蝗亚目三种昆虫线粒体基因组测序与蝗总科系统发育分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线粒体在细胞新陈代谢、疾病、成熟衰老的过程中起重要作用,是氧化磷酸化及许多重要生化反应进行的场所。线粒体基因组是独立于染色体基因组之外的细胞器基因组,具有独立的复制、转录系统,通常是一个含有37个基因的双链、环状的DNA分子,因其特殊的遗传方式而常用于分子系统学的研究。线粒体基因组作为研究基因组结构、功能和进化的最佳模型,对基因组学研究的探索具有重要理论价值和实践意义。
     本研究采用L-PCR及二次PCR技术对蝗总科2种蝗虫(北极翘尾蝗Primnoaarctica(Zhang & Jin,1985)和红拟棒角蝗Gomphocerippus rufus(Linnaeus,1758))及1种蚱(秦岭微翅蚱Alulatettix qinlingensis)进行全线粒体基因组测序、拼接和注释;结合已经测出的直翅目蝗总科8科8种昆虫线粒体基因组序列,从结构基因组学、比较基因组学与进化基因组学的角度总结了蝗总科昆虫的线粒体基因组结构组成以及序列进化等方面的一般特征,丰富了直翅目昆虫的线粒体基因组数据,为进一步开展昆虫线粒体谱系基因组学的研究奠定了基础;联合NCBI上已经发表及该项目组其他成员所测出来的20种蝗总科昆虫的全线粒体基因组,以东方蝼蛄(Gryllotalpa orietalis)和摩门螽蟖(Anabrus simplex)作为外群,对蝗总科进行了系统发育关系重建;本研究还基于线粒体基因组蛋白编码基因联合序列对蝗总科8种昆虫及蚱总科的秦岭微翅蚱和蜢总科的变色乌蜢对蝗亚目进行系统发育重建。主要获得以下结果:
     1.所测得的3种昆虫全线粒体基因组的基因组成及各基因次序和转录方向与飞蝗(Locusta migratoria)线粒体基因组一致,各包含13个蛋白编码基因,22个tRNA基因,2个rRNA基因和一个A+T丰富区。tRNAK和tRNAD的位置与六足动物祖先线粒体基因组的基因排列方式相比发生了互换。
     2.对直翅目内各种昆虫线粒体基因组A+T含量进行比较,发现蝗总科内锥头蝗科较其他各科基因组的A+T含量低;蝗亚目中各种昆虫线粒体基因组A+T含量与螽亚目内各种昆虫线粒体基因组A+T含量相比普遍较高。
     3.蝗总科各科昆虫蛋白编码基因密码子使用具有偏向性,第三位点为A或T的密码子使用频率较高。
     4.蝗总科8科昆虫各种基因间隔区最长之处皆位于tRNASer-UCN与ndl基因之间,在atp8/atp6和nad4/nad4L之间均存在7bp的碱基重叠。基因间隔区和基因重叠区的数目、长度在各种蝗虫中均较为相似。
     5.ATG是蝗总科各科昆虫的蛋白编码基因中使用最多的起始密码子,其次是ATT,使用较少的起始密码子是ATA。使用最多的终止密码子是TAA。多数直翅目昆虫线粒体基因组的nd5基因以不完全终止密码子T/TA作为终止信号。
     6.在所测定昆虫的tRNA二级结构中,均存在一定数目的碱基错配现象,而且其中绝大部分为G-U错配。
     7.在北极翘尾蝗和红拟棒角蝗线粒体基因组的A+T丰富区中均含有一个茎环结构,其结构与Saito(2005)在飞蝗线粒体基因组中发现的茎环结构十分相似,并且在该二级结构茎的5′端均有一个十分保守的“TA”。
     8.本研究基于线粒体基因组对蝗总科8科进行系统发育重建,结果支持夏氏系统中的斑翅蝗科和斑腿蝗科的单系性;发现剑角蝗科、网翅蝗科都不是单系群,建议将剑角蝗科、网翅蝗科和槌角蝗科三科合并为一科,与斑腿蝗科和网翅蝗科并列;支持蝗总科的锥头蝗科和瘤锥蝗科合并成一个科,这个分支是蝗总科中较早分离出来的一个分支;发现癞蝗科与斑腿蝗科具有较近的亲缘关系。同时本研究支持Otte系统中的斑翅蝗亚科和大足蝗亚科的单系性,但是不能支持斑腿蝗亚科的单系性。斑腿蝗亚科、黑蝗亚科和稻蝗亚科有较近的亲缘关系。
     9.通过基于线粒体基因组对蝗总科系统发育重建研究得出的结果,推测夏氏系统蝗总科中8科的进化关系是锥头蝗科+瘤锥蝗科→斑翅蝗科→癞蝗科→斑腿蝗科→剑角蝗科→槌角蝗科+网翅蝗科。
     10.本研究基于线粒体基因组得出的蝗总科的系统进化关系可以将分布在中国的蝗总科昆虫分成2个分支,锥头蝗科和瘤锥蝗科组成一个分支,位于系统进化树的基部,斑腿蝗科、斑翅蝗科、剑角蝗科、槌角蝗科、网翅蝗科和癞蝗科形成另一个分支。这种划分方式更符合Otte系统,不同之处在于癞蝗科没能从后一分支中分离出来。
Mitochondrial play a central role in metabolism,disease and aging.They are the site of oxidative phosphorylation,as well as a variety of other biochemical functions. Mitochondrial genome is a genome that separate from the nuclear chromatin,with its own systems for DNA replication,transcription,and commonly is a double-strand closed-circular molecule,and contains 37 genes.Mitochondrial genome is commonly used in studies of molecular phylogenetics,and is the best model for the studies of genome structure,function and evolution.
     The complete mitochondrial genome sequences for three species of Caelifera, Primnoa arctica,Gomphocerippus rufus and Alulatettix qinlingensis,were sequenced, assembled and annotated.Complete mitogenomes of eight families were compared. The common features of genome structure and organization,sequence and evolution were summarized,these enriches mitochondrial genome data of Orthoptera. Phylogenetic of Acridoidea was reconstructed utilizing 20 insects from Acridoidea and phylogenetic of Cealifera was reconstructed utilizing 10 insects.The conclusions of these studies showed as following:
     1.The genes arrangement of mitochondrial genome in Primnoa arctica, Gomphocerippus rufus and Alulatettix qinlingensis were identical to that of Locusta migratoria,and were different from ancient insects in that the translocation of tRNAK-tRNAD was rearrangement as tRNAD-tRNAK.This rearrangement was common in mitogenome of Acridoidea.
