双环醇对小鼠急性酒精性肝损伤和肝细胞凋亡的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酒精性肝病(alcoholic liver disease,ALD)为长期过量饮酒所致肝脏损伤,是西方国家肝脏疾病的主要诱因,在我国发病率也有逐年上升的趋势。ALD的临床表现包括以肝脏脂肪变为主要特征的轻度损伤和炎症、纤维化/肝硬化等中/重度损伤。此外,约15%酒精性肝硬化患者可发展为肝细胞癌。
     ALD的发生、发展是涉及遗传、营养和环境因素的多因素过程,其早期发病机制与氧化应激、内毒素介导的细胞因子释放、线粒体损伤、肝细胞凋亡等密切相关。已知ALD的早期损伤如经及时治疗多可逆转,因此寻找治疗ALD的药物具有重要的临床意义。
     双环醇为我国自行研制的具有自主知识产权的抗肝炎新药,已用于治疗慢性病毒性肝炎。临床资料显示,双环醇可明显改善慢性乙型、丙型病毒性肝炎的症状和肝功能损伤,兼有一定抑制乙型肝炎病毒复制的作用,具有反跳率低、不良反应小、服用方便的特点。以往药理研究表明,双环醇对四氯化碳、D-半乳糖胺、刀豆蛋白A和扑热息痛等多种化学毒物诱发的实验性肝损伤均有保护作用,其保护机制与清除活性氧自由基、调控细胞因子分泌、抑制免疫损伤诱发的凋亡等相关。
     一项开放、随机、对照临床研究表明,双环醇对ALD也有较好的治疗效果,提示双环醇可能在治疗ALD方面有一定的应用前景。本实验室既往研究也显示,双环醇对酒精性脂肪肝动物有显著保护作用,但相关机制未作深入探讨。因此本研究选用两种简单、易行的急性酒精性肝损伤模型,模拟ALD早期损伤,观察双环醇的保护作用,并针对ALD早期致病因素探讨双环醇的相关作用机制,为其临床应用提供科学可靠的实验依据。
     1.双环醇对急性酒精中毒小鼠肝损伤的保护作用及机制研究
     小鼠单次酒精(6g/kg)灌胃可导致急性肝损伤,表现为血清丙氨酸氨基转移酶(alanine transaminase,ALT)水平升高至对照组的2.3倍、肝脏甘油三酯蓄积达3.6倍以及中央静脉和小叶间静脉周围肝细胞肿胀、水样变性等病理变化。双环醇预处理(200,300mg/kg)剂量依赖性显著抑制血清ALT升高(分别降低60%和71%)和肝脏甘油三酯蓄积(分别降低18%和35%),并明显改善上述肝组织病理变化。
     氧化应激是急性酒精性肝损伤的主要诱因之一。酒精灌胃后6h时脂质过氧化产物硫代巴比妥酸反应性底物(thiobarbituric acid-reactive substance,TBARS)水平开始升高,12h时为对照组的2.7倍;而非酶抗氧化物谷胱甘肽(glutathion,GSH)含量从1.5h即开始下降,6h时降至对照组的40%。双环醇(300mg/kg)可显著抑制TBARS水平的升高(32%),并防止GSH耗竭,使其维持在正常水平。此外,酒精灌胃后1.5h时肝脏抗氧化物酶超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、谷胱甘肽还原酶(glutathion reductase,GR)和谷胱甘肽过氧化物酶(glutathion peroxidase,GSH-px)活性发生显著变化,与对照组相比分别降低35%、18%、49%、45%。双环醇预处理(200,300mg/kg)可显著抑制SOD和GSH-px活性的降低,使SOD活性分别恢复至对照组的94%和99%,GSH-px活性分别恢复至对照组1.3倍和.5倍。双环醇(300mg/kg)对CAT和GR活性的降低也有一定改善作用,但无统计学意义。
     肿瘤坏死因子-α(tumor necorsis factor-α,TNF-α)和白细胞介素-1β(interleukin-1β,IL-1β)是介入ALD损伤的重要炎症因子。酒精灌胃后1.5h肝脏TNF-α和IL-1β蛋白水平开始升高,12h达峰,分别为正常对照组的2.4倍和1.7倍。双环醇(200,300mg/kg)可明显抑制肝脏TNF-α和IL-1β水平升高,使TNF-α蛋白水平分别降低33%和47%,IL-1β蛋白水平分别降低26%和46%。酒精灌胃后12h,TNF-α和IL-1βmRNA表达分别增至对照组的2倍、2.4倍,而双环醇可明显抑制这一变化。此外,双环醇(300mg/kg)还可减少Kupffer细胞TNF-α的表达。
     内毒素是激活Kupffer细胞的主要因素。酒精灌胃后1.5h血浆内毒素含量显著升高(达到对照组的9.6倍),6h后可恢复至正常水平。双环醇(200,300mg/kg)可显著抑制血浆内毒素含量升高,抑制率分别为79%、60%。CD14是内毒素活化Kupffer细胞的关键受体。酒精灌胃后12h可诱导Kupffer细胞CD14的高表达。双环醇(300mg/kg)可显著抑制CD14的过表达。
     由此可见,双环醇对急性酒精性肝损伤有显著的保护作用,其肝保护机制可能与减轻氧化应激、抑制细胞因子表达、降低血浆内毒素水平和CD14表达以抑制Kupffer细胞活化相关。
     2.双环醇对酒精中毒小鼠肝脏细胞凋亡的保护作用及机制研究
     小鼠连续三次酒精(6g/kg)灌胃后可导致明显肝损伤,变现为血清ALT水平升高(为对照组的2.2倍),肝脏炎症相关蛋白环氧合酶-2(cyclooxygenase-2,COX-2)表达增加(为对照组的2.2倍),肝组织出现髓样变性、小空泡变性和炎性细胞浸润。酒精中毒小鼠还出现明显的肝细胞凋亡,表现为脱氧核苷酸末端转移酶介导的缺口末端标记(terminal deoxynucleotidyl transferase(TdT)nick-rnd labeling,TUNEL)染色阳性细胞数显著增加。双环醇给药可明显降低酒精诱导的血清酶学改变,还可抑制COX-2蛋白的过表达,减轻肝脏病理改变,同时具有抑制肝细胞凋亡的保护作用。
     酒精在体内的代谢过程中可生成毒性代谢产物-乙醛,同时伴随产生大量活性氧自由基(reactive oxygen species,ROS),是后续氧化/硝化应激的始发因素。模型组参与乙醇代谢的胞浆乙醇脱氢酶(alcohol dehydrogenase,ADH)活性升高至对照组的1.5倍,微粒体细胞色素P450 2E1(cytochrome P450 2E1,CYP2E1)活性和蛋白表达也分别升高至对照组的2.2倍和2.6倍。双环醇(300mg/kg)可使ADH和CYP2E1活性分别降低20%和25%,CYP2E1蛋白的过表达可基本恢复至正常水平。此外,模型组线粒体和胞浆乙醛脱氢酶(acetaldehyde dehydrogenase,ALDH)活性分别升高27%和66%,双环醇(300mg/kg)可显著抑制胞浆ALDH活性的增加。
     酒精引起的氧化应激可导致模型组动物肝脏氧化蛋白含量升高至对照组的1.7倍,胞浆NAD~+/NADH则降低30%,而线粒体GSH含量降低10%。双环醇给药(200,300mg/kg)可显著抑制酒精诱导的氧化蛋白含量升高,改善NAD~+/NADH下降,并使GSH维持在正常水平。
     除氧化应激外,酒精还可诱发硝化应激。酒精连续三次灌胃后,小鼠肝脏一氧化氮(nitric oxide,NO)含量升高至对照组的1.5倍,诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)活性和蛋白表达分别升高至对照组的2.6和3.2倍,硝基酪氨酸(nitrotyrosine,NT)蛋白表达升高至对照组的2.5倍。双环醇200,300mg/kg给药可显著降低酒精引发的NO含量升高,使之接近正常水平,300mg/kg明显抑制iNOS和NT蛋白的过表达(40%和53%)。
