]Lallemand P. and Luo LS, Theory of the lattice Boltzmann method:Acoustic and thermal proper-ties in two and three dimensions. Phys. Rev. E,2003,68:036706.
    [137]Zheng L., Shi B. C. and Guo Z. L.,Multiple relaxation-times model for the correct thermohydro-dynamic equations, Phys. Rev. E,2008,78:026705.
    [138]Lang S. F., Vidal A. and Acrivos A., Buoyancy-driven convection in cylindrical geometries.J. Fluid. Mech.,1969,36:239-256.
    [139]Otis D. R., Roessler J. Development of stratification in a cylindrical enclosure. Int. J. Heat Mass Transfer,1987,30:1633-1636.
    [140]Kim W. N., Hyun J. M., Convective heat transfer in a cylinder with a rotating lid under stable stratification. Int. J. Heat Fluids Flow,1997,18:384-388.
    [141]Lemembre A. and Petit J. P., Laminar natural convection in a laterally heated and upper cooled vertical cylindrical enclosure. Int. J. Heat Mass Transfer,1998,41:2437-2454.
    [142]Iwatsu R., Flow pattern and heat transfer of swirling flows in cylindrical container with rotating top and stable temperature gradient. Int. J. Heat Mass Transfer,2004,47:2755-2767.
    [143]Iwatsu R., Numerical study of swirling flows in a cylindrical container with co-/counter-rotating end disks under stable temperature difference Int. J. Heat Mass Transfer,2005,48:4854-4866.
    [144]Halliday I., Hammond L. A., Care C. M. et al., Lattice Boltzmann equation hydrodynamics. Phys. Rev. E,2001,64:011208.
    [145]Niu X. D., Shu C., and Chew Y. T., An axisymmetric lattice Boltzmann model for simulation of Taylor-Couette flows between two concentric cylinders. Int. J. Mod. Phys. C,2003,14:785-796.
    [146]McCracken M. E. and Abraham J., Simulations of liquid break up with an axisymmetric, multiple relaxation time, index-function lattice Boltzmann model. Int. J. Mod. Phys. C,2005,16:1671-1692.
    [147]Lee T. S., Huang H., and Shu C., An axisymmetric incompressible lattice BGK model for simu-lation of the pulsatile flow in a circular pipe. Int. J. Numer. Methods Fluids,2005,49:99-116.
    [148]Lee T. S., Huang H., and Shu C., An axisymmetric incompressible lattice Boltzmann model for pipe flow. Int. J. Mod. Phys. C,2006,17:645-661.
    [149]Reis T. and Phillips T. N., Modified lattice Boltzmann model for axisymmetric flows. Phys. Rev. E,2007,75:056703.
    [150]Reis T. and Phillips T. N., Numerical validation of a consistent axisymmetric lattice Boltzmann model. Phys. Rev. E,2008,77:026703.
    [151]Zhou J. G., Axisymmetric lattice Boltzmann method. Phys. Rev. E,2008,78:036701.
    [152]Chen S., Tolke J., Geller S., and Krafczyk M., Lattice Boltzmann model for incompressible axisymmetric flows. Phys. Rev. E,2008,78:046703.
    [153]Guo Z. L., Han H. F., Shi B. C. and Zheng C. G., Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows. Phys. Rev. E,2009,79:046708.
    [154]Peng Y., Shu C., Chew Y. T., and Qiu J., Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method. J. Comput. Phys.,2003,186:295-307.
    [155]Huang H., Lee T. S., and Shu C., Hybrid lattice Boltzmann finite-difference simulation of axisymmetric swirling and rotating flows. Int. J. Numer. Methods Fluids,2007,53:1707-1726.
    [156]Chen S., Tolke J., and Krafczyk M., Simulation of buoyancy-driven flows in a vertical cylinder using a simple lattice Boltzmann model. Phys. Rev. E,2009,79:016704.
    [157]R. S. Maier, R. S. Bernard, and D.W. Grunau, Boundary conditions for the lattice Boltzmann method. Phys. Fluids,1996,8:1788-1801.
    [158]A. M. Artoli, A. G. Hoekstra, and P. M. A. Sloot,3D pulsatile flow with the lattice Boltzmann BGK method. Int. J. Mod. Phys. C,2002,13:1119-1134.
    [159]S. K. Bhaumik and K. N. Lakshmisha, Lattice Boltzmann simulation of lid-driven swirling flow in confined cylindrical cavity. Comput. Fluids,2007,36:1163-1173.
    [160]Bhatnagar P. L., Gross E. P., and Krook M., A model for collision processes in gases Ⅰ:small amplitude processes in charged and neutral one-component system, Phys.Rev.,1954,94:511-525.