     2.Average A+T content of mitogenome from Acridoidea was found higher than that of Tettigonioidea.
     3.The usage of synonymous codons was markedly correlated with the nucleotide composition at the third codon position.Generally,the codons whose third position are A or T were frequently used.
     4.The longest space of genes in mitogenome of Acridoidea was usually locates between tRNASer-UCN and ndl.There are 7bp long overlapping regions located between atp8/atp6 and nad4/nad4L.The interspaces and overlapping regions were similar at the feature of number and length in mitogenome of species.
     5.ATG is the most frequently used starting codon,ATT is the second frequently used one,ATA is the one that being used lessly.TAA is the most frequently used termination codon.Most of nd5 in mitogenome of Orthoptera utilize incomplete termination codon(T/TA) as terminate singnal.
     6.The mismatched base pairs occur in the tRNA genes,and the majority of these are G-U pairs.
     7.There was a stem and loop structure located in both A+T rich regions of mitochondrial genome of Primnoa arctica and Gomphocerippus rufus.And the structure was similar with the structure that Saito(2005) found on the same region of L. migratoria.They each has a conserved structure of"TA" on the 5' of the stem and loop structure.
     8.Phylogenetic analyses confirmed the monophyly of Oedipodidae and Catantopidae of Xia's system,and the monophyly of Acrididae and Arcypteridae were not supported.Monophyly of Oedipodinae and Gomphocerinae in One's system were supported,while monophyly of Catantopinae was not suppoted.Catantopinae, Melanoplinae and Oxyinae formed a sister group.
     9.The result of reconstruction of systemtic evolution relationship of eight families in Acridoidea concluded that the relationship of evolution is Pyrgomorphidae+Chrotogonidae→Oedipodidae→Pamphagidae→Catantopidae→Acrididae→Gomphoceridae+Arcypteridae.
     10.This phylogenetic analyses based on mitogenome separated Acridoidea distributing in China into two clades.The first clade is consisted of Chrotogonidae and Pyrgomorphidae,which formed the basic of the tree;the second and large clade is consisted of Catantopidae,Oedipodidae,Acrididae,Gomphoceridae,Arcypteridae and Pamphagidae.These clades are coincident with that in Otte's classification system,and the difference was that Pamphagidae in our study could not be separated from the clade of Acridoidea.
引文
[1]丛波,杨福合,孙红梅.动物mtDNA的研究进展[J].黑龙江畜牧兽医,2008,1:22-23.
    [2]Brand,M.D.Regulation analysis of energy metabolism[J].J.Exp.Biol.,1997,200:193-202.
    [3]Eroemer,G.,DallaPorta,B.,Resehe-Rigon,M.The mitoehondrial death/life regulator in apoptosis and neerosis[J].Annu.Rev.Physiol.,1998,60:619-642.
    [4]Graeber,M.B.,Muller,U.Recent developments in the molecular geneties of mitoehonddal disorders[J].J.Neurol.Sci.,1998,153:251-263.
    [5]Wei,Y.H.Oxidative stress and mitochondrial DNA mutations in human aging[J].Proe.Soe.Exp.Biol.Med.,1998,217:53-63.
    [6]McFariand,R.,Taylor,R.W.Tumbull D.M.Mitochondrial disease-its impact,etiology,and pathology[J].Curr.Top.Dev.Biol.,2007,77:113-55.
    [7]Shadel,G.S.,Clayton,D.A.Mitochondrial DNA maintenance in vertebrates[J].Annu.Rev.Biochem.,1997,66:409-435.
    [8]徐晋麟,徐沁,陈淳等.现代遗传学原理[M].北京:科学出版社,2001.
    [9]汪泰初,刘朝良,肖林珍.线粒体基因组(mtDNA)的研究进展[J].安徽农业科学2006,34(10):2068-2071.
    [10]Wilson,A.C.,Cann,R.L.,Carry,S.M.Mitochondrial DNA and two perspectives on the evolutionary genetics[J].Biol.J.Linn.Soc.,1985,26:375-400.
    [11]Nierlich,D.P.,Roe,B.A.,Sanger,F.,Schreier,P.H.,Smith,A.J.H.,Staden,R.,Young,I.G.Sequence and organization of the human mitochondrial genome[J].Nature,1981,290:457-465.
    [12]Bibb,M.J.,Vanetten,R.A.,Wright,C.T.,Walberg,M.W.,Clayton,D.A.Sequence and gene organization of mouse mitochondrial DNA[J].Cell,1981,26:167-180.
    [13]Lavrov,D.V.,Boore,J.L.,Brown,W.M.The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus[J].Mol.Biol.Evol.,2000,17(5):813-824.
    [14]Boore,J.L.Animal mitochondrial genomes[J].Nucl.Aci.Res.,1999,27(8): 1767-1780.
    [15]Whiltenholme,D.R.Animal mitochondrial DNA:Structure and evolution[J].Int.Rev.Cytol.,1992,141:173-216.
    [16]Machida,R.J.,Miya,M.U.,Nishida,M.Complete mitochondrial DNA sequence of Tigriopus japonicus(Crustacea:Copepoda)[J].Biotechnical,2002,4:406-417.
    [17]Jeffrey,L.,Boor J.L.Animal mitochondrial genomes[J].Nucleic.Aci.Res.,1999,27(8):1767-1780.
    [18]Masta,S.E.,Boor J.L.The Complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs[J].Mol.Biol.Evol.,2004,21(5):893-902.
    [19]Lewis,D.L.,Farr,C.L.,Kaguni,L.S.Drosophila melanogaster mitochondrial DNA:completion of the nucleotide Sequence and Evolutionary Comparisons[J].Insect Mol.Biol.,1995,4(4):263-278.
    [20]Boyce,T.M.,Zwick,M.E.,Aquadro,C.F.Mitochondrial DNA in the bark weerils:Size,structure and heteroplasmy[J].Genetics,1989,123:825-836.
    [21]Wolstenholme,D.R.,Clary,D.O.,Macfaflane,J.L.Organization evolution of invertebrate mitoehondrial genomes:achievements and perspectives in mitochondrial researeh[J].Elsevier Seience Amsterdam,1985,11:61-69.