     ALD中氧化/硝化应激可引发线粒体损伤,启动内源性凋亡信号通路。模型组小鼠肝脏线粒体对罗丹明123(rhodamine 123,R123)的摄取量明显少于对照组,对高钙浓度诱发肿胀的敏感性降低(50%),提示线粒体发生了膜渗透性转换。双环醇(200,300mg/kg)可显著改善受损的线粒体功能,表现为线粒体对R123的摄取量以及高钙浓度引发的吸光度下降幅度均明显增加。此外,模型组线粒体呼吸链功能受到明显抑制,线粒体呼吸链复合物(mitochondrial respitatory complex,MRC)Ⅰ和MRCⅣ活性分别下降为正常对照组的42%和70%。双环醇300mg/kg给药后MRCⅠ和MRCⅣ活性较模型组均有明显升高,分别恢复至对照组的65%和85%。线粒体损伤最终导致细胞色素C释放入胞浆,表现为模型组肝脏胞浆细胞色素C蛋白含量增加至正常对照组的2倍。双环醇给药组胞浆细胞色素C蛋白含量几乎接近正常水平。Bax和Bcl-X_(S/L)分别为重要的促凋亡蛋白和抗凋亡蛋白,模型组两种蛋白表达均上调,分别达到对照组的1.6倍和3.1倍。双环醇300mg/kg对Bax和Bcl-X_(S/L)的过表达均有一定抑制作用。
     Fas/Fas配体(Fas ligangd,FasL)参与死亡受体介导的外源性凋亡通路。模型组肝脏Fas、膜结合型FasL(membrane-bond FasL,mFasL)、可溶性FasL(solubleFasL,sFasL)蛋白表达分为上调为对照组的1.5倍、4和2倍。双环醇300mg/kg可使Fas表达降低为模型组的45%,mFasL和sFasL的表达恢复正常水平。模型组肝脏细胞核中核因子-κB(nuclear factor-κB,NF-κB)的蛋白表达也有明显变化,即降至对照组的16%,此外胞浆抑制蛋白-κB(inhibitor of NF-kB,ⅠκB)的蛋白表达较对照组增加15%。双环醇300mg/kg可使NF-κB蛋白表达维持在正常水平,同时抑制ⅠκB的过表达(50%)。
     由此可见,双环醇对酒精所致肝细胞凋亡有明显的保护作用,其机制与影响酒精代谢酶活性和/或表达、抑制氧化/硝化应激,改善线粒体损伤,减轻Fas/FasL过表达,从而同时抑制内源性、外源性凋亡信号通路有关。
     综上所述,双环醇对酒精引起的小鼠肝脏损伤具有明显的保护作用。其不仅可抑制血清转氨酶升高、肝脏甘油三酯蓄积,还可改善肝细胞肿胀、水样和髓样变性、炎性细胞浸润等病理学损伤。此外,双环醇对肝细胞凋亡也有显著的抑制作用,其保护作用的机制可归纳为:
     1)酒精代谢酶调控:抑制ADH和ALDH活性,抑制CYP2E1活性并下调蛋白表达。
     2)抑制氧化应激:减轻脂质过氧化,恢复GSH含量,改善抗氧化物酶SOD、GSH-px、GR、CAT的活性,减少氧化蛋白含量,恢复NAD~+/NADH
     3)抑制硝化应激:降低NO水平,抑制iNOS和NT蛋白过表达
     4)调节炎症细胞因子表达:下调TNF-α、IL-1β蛋白和mRNA表达
     5)抑制Kupffer细胞活化:降低内毒素水平,抑制CD-14过表达
     6)减轻线粒体损伤:维持线粒体膜完整性和正常膜电位,恢复线粒体GSH含量,增加MRCⅠ和Ⅳ活性,减少细胞色素C释放
     7)调节凋亡相关蛋白:下调Fas、mFasL、sFasL、Bax、Bcl-X_(S/L)、I-κB蛋白表达,上调NF-κB蛋白表达
     上述研究为进一步了解双环醇的肝保护作用特点以及临床治疗ALD提供了有参考价值的实验依据。
ALD is induced by chronic alcohol abuse and represents a major cause of morbidity and mortality in western counties.The incidence of ALD is increasing with the improvement of living conditions in China recently.The clinical manifestation of ALD ranges from minor injury including steatosis to moderate and severe injury characterized by hepatitis and fibrosis/cirrhosis.Moreover,approximately 15%of the patients with established alcoholic cirrhosis develop to hepatocellular carcinoma.The development of ALD is a multifactoral process involving various genetic,nutritional and environmental factors,and its early pathogenesis is closely related with oxidative stress,endotoxin-mediated cytokine release,and apoptosis.Most injuries in early stage of ALD are reversible,so that further aggravation can be prevented by abstinence and symptomatic treatment.Therefore,development of drugs targeting at early injuries of ALD will have great clinical significance.
     Bicyclol is a novel anti-hepatitis drug for the treatment of chronic viral hepatitis. Clinical data showed that bicyclol can significantly improve the symptoms and damaged liver function in chronic type B and type C viral hepatitis in addition to inhibit the replication of type B hepatitis virus,featured by low rebounding rate,few adverse effects and convenient usage.Previous pharmacological studies have demonstrated that bicyclol offer protective effect on experimental liver injury induced by various chemical toxicants,such as carbon tetrachloride,D-galactosamine, concanavalin A and acetaminophen.The hepatoprotective mechanisms of bicyclol include the clearance of reactive oxygen species,regulation of cytokine secretion,and inhibition of apoptosis induced by immunological injury,etc.