    [161]Rothman D. H. Cellular-automaton fluids:a model for flow in porous media. Geophysics,1988, 53(4):509-518.
    [162]Succi S., Foti E., Higuera F. Three-dimensional flows in complex geometries with the lattice Boltz-mann method. EPL,1989,10(5):433-438.
    [163]Adrover A., Giona M. Predictive model for permeability of correlated porous media. Chem. Eng. J.,1996,64(1):7-19.
    [164]Kim J., Lee J., Lee K. C. Nonlinear correction to Darcy's law for a flow through periodic arrays of elliptic cylinders. Physica A,2001,293(1-2):13-20.
    [165]Koch D. L., Ladd A. J. C. Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. J. Fluid Mech.,1997,349:31-66.
    [166]Koch D. L., Hill R. J. Inertial effects in suspension and porous media flows. Annu. Rev. Fluid Mech.,2001,33:619-647.
    [167]Jeong N., Choi D. H., Lin C. L. Prediction of Darcy-Forchheimer drag for micro-porous structures of complex geometry using the lattice Boltzmann method. J. Micromech. Microeng.,2006,16: 2240-2250.
    [168]Tang G. H., Tao W. Q., He Y. L. Gas slippage effect on microscale porous flow using lattice Boltzmann method. Phys. Rev. E,2005,72:056301.
    [169]Tang G. H., Tao W. Q., He Y. L. Three-dimensional lattice Boltzmann model for gaseous flow in rectangular microducts and microscale porous media. J. Appl. Phys.,2005,97:104918.
    [170]Guo Z. L., Zhao T. S. Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E,2002,66(3):36304.
    [171]Piaud B., Blanco S. and Fournier R. et al, Energy-Conserving Lattice BoltzmannThermal Model in Two Dimensions. J. Stat. Phys.,2005,121:119-131.
    [172]Philippi P. C., Hegele L. A., dos Santos L. O. E., and Surmas R., From the continuous to the lattice Boltzmann equation:The discretization problem and thermal models. Phys. Rev. E,2006, 73:056702.
    [173]Sofonea V., Lattice Boltzmann approach to thermal transpiration. Phys. Rev. E,2006,74:056705.
    [174]Sofonea V., Finite-difference lattice Boltzmann approach to pressure-driven microchannel flow with variable temperature. EPL,2006,76:829-835.
    [175]Gonnella G., Lamura A. and Sofonea V., Lattice Boltzmann simulation of thermal nonideal fluids. Phys. Rev.E,2007,76:036703.
    [176]Gan Y, Xu A., and Zhang G. et al, Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Physica A,2007,387:1721-1732.
    [177]Pan X., Xu A. and Zhang G. et al, Lattice Boltzmann approach to high-speed compressible flows. Int. J. Mod. Phys. C,2007,18:1747.
    [178]Peng Y, Shu C. and Chew Y T., Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys. Rev. E,2003,68:026701.
    [179]D'Orazio A., Succi S. and Arrighetti C., Lattice Boltzmann simulation of open flows with heat transfer. Phys. Fluids,2003,15:2778.
    [180]D'Orazio A. and Succi S., Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions. Future Generation Computer Sys.,2004,20: 935.
    [181]D'Orazio A. and Succi S., Boundary conditions for thermal lattice Boltzmann simulations. Lecture Notes in Computer Sci.,2003,2657:977.
    [182]Nie X. B., Shan X., and Chen H., Galilean invariance of lattice Boltzmann models. EPL,2008,81: 34005.
    [183]McNamara G. R., Garcia A. L., and Alder B. J., A hydrodynamically correct thermal lattice Boltz-mann model. J. Stat. Phys.,1997,87:1111-1121.
    [184]Shan X., Chen H. D., A general multiple-relaxation-time Boltzmann collision model. Int. J. Mod. Phys. C,2007,18:635.
    [185]d'Humieres D. Generalized lattice-Boltzmann equations, in rarefied gas dynamics:theory and simulations. In:Shizgal B. D., Weaver D. P. Progress in Astronautics and Aeronautics. Washington, DC:AIAA,1992,159:450-458.
    [186]Lallemand P., Luo L. S. Theory of the lattice Boltzmann method:Dispersion, dissipation, isotropy, Galilean invarioance and stability. Phys. Rev. E,2000,61:6546-6562.
    [187]d'Humieres D., Bouzidi M., and Lallemand P., Thirteen-velocity three-dimensional lattice Boltz-mann model. Phys. Rev. E,2001,63:066702.
    [188]McCracken M. E., Abraham J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E,2005,71:036701.