    [22]Anderson,S.,Bankier,A.T.,Barrell,B.G.,Bruijin,M.H.L.,Coulson,A.R.,Droujn,J.,Eperon,I.C.Sequence and evolutionary comparisons[J].Insect Mol.Biol.,1954,(4):263-278.
    [23]王存芳,曾勇庆,杜立新等.线粒体DNA(mtDNA)的研究进展[J].动物科学与动物医学,2001,18:16-18.
    [24]Gray,M.W.The enodosymbiont hypothesis revisited[J].Int.Rev.Cytol.,1992,141:233-357.
    [25]Brown著T.A.,袁建刚等译.基因组[M].北京:科学出版社,2002.
    [26]Lander,E.S.,Linton,L.M.,Birren,B.Initial sequencing and analysis of the human genome[J].Nature,2001,409(6822):860-921.
    [27]翟中和,丁明孝,王喜中等.细胞生物学[M].北京:高等教育出版社,2003.
    [28]Simon,C.,Frati,F.,Bekenbach,A.,Crespi,B.,Liu,H.,Flook,P.Evolution,weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain-reaction primers[J].Ann.Entomol. Soc. Am., 1994,87:651-701.
    [29] Bae, J.S., Kim, I., Sohn, H.D., Jin, B.R., The mitochondrial genome of the firefly, Pyrocoeliarufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects [J]. Mol. Phyl. Evol., 2004, 32: 978-985.
    [30]Clary, D.O., Wolstenholme, D.R. The Mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code [J]. J. Mol. Evol., 1985,22:252-271.
    [31]Lee, E.S., Shin, K.S., Kim, M.S., Park, H., Cho, S., Kim, C.B. The mitochondrial genome of the smaller tea tortrix Adoxophyes honmai (Lepidoptera: Tortricidae) [J]. Gene, 2006, 373: 52-57.
    [32]Bibb, M.J., Van Etten, R.A., Wright, C.T., Walberg, M.W., Clayton, D.A. Sequence and gene organization of mouse mitochondrial DNA [J].Cell, 1981, 26: 167-180
    
    [33] 刘银梅.动物线粒体基因与进化研究进展[J].山西农业科学, 2007,35(1):80-82.
    [34]Cha, S.Y.G, Yoon, H.J., Lee, E.M., Yoon, M.H., Hwang, J.S., Jin, B.R., Han, Y.S. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignites (Hymenoptera: Apidae) [J]. Gene, 2007, 392: 206-220.
    [35] Nardi, F., Carapelli, A., Dallai, R. The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographic locations [J]. Insect Mol. Biol,2003, 12(6): 605-611.
    [36] Ojala, D., Montoya, J., Attardi, G tRNA punctuation model of RNA processing in Human mitochondria[J]. Nature, 1981,290: 470-474.
    [37] Nardi, F., Carapelli, A., Fanciulli, P.P. The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: evidence for heteroplasmy and tRNA translocations[J]. Mol. Biol. Evol., 2001, 18(7): 1293-1304.
    [38] Shao, R., Campbell, N.J., Barker, S.C. Numerous gene rearrangements in the mitochondrial genome of the Wallaby Louse, Heterodoxus macropus (Phthiraptera)[J]. Mol. Biol. Evol., 2001, 18(5): 858-865.
    [39] Macey, J.R., Lrson, A., Ananjeva, N.B. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome [J]. Mol. Biol. Evol., 1997,14: 91-104.
    [40]Madsen,C.S.,Ghivizzavi,S.C.,Hauswirth,W.W.In vivo and in vitro evidence for slipped mispairing in mammalian mitochondrial[J].Proc.Natl.Acad.Sci.U.S.A.,1993,90:7671-7675.
    [41]Levinson,G.,George,A.G.Slipped-strand mispairing:a mafor mechanism for DNA sequence evolution[J].Mol.Biol.Evol.,1987,4(3):203-221.
    [42]Lavrov,D.V.,Boore,J.L.,Brown,W.M.Complete mtDNA sequences of two Millipedes Suggest a new model for mitochondrial gene rearrangements:duplication and nonrandom loss[J].Mol.Biol.Evol.,2002,19(2):163-169.
    [43]Yukuhiro,K.,Sezutsu,H.,Itoh,M.Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth,Bombyx mandarina,and its close relative,the domesticated silkmoth,Bombyx mori[J].Mol.Biol.Evol.,2002,19(8):1385-1389.
    [44]Hickerson,M.J.,Cunningham,C.W.Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus(Crustacea,anomura)[J].Mol.Biol.Evol.,2000,17(4):639-644.
    [45]Boore,J.L.,Brown,W.M.Big trees from little genomes:mitochondrial gene order as a phylogenetic tool[J].Curr.Opin.Genet.Dev.,1998,8:668-674.
    [46]Boore,J.L.,Collins,T.M.,Stanton,D.Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements[J].Nature.,1995,376:163-167.
    [47]Shao,R.,Campbell,N.J.,Schmidt,E.R.Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects[J].Mol.Biol.Evol.,2001,18(9):1828-1832.
    [48]胡婧,刘念,黄原.节肢动物线粒体基因组研究进展与基因顺序分析[J].昆虫分类学报,2006,28(2):153-159.
    [49]Friedrich,M.,Tautz,D.Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution ofmyriapods[J].Nature.,1995,376(13):165-167.
    [50]Friedrich,M.,Muqim,N.Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum[J].Mol.Phyl.Evol.,2003,26(3):502-512.
    [51]Crozier,R.H.,Crozier,Y.C.The mitochondrial genome of the honeybee Apis mellifera:complete sequence and genome organization[J].Genetics,1993,133(1): 97-117.
    
    [52]Beard, C.B., Hamm, D.M., Collins, F.H. The mitochondrial genome of the mosquito Anopheles gambiae: DNAsequence, genome organization, and comparisons with mitochondrial sequences of other insects [J]. Insect Mol. Biol., 1993, 2(2):103-124.
    
    [53]Shao, R., Barker, S.C. The highly rearranged mitochondrial genome of the plague thrips, Thrips imagines (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes[J]. Mol. Biol. Evol., 2003, 20(3): 362-370.