     An open-labeled,randomized and controlled clinical study has reported that bicyclol had therapeutic effect on ALD,indicating its application perspective in the treatment of ALD.Previous study in our laboratory has also demostrated its role in protecting experimental animals from alcohol-induced steatosis,however,in-depth investigation on related mechanisms are still needed.Therefore,two simple and convenient models of acute alcohol-induced liver injury were established in the present study to observe the protective effect of bicyclol and related mechanisms,so as to provide experimental evidences for its clinical application.
     PartⅠ:Protective effect of bicyclol on acute alcohol-induced liver injury in mice and related mechanisms
     Single intragastic administration of alcohol(6g/kg)induced acute liver injury,as evidenced by elevation of serum ALT(2.3 times of control at 6h)and hepatic triglyceride levels(3.6 times of control at 6h),swelling and hydropic degeneration of hepatocytes,which reflected early biochemical and pathological changes in ALD. Bicyclol pretreatment(200,300mg/kg)significantly alleviated ALT elevation(60% and 71%)and hepatic triglyceride accumulation(18%and 35%)in a dose dependent manner.Moreover,bicyclol markedly improve the above liver pathological changes.
     Oxidative stress is the major pathogenetic factor in acute alcohol-induced liver injury.Hepatic TBARS content was elevated from 6h after alcohol administration and reached 2.7 fold of the control at 12 h.On the contrary,hepatic GSH content was decreased as early as 1.5 h after alcohol treatment and only 40%of control was found at 6 h.Pretreatment with bicyclol(300mg/kg)significantly inhibited the increase of TBARS content(32%)and prevented GSH depletion.In addition,a notable change of liver SOD,CAT,GR and GSH-px was observed as indicated by the decreasing of enzyme activity(35%,18%,49%and 45%)at 1.5 h after alcohol administration. Pretreatment with bicyclol(200,300mg/kg)significantly inhibited the decrease of SOD(returned to 94%and 99%of control,)and GSH-px(returned to 1.3 and 1.5 fold of control)dose-dependently.In addition,bicyclol(300mg/kg)also showed slight protective effect against alcohol-induced decrease of CAT and GR activity,although there was no statistical significance.
     TNF-αand IL-1βare two key inflammatory cytokines in ALD.Hepatic TNF-αand IL-1βlevels were elevated at 1.5 h and reached peak level at 12 h after alcohol administration.Bicyclol(200,300mg/kg)significantly alleviated hepatic TNF-αproduction by 33%and 47%,and IL-1βby 26%and 46%,respectively.The mRNA expression of TNF-αand IL-1βwas increased to 2 and 2.4 times of control by alcohol administration and bicyclol significantly inhibited such changes of two cytokines. Furthermore,bicyclol(300mg/kg)pretreatment can decrease the positive TNF-αstaining on Kupffer cells.
     Endotoxin is the main factor responsible for the activation of Kupffer cell.It was found that plasma endotoxin level was markedly increased at 1.5 h(9.6 fold of control) and declined to the normal level at 6 h after alcohol treatment in the present study. Bicyclol(200,300 mg/kg)significantly inhibited the elevation of plasma endotoxin level by 79%and 60%,respectively.CD-14 is the critical receptor in activation of Kupffer cell by endotoxin.Expression of CD-14 can be greatly induced at12h after alcohol intoxication and bicyclol(300mg/kg)reduced the over-expression of CD-14 significantly.