    [189]Hortmann M. and Peric M., Finite volume multigrid perdiction of laminar natural convection: Benchmark solutions. Int. J. Numer. Methods Fluids,1990,11:189-207.
    [190]Chapman S. and Cowling T. G., The Mathematical Theory of Non-Uniform Gases,3rd ed. Cam-bridge:Cambridge University Press; 1970.
    [191]Guo Z. L., Zheng C. G., and Shi B. C., An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids,2002,14:2007-2010.
    [192]Neumann G., Three-dimensional numerical simulation of buoyancy-driven convection in vertical cylinders heated from below. J. Fluid Mech.,1990,214:559-578.
    [193]Guo Z. L., Zheng C. G. and Shi B. C., Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E,2002,65:046308.
    [194]Arcidiacono S. et al, Simulation of binary mixtures with the lattice Boltzmann method. Phys. Rev. E,2006,74:056707.
    [195]Arcidiacono S. et al, Lattice Boltzmann model for the simulation of multicomponent mixtures. Phys. Rev. E,2007,76:046703.
    [196]Maxwell J.C., On stress in rarefied gases from inequalities of temperature. Philos. Trans. R. Soc. London,1879,170:231-256.
    [197]Smoluchowski M., Uber warmeleitung in verdiinnten gasen. Ann. Phys. Chem.,1898,64:101-130.
    [198]Cercignani C. and Sernagiotto F., Cylindrical Poiseuille flow of a rarefied gas. Phys. Fluids 1966, 9:40-44.
    [199]FerzigerJ. H., Flow of a rarefied gas through a cylindrical tube. Phys. Fluids,1967,10:1448-1453.
    [200]Sone Y. and Yamamoto K., Flow of rarefied gas through a circular pipe. Phys. Fluids,1968,11: 1672-1678.
    [201]Kramers H. A., Kistemaker J., On the slip of a diffusion gas mixture along a wall. Physica,1943, 10:699.
    [202]Loyalka S. K., Velocity slip coefficient and the diffusion slip velocity for multicomponent gas mixture. Phys. Fluids,1971,14:2599-2604.
    [203]Ivchenko I. N., Loyalka S. K., and Tompson R. V., Slip coefficients for binary gas mixtures. J. Vac. Sci. Technol. A,1997,15:2375.
    [204]Sharipov F., Kalempa D., Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient. Phys. Fluids,2003,15:1800-1806.
    [205]Sharipov F., Kalempa D., Velocity slip and temperature jump coefficients for gaseous mixtures. II. Thermal slip coefficient. Phys. Fluids,2004,16:759-764.
    [206]Sharipov F., Kalempa D., Velocity slip and temperature jump coefficients for gaseous mixtures. Ⅲ. Diffusion slip coefficient. Phys. Fluids,2004,16:3779-3785.
    [207]Naris S., Valougeorgis D., Kalempa D., et al., Flow of gaseous mixtures through rectangular mi-crochannels driven by pressure, temperature, and concentration gradients. Phys. Fluids,2005,17: 100607.
    [208]Siewert C. E., Valougeorgis D., The McCormack model:channel flow of a binary gas mixture driven by temperature, pressure and density gradients. Europ. J. Mech. B/Fluids,2004,23:645-664.
    [209]Siewert C. E., Valougeorgis D., Concise and accurate solutions to half-space binary-gas flow problems defined by the McCormack model and specular-diffuse wall conditions. Europ. J. Mech. B/Fluids,2004,23:709-726.
    [210]Zheng L., Shi B. C. and Chai Z. H., Lattice Boltzmann method for simulating the temperature jump and velocity slip in microchannels, Commun.Comput.Phys.,2007,2:1125-1138.
    [211]Gallis M.A., Rader D.J. and Torczynski J.R., Calculations of the near-wall thermophoretic force in rarefied gas flow. Phys. Fluids,2002,14:4290-4301.
    [212]Tang G.H., Zhang Y.H. and Gu X.J. etal, Lattice Boltzmann model for thermal transpiration, Phys. Rev. E,2009,79:027701.
    [213]Sofonea V., Lattice Boltzmann approach to thermal transpiration, Phys. Rev. E,2006,74:056705.
    [214]Szalmas L., Variable slip coefficient in binary lattice Boltzmann models. Cent. Eur. J. Phys.,2008, 6(4):86-791.
    [215]Kim S. H., Pitsch H., Boyd I. D., Lattice Boltzmann modeling of multicomponent diffusion in narrow channels. Phys. Rev. E,2009,79:016702.
    [216]Guo Z. L., Asinari P., Zheng C. G., Lattice Boltzmann equation for microscale gas flows of binary mixtures. Phys. Rev. E,2009,76:026702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700