    
    [54]Ogoh, K., Ohmiya, Y. Complete mitochondrial DNA sequence of the sea-firefly, Vargula ilgendorfli (Crustacea, Ostracoda) with duplicate control regions [J]. Gene, 2004, 327(1): 131-139.
    
    [55]Blattner, F.R., Plunkett, G., Bloeh, C.A. The complete genome sequenece of Eseheriehia coli K-12 [J]. Seience, 1997,277 (5331):1453-1474.
    [56]Zhang, D., Hewitt, G.M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolution studies [J]. Biochem. syst. Ecol., 1997,25:99-120.
    [57]Ray, D.A., Densmore, L. The crocodilian mitochondrial control region:general structure, conserved sequences, and evolutionary implications [J]. J. Exp. Zool., 2002,294(4): 334-345.
    [58]Ray, D.A., Densmore, L.D. Repetitive sequences in the crocodilian mitochondrial control region: poly-A sequences and heteroplasmic Rychlik tandem repeats [J]. Mol. Biol. Evol., 2003, 20(6): 1006-1013.
    [59]Yamauchi, M.M., Miya, M.U., Nishida, M. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura) [J].Gene, 2003, 311: 129-135.
    [60]Thao, M.L., Baumann, L., Baumann, P. Organization of the mitochondrial genomes of whiteflies, aphids, andpsyllids (Hemiptera, Sternorrhyncha)[J]. BMC Evol. Biol., 2004,4(1): 25.
    [61]Goddard, J.M., Wolstenholme, D.R. Origin and direction of replication in mitochondrial DNA molecules from Drosophila melanogaster [J]. Proc. Natl. Acad. Sci. U. S. A., 1978, 75(8):3886-3890.
    [62]Goddard, J.M., Wolstenholme, D.R. Origin and direction of replicationin mitochondrial DNA molecules from the genus Drosophila [J]. Nucleic. Acids. Res., 1980, 8(4):741-757.
    [63]Hixson, J.E., Wong, T.W., Clayton, D.A. Both the conserved stem-loopand divergent 5'-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication[J]. J. Biol. Chem., 1986,261(5): 2384-2390.
    [64] Fenn, J.D., Cameron, S.L., Whiting, M.F. The complete mitochondrial genome sequence of the Mormon cricket Anabrus simplex: Tettigoniidae: Orthoptera and an analysis of control region variability [J]. Insect Mol. Biol., 2007,16(2):239-252.
    [65] Stewart, J.B., Beckenbach, A.T. The complete mitochondrial genome sequence of a giant stonefly, Pteronarcys princeps, a symmetric directional mutation bias, and conserved plecopteran A+T-rich region elements [J]. Genome, 2006, 49(7): 815-824.
    [66]Dulbeeo, R. A turning point in cancer research: sequencing the human genome [J]. Science, 1986,231(4742): 1055-1056.
    [67] Bridge, D., Cunningham, C. W., Schierwater, B. Class-level relationships in the phylum Cnidaria, evidence from mitochondrial genome structure [J]. Proc. Natl. Acad. Sci. U.S.A., 1992, 89: 8750-8753.
    [68]Patterson, M. Politicogenomics takes centre stage [J]. Trends genet, 1998, 14: 59-260.
    [69]Junqueiraa, A.C.M., Lessingera, A.C., Torresa, T.T., Silvab, F.R., Vettorec, A.L., Arrudad, P., Espin, A.M.L.A. The mitochondrial genome of the blowfly Chrysomya chloropyga Diptera: Calliphoridae[J]. Gene, 2004, 339:7-15.
    [70]Kim, I., Cha, S.Y., Yoon, M.H., Hwang, J.S., Lee, S.M., Sohn, H.D., Jin, B.R. The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis Orthoptera: Gryllotalpidae [J]. Gene, 2005,353(2):155-168.
    [71]Wolstenholme, D.R. Animal mitochondrial DNA: structure and evolution[J]. Int. Rev. Cytol., 1992,141:173-216.
    [72]Zhong, J., Li, G, Liu, Z.Q., Li, Q.W., Wang, Y.Q. Gene rearrangement of mitochondrial genome in the vertebrate [J]. Acta Genetica Sinica, 2005, 32(3): 322-330.
    [73]Arunkumar, K.P., Nagaraju, J. Unusually long palindromes are abundant in mitochondrial control regions of insects and nematodes[J]. 2006, PLoS ONE, 1:e110.
    [74]Taanman, J.W. The mitochondrial genome: structure, transcription, translation and replication[J]. Biochem. Biophy. Acta., 2004,410: 103-123.
    [75]Tamura, K., Aotsuka, T. Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure[J]. Biochem. Genet., 1988, 26: 815-819.
    [76]Tapper, D.A., Clayton, D.A. Mechanism of replication of human mitochondrial DNA: localization of the 59 ends of nascent daughter strands[J]. J. Biol. Chem., 1981,256:5109-5115.
    [77]Tomizawa, J.I., Ohmori, H., Bird R.E. Origin of replication of colicin El plasmid DNA[J]. Proc. Natl. Acad. Sci. U.S.A., 1977, 74: 1865-1869.
    [78]Tsujino, F., Kosemura, A., Inohira, K., Hara, T., Otsuka, Y.F. Evolution of the A+T-rich region of mitochondrial DNA in the melanogaster species subgroup of Drosophila[J]. J. Mol. Evol., 2002, 55: 573-583.
    [79]Boom, R., Soul, C.J., Salimans, M.M., Jansen, C.L., Dillen, P. M. Rapid and simple method for purification of nucleic acids[J]. J. Clin. Microbiol., 1990, 28: 495-503.
    [80]Bowmaker, M., Yang, M.Y., Yasukawa, T., Reyes, A., Jacobs, H.T. Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone [J]. J. Biol. Chem., 2003,278: 50961-50969.
    [81]Brehm, A., Harris, D. J., Hernandez, M., Cabrera, V.M., Larruga, J.M. Structure and evolution of the mitochondrial DNA complete control region in the Drosophila subobscura subgroup[J]. Insect Mol. Biol., 2001, 10: 573-578.
    [82]Cairns, S.S., Bogenhagen, D.F. Mapping of the displacement loop within the nucleotide sequence of Xenopus laevis mitochondrial DNA[J]. J. Biol. Chem., 1986,261:8481-8487.