     In conclusion,bicyclol showed significant protective effect on acute alcohol-induced liver injury.The hepatoprotective action of bicyclol is mostly mediated by its ability to attenuate oxidative stress,suppress cytokine expression at both protein and gene level,and inhibit the activation of Kupffer cell by decreasing plasma endotoxin level and CD 14 expression.
     PartⅡ:Effect of bicyclol on hepatocyte apoptosis in alcohol-intoxicated mice and related mechanisms
     Three consecutive intragastric administration of alcohol(6g/kg)in 12h interval resulted in an obvious liver injury and inflammation in mice,as indicated by the elevation of serum alanine transaminase(2.2 fold of control),increased hepatic COX-2 protein expression(2.2 fold of control),as well as liver pathological changes characterized by myelonic degeneration,vacuolar degeneration and inflammatory infiltration.Alcohol-intoxicated mice also showed obvious hepatocyte apoptosis,as positive cells in TUNEL staining were significantly increased.Bicyclol pretreatment can markedly decrease elevated serum transaminase,inhibit over-expression of COX-2 protein,and alleviate pathological changes.Furthermore,bicyclol diminished the number of TUNEL positive cells and staining intensity,suggesting its role in protection against alcohol-induced hepatocyte apoptosis.
     The metabolism of alcohol produces toxic metabolite-acetaldehyde and generates large amount of ROS at the same time,which is the priming factor for successive oxidative and nitrosative stress.Compared with control group,liver cytosolic ADH activity was increased by 46%after alcohol administration,while liver microsomal CYP2E1 activity and protein expression was increased to 2.2 fold and 2.6 fold of control,respectively.Pretreatment with bicyclol(300mg/kg)can decrease ADH and CYP2E1 activity by 20%and 25%respectively,and return CYP2E1 protein expression to approximate normal level.Moreover,liver mitochondrial and cytosolic ALDH activity in model group was elevated by 27%and 66%,respectively.Bicyclol (300mg/kg)can significantly regulate the increased cytosolic ALDH activity.
     Oxidative stress is an important pathogenetic factor in early stage of ALD.Liver oxidized protein content was increased to 1.7 fold,while cytosolic NAD~+/NADH and mitochondrial GSH content was decreased by 30%and 10%by alcohol,when comparing with control group.Bicyclol pretreatment(200,300mg/kg)notably inhibited the elevation of protein carbonyl content,antagonized the change in NAD~+/NADH,and maintained GSH at normal level.
     In addition to oxidative stress,alcohol can also induce nitrosative stress.After three consecutive alcohol administration,hepatic NO content,iNOS activity and protein expression,and NT protein expression was increased to 1.5,2.6,3.2 and 2.5 fold of control,respectively.Bicyclol pretreatment(200,300mg/kg)can effectively reversed the elevated NO content to normal level,and inhibited the over-expression of iNOS and NT by 40%and 53%respectively.
     Both oxidative and nitrosative stress in ALD can induce liver mitochondrial injury,leading to the activation of endogenous apoptosis signaling pathway.The uptake of R123 by liver mitochondria in model group was less than that in control group,and the sensitivity to high level of calcium-induced swelling was also decreased(about 50%of control group),suggesting the occurrence of membrane permeability transition.Bicyclol(300mg/kg)markedly alleviated injured mitochondrial function,as manifested by recovery of R123 uptake and increased changing amplitude in response to high calcium concentration.In addition,the function of mitochondrial respiratory chain was affected.MRCⅠandⅣactivity was decreased to 58%and 30%of control by alcohol administration,which was recovered to 65%and 85%of control by bicyclol(300mg/kg).Mitochondrial injury will ultimately lead to the release of cytochrome C into cytoplasm,as reflected by the two-fold increase of cytochrome C protein content in alcohol group.Bicyclol showed inhibitive effect on the release of cytochrome C.The expression of Bax and Bcl-X_(S/L), as the pro-apoptotic and anti-apoptotic protein,were both up-regulated in alcohol-intoxicated mice(1.6 and 3.1 fold of control).Bicyclol(300mg/kg) pretreatment suppressed the over-expression of both Bax and Bcl-X_(s/L).
     Fas and FasL are believed to be involved in death-receptor mediated exogenous apoptosis pathway.Protein expression of Fas,mFasL,and sFasL were all elevated in alcohol-intoxicated mice(1.5,4 and 2 fold of control).Bicyclol(300mg/kg)decreased the expression of Fas by 55%and recovered the expression of mFasL and sFasL to normal level.Furthermore,protein level of NF-κB in nucleus was decreased to 16% of control,while cytosolic ptotein level of I-κB was increased by 15%compared with control.Bicyclol(300mg/kg)can maintain the protein expression of NF-κB at normal level,and inhibit the over-expression of I-κB simultaneously(50%).
     In summary,bicyclol had significant protective effect on alcohol-induced hepatocyte apoptosis.Its mechanisms were related to its influence on alcohol metabolizing enzymes,inhibition on oxidative/nitrosative stress,improvement of mitochondrial injury,and alleviation of Fas/FasL over-expression,thereby suppressing both endogenous and exogenous apoptosis signaling pathways.
     In conclusion,bicyclol had a notable protective effect on alcohol-induced liver injury and hepatocyte apoptosis in mice.It can not only significantly inhibit elevation of serum transaminase and accumulation of hepatic triglyceride,but also improve histopathological changes,including hepatocyte swelling,hydropic degeneration, myelonic degeneration,vacuolar degeneration and inflammatory infiltration.In addition,bicyclol markedly decreased the number of TUNEL positive cells and attenuated staining intensity.The possible mechanisms included:
     1)Regulation on alcohol metabolizing enzyme:inhibit ADH and ALDH activity, inhibit CYP 2E1 activity as well as its protein expression
     2)Inhibition of oxidative stress:attenuate lipid peroxidation,restore GSH content,improve the activity of antioxidant enzymes,including SOD,GSH-px,GR, and CAT,decrease the content of oxidized protein,and restore NAD~+/NADH
     3)Inhibition of nitrosative stress:reduce NO content,and inhibit over-expression of iNOS and nitrotyrosine
     4)Regulation on inflammatory cytokines:down-regulate both protein and mRNA expression of TNF-αand IL-1β
     5)Suppression of Kupffer cell activation:decrease endotoxin level,and inhibit CD-14 over-expression
     6)Attenuation of mitochondrial injury:maintain mitochondrial membrane integrity and normal membrane potential,restore mitochondrial GSH content, increase MRCⅠand MRCⅣactivity,and reduce cytochrome C release
     7)Regulation on expression of apoptosis-related proteins:down-regulate Fas, mFasL,sFasL,Bax,Bcl-X_(S/L),IκB,while up-regulate NF-κB
     With the results mentioned above,the present study will provide valuable experimental evidences for further investigation on the hepatoprotective effect of bicyclol and the possibility of clinical application in the treatment of ALD.
引文
1.Tuma,D.J.,Sorrell,M,Alcohol and alcoholic liver disease.Semin.Liver Dis.2004,24(3):215.
    2.Mandayam,S.,Jamal,M.M.,Morgan,T.R.Epidemiology of alcoholic liver disease.Semin.Liver Dis.2004,24(3):217-232.
    3.Zhuang,H.,Zhang,J.H.Epidemiology of alcoholic liver disease.Chin.J.Gastroenterol.2003,8(5):294-297.
    4.Tsukamoto,H.,Lu,S.C.Current concepts in the pathogenesis of alcoholic liver injury.FASEB J.2001,15(8):1335-1349.
    5.Bouneva,I.,Abou-Assi,S.,Heuman,D.M.,Mihas,A.A.Alcoholic liver disease.Hosp.Physician 2003,39(10):31-38.
    6.Yao,GB.,Xu D.Z.,Lan,P.,Xu,C.B.,Wang C,Luo J.,Shen Y.M.,Li Q.Efficacy and safety of bicyclol in treatment of 2,200 chronic viral hepatitis.Chin J New Drugs Clin Rem 2005,24(6):421-426.
    7.Liu,GT.The anti-virus and hepatoprotective effect of bicyclol and its mechanism of action.Chin.J.New Drugs 2001,10(5):325-327.
    8.Day,C.P.Treatment of alcoholic liver disease.Liver Transpl.2007,13(11 Suppl 2):S69-75.
    9.De Alwis NMW,Day C.P.Genetics of alcoholic liver disease and nonalcoholic fatty liver disease.Semin Liver Dis 2007,27(1):44-54.
    10.Lieber,C.S.Ethanol metabolism,cirrhosis and alcoholism.Clin.Chim.Acta 1997,257(1):59-84.
    11.Lieber,C.S.,Abittan,C.S.Pharmacology and metabolism of alcohol,including its metabolic effects and interactions with other drugs.Clin.Dermatol.1999,17(4):365-379.
    12.Wu,D.,Cederbaum,A.I.Alcohol,oxidative stress,and free radical damage.Alcohol Res.Health 2003,27(4):277-284.
    13.Dey,A.,Cederbaum,A.I.Alcohol and oxidative liver injury.Hepatology 2006,43(S1):S63-S74.
    14.McClain,C.J.,Barve,S.,Deaciuc,I.,Kugelmas,M.,Hill,D.Cytokines in alcoholic liver disease.Semin.Liver Dis.19(2):205-219.
    15.Thurman,R.G.,Bradford,B.U.,Iimuro,Y,Frankenberg,M.V.,Knecht,K.T.,Connor,H.D.,Adachi,Y,Wall,C,Arteel,G.E.,Raleigh,J.A.,Forman,D.T.,Mason,R.P.Mechanisms of alcohol-induced hepatotoxicity:studies in rats.Front Biosci.1999,15(4):e42-e46.
    16.Tilg,H.,Diehl,A.M.Cytokines in alcoholic and nonalcoholic steatohepatitis.N.Engl.J.Med.2000,343(20):1467-1476.
    17.Rivera,C.A.,Bradford,B.U.,Seabra,V.,Thurman,R.G.Role of endotoxin in the hypermetabolic state after acute ethanol exposure.Am.J.Physiol.Gastrointest.Liver Physiol.1998,275(6 Pt 1):G1252-G1258.
    18.Nolan,J.P.The role of endotoxin in liver injury.Gastroenterology 1975,69(6):1346-1356.
    19.Adachi,Y.,Bbradford,B.U.,Gao,W.,Bojes,H.K.,Thurman,R.G.Inactivation of Kupffer cells prevents early alcohol-induced liver injury.Hepatology 1994,20(2):453-460.
    20.Wright,S.D.,Ramos,R.A.,Tobias,P.S.,Ulevitch,R.J.,Mathison,J.C.CD14,a receptor for complexes of lipopolysaccharide(LPS) and LPS binding protein.Science 1990,249(4975):1431-1433.
    21.Ohkawa,H.,Ohishi,N.,Yagi,K.Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal.Biochem.1979,95(2):351-358.