    [83]Carmean, D., Kimsey, L.S., Berbee, M.L. 18S rDNA sequences and the holometabolous insects [J]. Mol. Phyl. Evol., 1992, 1: 270-278.
    [84]Chang, D.D., Clayton, D.A. Priming of human mitochondrial DNA replication occurs at the light-strand promoter [J]. Proc. Natl. Acad. Sci. U.S.A., 1985, 82:351-355.
    [85]Chang, D.D., Hauswirth, W.W., Clayton, D.A. Replication priming and transcription initiate from precisely the same site in mouse mitochondrial DNA [J]. EMBOJ., 1985,4:1559-1567.
    [86]Clayton, D.A. Replication of animal mitochondrial DNA[J]. Cell, 1982, 28: 693-705.
    [87]Goddard, J.M., Wolstenholme, D.R. Origin and direction of replication in mitochondrial DNA molecules from genus Drosophila[J]. Nucleic. Acid. Res., 1980, 8: 741-757.
    [88]Hixson, J.E., Wong, T.W., Clayton, D.A. Both the conserved stem-loop and divergent 5'-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication[J]. J. Biol. Chem., 1986, 261: 2384-2390.
    [89]Holt, I.J., Lorimer, H.E. Jacobs, H.T. Coupled leadingand lagging-strand synthesis of mammalian mitochondrial DNA[J]. Cell, 2000,100: 515-524.
    [90]Inohira, K., Hara, T., Matsuura, E.T. Nucleotide sequence divergence in the A+T-rich region of mitochondrial DNA in Drosophila simulans and Drosophila mauritiana[J]. Mol. Biol. Evol., 1997,14: 814-822.
    [91]Kang, D., Miyako, K., Kai, Y., Irie, T., Takeshige, K. In vivo determination of replication origins of human mitochondrial DNA by ligation-mediated polymerase chain reaction [J]. J. Biol.Chem., 1997,272: 15275-15279.
    [92]King, T.C., Low, R. L. Mapping of control elements in the displacement loop region of bovine mitochondrial DNA [J]. J. Biol.Chem., 1987,262: 6204-6213.
    [93]Kornberg, A., Baker, T. A. DNA Replication [J], Ed., 1992,2: 1-52.
    [94]Lewis, D.L., Farr, C.L. Farquhar, A.L., Kaguni, L.S. Sequence, organization, and evolution of the A+T-rich region of Drosophila melanogaster mitochondrial DNA [J]. Mol. Biol. Evol., 1994,11: 523-538.
    [95]Martens, P.A., Clayton, D.A. Mechanism of mitochondrial DNA replication in mouse L-cells: localization and sequence of the light-strand origin of replication [J]. J. Mol. Biol., 1979, 135:327-351.
    [96]Monforte, A., Barrio, E., Latorre, A. Characterization of the length polymorphism in the A+T-rich region of the Drosophila obscura group species [J]. J. Mol. Evol. 1993, 36:214-223.
    [97]Monnerot,M.,Solignac,M.,Wolstenholme,D.R.Discrepancy in divergence of the mitochondrial and nuclear genomes of Drosophila teissieri and Drosophila yakuba[J].J.Mol.Evol.,1990,30:500-508.
    [98]陈惟昌,陈志华,邱红霞,王志强.遗传密码的高维空间对称性[J]生物物理学报,2001,17(2):87-94.
    [99]Mindell,D.,Sorenson,M.D.,Dimcheff,D.E.Multiple independent origins of mitochondrial gene order in birds[J]Proc.Natl.Acad.Sci.U.S.A.,1998,95:10693-10697.
    [100]Lee,W.-J.,Kocher,T.Complete sequence of a sea lamprey(Petromyzon marinus)mitochondrial genome:early establishment of the vertebrate genome organization of deuterostome mitochondria[J].Genetics,1995,150:1115-1123.
    [101]Laroche,J.,Snyder,M.,Cook,D.I.Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop Placopecten megellanicus[J].Mol.Biol.Evol.,1990,7:456-464.
    [102]Anderson,S.,Bruijn,M.H.L.D.,Coulson,A.R.,Eperon,I.C.,Sanger,F.Complete sequence of bovine mitochondrial DNA:conserved feature of the mammalian mitochonddal genome[J].J.Mol.Biol.,1982,156:683-717.
    [103]Graeber,M.B.,Muller,U.Rencent development in the molecular genetics of mitochondrial disorder[J].J.Neurol.Sci.,2007,153:251-263.
    [104]Gray,M.W.,Spencer,D.F.,Roberts DMS.P.,Alderson G,Collins,M.Organellar evolution of microbial Life[M].Cambridge:Cambridge University Press,1996.
    [105]闫华超,贾少波,许恒龙,齐桂兰.动物线粒体DNA提取简易流程及其优化[J].生物技术通讯,2007,18(1):95-97.
    [106]叶维萍,黄原.长PCR技术及其在动物学研究中的应用[J].动物学杂志,2003,38(3):105-109.
    [107]刘念,胡婧,黄原.应用长PCR扩增蝗虫线粒体全基因组[J].动物学杂志,2006,41(2):61-65.
    [108]Hwang,U.W.,Park,C.J.,Yong,T.S.,Kim,W.One-step PCR amplification of complete Arthropod mitochondrial genomes[J].Mol.Phyl.Evol.,2001,19(3):345-352.
    [109]Tamura,K.,Aotsuka,T.Rapid isolation method of animal mitochondrial DNA by the alkatine lysis procedure[J].Biochem.Genet.,1988,26(11/12):815-819.
    [110]Cheng, S. Chang, S.Y., Gravitt, P. Long PCR[J]. Nature, 1994, 369:684-685.
    [111]Sanger, F., Nicklen, S., Coulson, A.R. DNA Sequencing with Chain-terminating Inhibitors[J]. Proc. Natl. Acad. Sci. U.S.A., 1977, 74(12): 5463-5467.
    [112]Maxam, A.M., Gilbert, W. A new method for sequencing DNA[J]. Proc. Natl. Acad. Sci. U.S.A., 1977, 74:560-564.
    [113]Wheeler, W.C, Whiting, M.F, Wheeler, Q.D. The phylogeny of the extant hexapod order[J]. Cladistics, 2001,17: 113-169.