    22.Ellman,G.L.Tissue sulfhydryl groups.Arch.Biochem.Biophys.1959,82(1):70-77.
    23.Halliwell,B.Antioxidant defense mechanisms:From the beginning to the end.Free Radical Research 1999,31(4):261-272,.
    24.Diluzio,N.R.Prevention of the acute ethanol-induced fatty liver by the simultaneous administration of antioxidants.Life Sci.1964,3:113-118.
    25.Diluzio,N.R.,Hartman,A.D.Role of lipid peroxidation in the pathogenesis of the ethanol-induced fatty liver.Fed.Proc.1976,26(5):1436-1442.
    26.Rouach,H.,Fataccioli,V.,Gentil,M.,French,S.W.,Morimoto,M.,Nordmann,R.Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology.Hepatology 1997,25(2):351-355.
    27.French,S.W.,Wong,K.,Jui,L.,Albano,E.,Hagbjork,A.L.,Ingelman-Sundberg,M.Effect of ethanol on cytochrome P450 2E1(CYP2E1),lipid peroxidation,and serum protein adduct formation in relation to liver pathologypathogenesis.Exp.Mol.Pathol.1993,58(1):61-75.
    28.Polavarapu,R.,Spitz,D.R.,Sim,J.E.,Follansbee,M.H.,Oberley,L.W.,Rahemtulla,A.,Nanji,A.A.Increased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil and fish oil.Hepatology 1998,27(5):1317-1323.
    29.Knecht,K.T.,Adachi,Y.,Bradford,B.U.,Iimuro,Y,Kadiiska,M,Xuang,Q.H.,Thurman,R.G.Free radical adducts in the bile of rats treated chronically with intragastric alcohol:inhibition by destruction of Kupffer cells.Mol.Pharmacol.1995,47(5):1028-1034.
    30.Nanji,A.A.,Zhao,S.,Sadrzadeh,S.M.,Dannenberg,A.J.,Tahan,S.R.,Waxman,D.J.Markedly enhanced cytochrome P450 2E1 inductionand lipid peroxidation is associated with severe liver injury in fish oilethanol-fed rats.Alcohol.Clin.Exp.Res.1994,18(5):1280-1285.
    31.Liu,G.T.,Li,Y,Wei,H.L.,Zhang,H.,Xu,J.Y,Yu,L.H.Mechanism of protective action of bicyclol against CC14-induced liver injury in mice.Liver Int.2005,25(4):872-879.
    32.McClain,C.J.,Song,Z.Y,Barve,S.S.,Hill,D.B.,Deaciuc,I.Recent advances in alcoholic liver disease IV.Dysregulated cytokine metabolismin alcoholic liver disease.Am.J.Physiol.Gastrointest.Liver Physiol.2004,287(3):G497-G502.
    33.McClain,C.J.,Shedlofsky,S.,Barve,S.,Hill,D.B.Cytokines and alcoholic liver disease.Alcohol Health Res.World 1997,21(4):317-320.
    34.Neuman MG Cytokines--central factors in alcoholic liver disease.Alcohol Res Health.2003,27(4):307-16
    35.Yin,M.,Wheeler,M.D.,Kono,H.,Bradford,B.,Gallucci,R.M.,Luster,M.I.,Thurman,R.G Essential role of tumor necrosis factor in alcoholicinduced liver injury in mice.Gastroenterology 1999,117(4):942-952.
    36.Iimuro,Y,Gallucci,R.M.,Luster,M.I.,Kono,H.,Thurman,R.Antibodies to tumor necrosis factor alpha attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat.Hepatology 1997,26(6):1530-1537.
    37.Kono,H.,Rusyn,I.,Bradford,B.U.,Connor,H.D.,Mason,R.P.,Thurman,R.G.Allopurinol prevents early alcohol-induced liver injury in rats.J.Pharmacol.Exp.Ther.2000,293(1):296-303.
    38.Kono,H.,Rusyn,I.,Yin,M.,Gable,E.,Yamashina,S.,Dikalova,A.,Kadiiska,M.B.NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease.J.Clin.Invest.2000,106(7):867-872.
    39.Wheeler,M.D.Endotoxin and Kupffer cell activation in alcoholic liver disease.Alcohol Res.Health 2003,27(4):300-306.
    40.Wheeler,M.D.,Kono,H.,Yin,M.,Rusyn,I.,Froh,M.,Connor,H.D.,Mason,R.P.,Samulski,R.J.,Thurman,R.G.Delivery of the Cu/Znsuperoxide dismutase gene with adenovirus reduces early alcohol-induced liver injury in rats.Gastroenterology 2001,120(5):1241-1250.
    41.Kono,H.,Arteel,G.E.,Rusyn,I.,Sies,H.,Thurman,R.G.Ebselen prevents early alcohol-induced liver injury in rats.Free Radic.Biol.Med.2001,30(4):403-411.
    42.Kono,H.,Rusyn,I.,Uesugi,T.,Yamashina,S.,Connor,H.D.,Dikalova,A.,Mason,R.R,Thurman,R.G.Diphenyleneiodonium sulfate,an NADPH oxidase inhibitor,prevents early alcohol-induced liver injury in the rat.Am.J.Physiol.2001,280(5):G1005-G1012.
    43.Zhou,Z.X.,Wang,L.P.,Song,Z.Y.,Lambert,J.C.,McClain,C.J.,Kang,Y.J.A critical involvement of oxidative stress in acute alcohol-induced hepatic TNF-α production.Am.J.Pathol.2003,163(3):1137-1146.
    44.Fukui,H.,Brauner,B.,Bode,J.C.,Bode,C.Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease:reevaluation with an improved chromogenic assay.J.Hepatol.1991,12(2):162-169.
    45.Nishiyama,D.,Ikejima,K.,Honda,H.,Hirose,M.,Takei,Y,Sato,N.Acute ethanol administration down-regulates toll-like receptor-4 in the murine liver.Hepatol.Res.2002,23(2):130-137.
    46.Adachi,Y,Moore,L.E.,Bradford,B.U.,Gao,W.,Thurman,R.G.Antibiotics prevent liver injury following chronic exposure of rats to ethanol.In:Wisse,E.,Knook,D.L.,Wake,K.(Eds.),Cells of the Hepatic Sinusoid.Kupffer Cell Foundation,Leiden,The Netherlands,1995,72-74.
    47.Nanji,A.A.,Miao,L.,Thomas,P.,Rahemtulla,A.,Khwaja,S.,Zhao,S.,Peters,D.,Tahan,S.R.,Dannenberg,A.J.Enhanced cyclooxygenase-2 gene expression in alcoholic liver disease in the rat.Gastroenterology 1997,112(3):943-951.
    48.Tamai H.,Kato S.,Horie Y,Ohki E.,Yokoyama H.,Ishii H.Effect of acute ethanol administration on the intestinal absorption of endotoxin in rats.Alcoholism:Clinical and Experimental Research 2000,24(3):390-394,.
    49.Ma T.Y.,Nguyen D,,Bui V.,Nguyen H.,Hoa N.Ethanol modulation of intestinal epithelial tight junction barrier.American Journal of Physiology:Gastrointestinal and Liver Physiology 1999,276(4 Pt 1):G965-G974.
    50.Ferrero,E.,Jiao,D.,Tsuberi,B.Z.,Tesio,L.,Rong,G.W.,Haziot,A.,Goyert,S.M.Transgenic mice expressing human CD 14 are hypersensitive to lipopolysaccharide. Proc.Natl.Acad.Sci.U.S.A.1993,90(6):2380-2384.
    51.Haziot,A.,Ferrero,E.,Kontgen,F.,Hijiya,N.,Yamamoto,S.,Silver,J.,Stewart,C.L.,Goyert,S.M.Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14 deficient mice.Immunity 1996,4(4):407-414.
    52.Wheeler,M.D.,Thurman,R.G.Up-regulation of CD14 in liver caused by acute ethanol involves oxidant-dependent AP-1 pathway.J.Biol.Chem.2003,278(10):8435-8441.
    1.Nanji,A.A.Apoptosis and alcoholic liver disease.Semin Liver Dis 1998,18(2):187-190
    2.Piotrowski,J.,Piotrowski,E.,Slomiany,A.,Slomiany,B.L.Gastric mucosal apoptosis induced by ethanol:effect of antiulcer agents.Biochem Mol Biol Int 1997,42(2):247-254
    3.Zhang,F.X.,Rubin,R.,Rooney,T.A.Ethanol induces apoptosis in cerebellar granule neurons by inhibiting insulin-like growth factor 1 signaling.J Neurochem 1998,71(1):196-204
    4.Wang,J.F.,Spitzer J.J.Alcohol-induced thymocyte apoptosis is accompanied by impaired mitochondrial function.Alcohol 1997,14(1):99-105
    5.Coiler,S.D.,Wu,W.J.,Pruett,S.B.Endogenous glucocorticoids induced by a chemical stressor(ethanol) cause apoptosis in the spleen in B6C3F1 female mice.Toxicol Appl Pharmacol 1998,148(1):176-182
    6.Kurose,I.,Higuchi,H.,Miura,S.,Saito,H.,Watanabe,N.,Hokari,R.,Hirokawa,M,Takaishi,M,Zeki,S.,Nakamura,T.,Ebimura,H.,Kato,S.,Ishii,H.Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication.Hepatology 1997,25(2):368-378
    7.Goldin,R.D.,Hunt,N.C.,Clark,J.,Wickramasinghe,S.N.Apoptotic bodies in a murine model of alcoholic liver disease:reversibility of ethanolinduced changes.J Pathol 1993,171(1):73-76
    8.Zhao,M.,Laissue,J.A.,Zimmermann,A.TUNEL-positive hepatocytes in alcoholic liver disease.A retrospective biopsy study using DNA nick end-labeling.Virchows Arch 1997,431(5):337-344
    9.Canbay,A.,Friedman,S.,Gores,G.J.Apoptosis:the nexus of liver injury and fibrosis.Hepatology.2004,39(2):273-278
    10.Maher,J.J.Interactions between hepatic stellate cells and the immune system.Semin Liver Dis 2001,21(3):417-426.
    11.Canbay,A.,Taimr,P.,Torok,N.,Higuchi,H.,Friedman,S.,Gores,GJ.Apoptotic body engulfment by a human stellate cell line is profibrogenic.Lab Invest 2003,83(5):655-663.
    12.Day,C.P.Apoptosis in alcoholic hepatitis:a novel therapeutic target? J Hepatol.2001,34(2):330-333
    13.Natori,S.,Rust,C,Stadheim,L.M.,Srinivasan,A.,Burgart,L.J.,Gores,GJ.Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis.J Hepatol 2001,34(2):248-253.
    14.Guicciardi,M.E.,Gores,GJ.Apoptosis:a mechanism of acute and chronic liver injury.Gut.2005,54(7):1024-1033.
    15.Cohen,G.M.Caspases:the executioners of apoptosis.Biochem J 1997,326(Pt 1):1-16
    16.Porter,A.G.,Janicke,R.U.Emerging roles of caspase-3 in apoptosis.Cell Death Differ 1999,6(2):99-104
    17.Liu,G.T.The anti-virus and hepatoprotective effect of bicyclol and its mechanism of action.Chin.J.New Drugs 2001,10(5):325-327
    18.Ellman,G.L.Tissue sulfhydryl groups.Arch.Biochem.Biophys.1959,82(1):70-77.