    [114]Dandekar, T., Snel, B., Huynen, M., Bork, P. Conservation of gene order: fingerprint of proteins that physically interact[J]. Trends Biochem. Sci., 1998, 23:324-328.
    [115]Cibois, A., Pasquet, E., Schulenberg, T.S. Molecular systematics of the Malagasy babblers (Passeriformes: Timaliidae) and warblers (Passeriformes: Sylviidae), based on cytochrome b and 16S rRNA sequences[J]. Mol. Phyl. Evol., 1999, 13: 581-595.
    [116]Coeur, D.A., Jousselin, E., Martin, J.F., Rasplus, J.Y. Phylogeny of the genus Aphis Linnaeus, 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences[J]. Mol. Phyl. Evol., 2007,42(3): 598-611.
    [117] Castro, L.R., Ruberu, K., Dowton, M. Mitochondrial Genomes of Vanhornia eucnemidarum (Apocrita: Vanhorniidae) and Primeuchroeus spp. (Aculeata: Chrysididae): Evidence of rearranged mitochondrial genomes within the Apocrita (Insecta: Hymenoptera)[J]. Genome, 2006,49: 752-766.
    [118] Jabbari, K., Bemardi, G Comparative genomies of Anopheles gambiae and Drosophila melanogaster[J]. Gene, 2004, 333:183-186.
    [119] Cameron, S.L., Johnson, K.P., Whiting, M.F. The Mitochondrial Genome of the Screamer Louse Bothriometopus (Phthiraptera: Ischnocera): Effects of extensive gene rearrangements on the evolution of the genome[J]. J. Mol. Evol., 2006, 38: 274-279.
    [120]Lavrov, D.V., Boore, J.L., Brown, W.M. The complete mitochondrial DNA sequence of the horseshoe crab Limulus poluphemus[J]. Mol. Biol. Evol., 2000, 17(5):813-824.
    [121] Fleisehmann, R.D., Adams, M.D., White, O. Whole- genome random sequencing and assembly of Haemophilus influenzae [J]. Science, 1995,269(5223): 496-512.
    [122]Adams,M.D.,Celniker,S.E.,Holt,R.A.The genome sequence of Drosophila melanogaster[J].Science,2000,287(5461):2185-2195.
    [123]Waterston,R.H.,Lindblad-Toh,K.,Bimey,E.Initial sequencing and comparative analysis of the mouse genome[J].Nature,2002,420(6915):520-62.
    [124]Sato,S.,Tabata,S.The complete genome sequence of Aiabidopsis thaliana[J].Tanpakushitsu Kakusan Koso,2001,46(1):61-65.
    [125]Holt,R.A.,Subramanian,G.M.,HalPem,A.The genome sequenee of the Malaria mosquito Anopheles gambiae[J].Seience,2002,298(5591):129-49.
    [126]Snel,B.,Bork,P.,Huynen,M.A.Insights into social insects from the genome of the honeybee Apis mellifera[J].Nature,2006,443(7114):931-49.
    [127]姚永刚,孔庆鹏,孙昌.人类线粒体DNA中碱基缺失/插入的真伪能否从世系的系统发育关系来判断?[J].科学通报,2003,48(4):348-352.
    [128]Yevgenya,K.,Schwartz,M.,Timothy,A.B.Recombination of human mitochondrial DNA[J].Science,2004,304:981.
    [129]Bansal,A.K.,Meyer,T.E.Evolutionary analysis by whole-genome comparisons [J].Journal of Bacteriology,2002,184(8):2260-2272.
    [130]Sasaki,T.,Nikaido,M.,Hamilton,H.,Goto,M.,Kato,H.,Kanda,N.,Pastene,L.A.,Gao,Y.,Fordyce,R.E.,Hasegawa,M.,Okada,N.Mitochondrial phylogenetics and evolution of mysticete whales[J].Systematic Biologists,2005,54(1):77-90.
    [131]Curole,J.P.,Kocher,T.D.Mitogenomids:digging deeper with complete mitochondrial genomes[J].Trends Ecol.Evol.,1999,14:394-398.
    [132]Boore,L.,Brown,W.M.Big trees from little genomes:mitochondrial gene order as a phylogenetic tool[J].Curr.Opin.Genet.Dev.,1998,8:668-674.
    [133]张亚平,施立明.两种锦鸡和环颈雉线粒体DNA的比较研究[J].动物学研究,1991,12(4):387-392.
    [134]Avise,J.C.,Arnold,J.,Ball,R.M.,Bermingham,E.,Lamb,T.,Neigel,J.E.,Reeb,C.A.,Saunders,N.C.Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics[J].Ann.Rev.Ecol.Syst.,1987,18:489-522.
    [135]徐庆刚,花保祯.线粒体DNA在昆虫系统性研究中的应用[J].西北农林科技大学学报,2001,29(Suppl.):79-83.
    [136]黄原主编.分子系统学原理方法及应用[M].北京:中国农业出版社,1998:65-156.
    [137]俞民澍.中国人群线粒体DNA部分突变位点的测定和意义[J],中国科学,1988,18(7):739-739.
    [138]Rawlings,T.A.,Collins,T.M.,Bieler,T.M.Changing identities:tRNA duplication and remolding within animal mitochonddal genomes[J].Proc.Natl.Acad.Sci.U.S.A.,2003.100:15700-15705.
    [139]Rokas,A.,Kathidthamby,J.,Holland,P.W.H.Intron insertion as a phylogenetic character:the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera[J].Insect Mol.Biol.,1999,8:527-530.
    [140]孙啸,陆祖宏,谢建明.生物信息学基础[M].北京:清华大学出版社,2005.
    [141]Kumar,S.,Tamura,K.,Nei,M.MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J].Brief Bioinform,2004,5(2):150-163.
    [142]成新跃,周红章,张广学.分子生物学技术在昆虫系统学研究中的应用[J].动物分类学报,2000,25(2),121-133.
    [143]Flook,P.K.,Rowell,C.H.F.The phylogeny of the Caelifera(Insecta,Orthoptera)as deduced from mitochondrial rRNA gene sequences[J].Mole.Phyl.Evol.1997a,8:89-103.
    [144]Chopard,L.La Biologic des Orthopteres[J].Encycl.Ent.Ser.,1938,20(Ⅳ):1-541.
    [145]Zeuner,F.E.Fossil Orthoptera Ensifera[M].London:British Museum Natural History,1939.
    [146]Gwynne,D.T.Katydids,L.Bush-Crickets:Diversity and evolution of the Tettigoniidae,in katydids and bush-crickets[M].Ithaca:Comell University Press,2001:18-48.
    [147]刘宪伟,殷海生.昆虫纲:直翅目,昆虫分类(上)[M].南京:南京师范大学出版社,1999:254-271.
    [148]Gwynne,D.T.,Morals,G.K.Tettigoniidae katydids,long-homed grasshoppers and bushcrickets.Version 26 November 2002.http://tolweb.org/Tettigoniidae/13298/2002.11.26 in The Tree of Life Web Project,http://tolweb.org/.
    [149]Wilson,H.F.,Doner,M.H.The historical development of insect classification[M].Madison:Wisconsin,1937.
    [150]Dirsh,V.M."Classification of the Acridomorphoid insects"[M],Oxford,Classey.1975.
    [151]郑哲民.蝗虫分类学[M].西安:陕西师范大学出版社,1993.
    [152]Otte,D.,Naskrecki,P.Orthoptera species file online(web site)< http://viceroy.eeb.uconn.edu/Orthoptera>(01/07/01).1997.
    [153]牛瑶.中国斑腿蝗科(广义)系统分类研究(直翅目:蝗总科)[D].西安:陕西师范大学,2008.
    [154]张建珍,马恩波,郭亚平.稻蝗属部分种类RAPD及其分子系统学关系[J].遗传学报,2003,30(6):533-539.
    [155]郑哲民,汪桂玲,黄原.斑腿蝗科11种蝗虫RAPD带型的变异[J].动物学报,2001,47(4):367-370.
    [156]Flook,P.K.,Klee,S.,Rowell,C.H.A combined molecular phylogenetic analysis of the Orthoptera and its implications for their higher systematics[J].Systematic Biology,1999,48(2):233-253.
    [157]Flook,P.K.,Klee,S.,Rowell,C.H.F.Molecular phylogenetic analysis of the basal Acridomorpha(Orthoptera,Caelifera):resolving morphological character conflicts with molecular data[J].Mol.Phyl.Evol.,2000,15:345-354.
    [158]Flook,P.K.,Rowell,C.H.F.The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order(Orthoptera)[J].Mol.Phyl.Evol.,1997b,8(2):177-192.
    [159]任竹梅,马恩波,郭亚平.山稻蝗及相关物种cytb基因序列及其遗传关系[J].遗传学报,2002,29(6):507-513.
    [160]任竹梅,马恩波,郭亚平.不同区域日本稻蝗cytb基因序列及其相互关系[J].山西大学学报(自然科学版),2002,25(3):244-248.
    [161]印红,张道川,毕智丽.蝗总科部分种类16SrRNA的分子系统发育关系[J].遗传学报,2003,30(8):766-772.
    [162]李新江,张道川,王文强.基于16SrRNA部分序列的6种短鼻蝗的分子系统学(直翅目:蝗总科)[J].动物学报,2005,51(增刊):138-142.
    [163]刘殿锋,蒋国芳,时号,孙正莉,霍光明.应用16SrDNA序列探讨斑腿蝗科的单系性及其亚科的分类地位[J].昆虫学报,2005,48(5):759-769.
    [164]刘殿峰.应用18SrDNA和16SrDNA序列研究蝗总科昆虫系统进化[D].南京:南京师范大学.2005.
    [165]陈爱辉,蒋国芳.基于线粒体12S和16SrRNA基因部分序列探讨蚱科12种的系统发育关系[J].动物学研究,2004,25(6):510-514.
    [166]胡婧,刘艳,黄原.网翅蝗科(Arcypteridae)部分种类全基因组提取及16S rRNA基因和COⅠ基因测序[J].陕西师范大学学报,2004,32:30-34.
    [167]孙正莉,蒋国芳,霍光明,刘殿锋.基于16S rDNA序列探讨中国剑角蝗科的单系性及其六属的系统发育关系[J].动物学报,2006,52(2):302-308.
    [168]霍光明,蒋国芳,孙正莉,刘殿锋,张雅林,吕林.基于Cytb基因的网翅蝗科系统发生重建[J].遗传学报,2007,34(4):294-306.
    [169]马兰,黄原.基于COⅡ基因序列的斑腿蝗科部分亚科的分子系统学研究[J].昆虫学报,2007,49(6):982-990.
    [170]丁方美,黄原.基于线粒体ND2基因的中国斑翅蝗科部分种类分子系统学研究(直翅目:蝗总科)[J].昆虫学报,2008,51(1):55-60.
    [171]叶维萍,叶海燕,卢慧甍,黄原.基于线粒体12SrRNA和ND5基因序列的中国飞蝗属3亚种系统发育关系研究[J].昆虫分类学报,2005,27(1):5-13.
    [172]曾维铭,蒋国芳,张大羽.用12SrDNA基因序列研究斑腿蝗科二属六种的进化关系[J].昆虫学报,2004,47(2):248-252.
    [173]潘程莹,胡婧,张霞.斑腿蝗科(Catantopidae)七种蝗虫线粒体COⅠ基因的DNA条形码研究[J].昆虫分类学报,2006,28(2):103-110.
    [174]Wand,N.X.,Feng,X.,Jiang,G.F.Fang,N.,Xuan,W.J.Molecular phylogenetic analysis of five subfamilies of the Acrididae(Orthopter:Acridoidea) based on the mitochondrial cytochrome b and cytochrome c oxidase subunit I gene sequences.J]昆虫学报,2008.51(11):1187-1195.
    [175]刘念.隆额网翅蝗线粒体基因组全序列的测定与分析[D].西安:陕西师范大学,2006.
    [176]刘艳.中华雏蝗和日本鸣蝗全线粒体基因组的测序及分析[D].西安:陕西师范大学,2007.
    [177]卢慧甍.霍山蹦蝗和意大利蝗全线粒体基因组的测序及分析[D].西安:陕西师范大学,2006.
    [178]肖莉莉.青脊竹蝗、云南蝗和亚洲飞蝗线粒体基因组序列测定及分析[D].西安:陕西师范大学,2007.
    [179]张辰艳.中华稻蝗、长翅燕蝗和四川凸额蝗的线粒体基因组全序列的测定及分析[D].西安:陕西师范大学,2007.
    [180]胡婧.笨蝗线粒体基因组测序及节肢动物线粒体基因组重排的系统发育分析[D].西安:陕西师范大学,2006.
    [181]Thompson,J.D.,Gibson,T.J.,Plewniak,F.,Jeanmougin,F.,Higgins,D.G.The CLUSTAL_X window interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic.Acid.Res.,1997,25:4876-4882.
    [182]Staden,R.,Beal,K.F.,Bonfield,J.K.The Staden Package[J].Methods Mol.Biol.,2000,132:115-130.
    [183]Sonnhammer,E.L.,Durbin,R.A Dot-Matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis[J].Gene,1995,167(1-2):GC1-10.
    [184]Rijk,P.D.,Wuyts,J.,Wachter,R.D.RNAViz2:an improved representation of RNA secondary structure[J].Bioinformatics,2003,19(2):299-300.
    [185]Kumar,S.,Tamura,K.,Nei,M.MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J].Brief Bioinform,2004,5:150-163.
    [186]Lowe,T.M.,Eddy,S.R.tRNAscan-SE:A program for improved detection of transfer RNA genes in genomic sequence[J].Nucleic.Acid.Res.,1997,25:955-964.
    [187]Bonfield,J.,Smith,K.,Staden,R.A new DNA sequence assembly program[J].Nucleic.Acid.Res.,1995,23(24):4992-4999.
    [188]Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,Lipman,D.J.Basic local slignment dearch tool[J].J.Mol.Biol.,1990,215:403-410.
    [189]Huelsenbeck,J.P.,Ronquist,F.MRBAYES:Bayesian inference of phylogenetic trees[J].Bioinformatics,2001,17(8):754-755.
    [190]Posada,D.ModelTest Server:A Web-Based tool for the statistical selection of models of nucleotide substitution online[J].Nucleic.Acid.Res.,2006,34(Web Server issue):W700-703.
    [191]Posada,D.,Crandall,K.A.MODELTEST:Testing the model of DNA substitution [J].Bioinformatics,1998,14(9):817-818.
    [192]Hall,T.A.BioEdit:A User-Friendly biological sequence alignment editor and analysis program for windows 95/98/NT[J].Nucl.Acids.Symp.Ser.,1999,41:95-98.
    [193]Burland,T.G.DNASTAR's Lasergene sequence analysis software[J].Methods in Molecular Biology,2000,132:71-91.
    [194]Swofford,D.PAUP:phylogenetic analysis using parsimony,version 4.0b10(PPC),Sinauer Associates,Sunderland,Massachusetts.2001.
    [195]Simon,C.,Buckley,T.R.,Frati,F.,Stewart,J.B.,Beckenbach,A.T.Incorporating molecular evolution into phylogenetic analysis,and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA[J].Annu.Rev.Ecol.Syst.,2006,37:545-579.
    [196]Chen,X.F.,Wang,X.,Yuan,X.D.,Tang,M.Q.,Li,Y.X.,Guo,Y.M.,Li,Q.W.Sequence variation of mitochondrial cytochrome b gene and phylogenetic relationships among twelve species of Charadriiformes[J].Acta Genetica Sinica,2003,30(5):419-4241.
    [陈晓芳,王翔,袁晓东,汤敏谦,李玉祥,郭玉梅,李庆伟,衍形目12种鸟类线粒体细胞色素b基因序列差异及其系统发育关系.遗传学报[J],2003,30(5):419-424.]
    [197]Knight,A.,Mindell,D.P.Subsititions bias,weighting of DNA sequence evolution,and the phylogenetic positions of Fea's viper[J].Syst.Biol.,1993,42(1):18-311.
    [198]Steinberg,S.,Leclerc,F.,Cedergren,R.Structural rules and conformational compensations in the tRNA L-Form[J].J.Mol.Biol.,1997,266:269-282.
    [199]周志军,五种螽蜥线粒体基因组的测定与直翅目谱系基因组学分析[D].西安:陕西师范大学,2008.
    [200]Fenn,J.D.,Song,H.,Cameron,S.L.,Whiting,M.F.A preliminary mitochondrial genome phylogeny of Orthoptera(Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data[J].Mol.Phyl.Evol.,2008,49:59-68.
    [201]Sueoka,N.Intrastand parity rules of DNA base composition and usage biases of synonymous codons[J].J.Mol.Evol.,1995,40:318-325.
    [202]Flook,P.K.,Rowell,C.H.F.,Gellissen,G.The sequence,organization,and evolution of the Locusta migratoria mitochondrial genome[J].J.Mol.Evol.,1995,41:928-941.
    [203]Buckley,T.R.,Simon,C.,Flook,P.K.Secondary strueture and conserved motifs of the frequently sequenced domains Ⅳ and Ⅴ of the insect mitochondrial large subunit rRNA gene[J].J.Insect Mol.Biol.,2000,9(6):565-580.
    [204]Hiekson,R.E.,Simon,C.,Cooper,A.Conserved sequence motifs,alignment,and secondary strueture for the third domain of animal 12SrRNA[J].J.Mol.Biol.Evol.,1996,13(1):150-169.
    [205]Valverde,J.R.,Marco,R.,Garesse,R.A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria[J].Proc.Natl.Acad.Sci.U.S.A.,1994,91:5368-5371.
    [206]Saito,S.,Tamura,K.,Aotsuka,T.Replication origin of mitochondrial DNA in insects[J]Genetics,2005,171:1695-1705.
    [207]Tapper,D.P.,Clayton,D.A.Mechanism of replication of human mitochondrial DNA localization of the 5' ends of nascent daughter strands[J].J.Biol.Chem.,1981,256(10):5109-5115.
    [208]Blackith,R.E.,Blackith,R.M.A numerical taxonomy of Orthopteroid insects[J].Aust.J.Zool.,1968,16:111-131.
    [209]郑哲民,乔格侠.中国蝗总科昆虫科间系统发育关系支序分析(直翅目:蜱亚目)[J]动物分类学报,1998,23(3):276-280.
    [210]许升全,李厚魂,郑哲民.中国瘤锥蝗科和锥头蝗科的支序系统学研究[J].动物分类学报,2003,28(3):381-384.
    [211]刘举鹏.蝗卵形态结构与蝗虫系统发育关系的初步研究[J].系统进化动物学论文,1991,1:89-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700