    19.Koivisto,T.,Eriksson,C.J.Hepatic aldehyde and alcohol dehydrogenase in alcohol-preferring and alcohol avoiding rat lines.Biochem Pharmacol 1994,48(8):1551-1558.
    20.Canuto,R.A.,Garcea,R.,Biocca,M.,Pascale,R.,Pirisi,L.,Feo,F.The subcellular distribution and properties of aldehyde dehydrogenase of hepatoma AH-130.Eur J Cancer Clin Oncol 1983,19(3):389-400 1998,1651-1655。
    22.Williamson,D.H.,Lund,P.,Krebs,H.A.The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.Biochem J 1967,103(2):514-527.
    23.Reznick,A.A.,Packer,L.Oxidative damage to proteins:spectrophotometric method for carbonyl assay.Methods Enzymol 1994,233:357-363
    24.Berson,A.,Renault,S.,Letteron,P.,Robin,M,A.,Fromenty,B.,Fau,D.,Le Bot,M.A.,Riche,C,Durand-Schneider,A.M.,Feldmann,G,Pessayre,D.Uncoupling of rat and human mitochondria:a possible explanation for tacrine-induced liver dysfunction.Gastroenterology.1996,110(6):1878-1890.
    25.Emaus,R.K.,Grunwald,R.,Lemasters,J.J.Rho2daminl23 as a probe of transmembrane potential in isolated Rat liver mitochondria:spectral and metabolic properties.Biophys Acta 1986,850(3):436 448.
    26.Masubuchi,Y.,Suda,C,Horie,T.Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice.J Hepatol 2005,42(1):110-116.
    27.Preaeborski,S.,Jackson-Lewis,V.,Muthane,U.Jiang,H.,Ferreira,M.,Naini,A.B.,Fahn,S.Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity.Ann Neurol.1993,34(5):715-23.
    28.Zheng,X.X,Shoffner,J.M,Voljavec,A.S,Wallace,D.C.Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies.Biochim Biophys Acta.1990,1019(1):1-10.
    29.Jacobson,M.D.,Weil,M,Raff,M.C.Programmed cell death in animal development.Cell 1997,88(3):347-54.
    30.Ogasawara,J,Watanabe-Fukunaga,R,Adachi,M,Matsuzawa,A,Kasugai,T,Kitamura,Y,Itoh,N,Suda,T,Nagata,S.Lethal effect of the anti-Fas antibody in mice.Nature 1993,364(6440):806-809.
    31.Kohli,V,Selzner,M,Madden,J.F.,Bentley R.C,Clavien,P.A.Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver.Transplantation 1999,67(8):1099-105.
    32.Miyoshi,H,Rust,C,Roberts,P.J,Burgart,L.J,Gores,G.J.Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas.Gastroenterology 1999,117(3):669-77.
    33.Natori,S,Rust,C,Stadheim,L.M,Srinivasan,A,Burgart,L.J,Gores,GJ.Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis.J Hepatol 2001,34(2):248-53.
    34.Ziol,M,Tepper,M,Lohez,M,Arcangeli,G,Ganne,N,Christidis,C,Trinchet,J.C,Beaugrand,M,Guillet,J.G,Guettier,C.Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis.J Hepatol 2001,34(2):254-60.
    35.Benedetti,A,Jezequel,A.M.,Orlandi,F.A quantitative evaluation of apoptotic bodies in rat liver.Liver 8(3):172-177,1988.
    36.Yacoub,L.K.,Fogt,F,Nanji,A.A.Apoptosis and Bcl-2 expression in experimental alcoholic liver disease in the rat.Alcohol Clin Exp Res 1995,19(4):854-859
    37.Deaciuc,I.V,Nikolova-Karakashian,M,Fortunato,F,Lee,E.Y,Hill,D.B,McClain,C.J.Apoptosis and dysregulated ceramide metabolism in a murine model of alcohol-enhanced lipopolysaccharide hepatotoxicity.Alcohol Clin Exp Res 2000,24(10):1557-1565.
    38.Deaciuc,I.V.,D'Souza,N.B.,de Villiers,W.J.,Burikhanov,R.,Sarphie,T.G,Hill,D.B.,McClain,C.J.Inhibition of caspases in vivo protects the rat liver against alcohol-induced sensitization to bacterial lipopolysaccharide.Alcohol Clin Exp Res 2001,25(6):935-943.
    39.Deaciuc,I.V.,D'Souza,N.B.,Nikolova-Karakashian,M,de Villiers,W.J.,Sarphie,T.G,Hill,D.B.,McClain,C.J.The regulation of Fas(CD95/Apo-1)-mediated liver apoptosis in Kupffer cell-depleted mice.Hepatol Res 2002,24(2):102-114.
    40.Fadok,V.A.,Bratton,D.L.,Konowal,A.,Freed,P.W.,Westcott,J.Y.,Henson,P.M.Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta,PGE2,and PAR J Clin Invest 1998,101(4):890-898.
    41.Lambert,J.C.,Zhou,Z.,Kang,Y.J.Suppression of Fas-mediated signaling pathway is involved in zinc inhibition of ethanol-induced liver apoptosis.Exp Biol Med(Maywood).2003,228(4):406-12
    42.Zhou,Z.,Sun,X.,James,Kang.Y.Metallothionein protection against alcoholic liver injury through inhibition of oxidative stress.Exp Biol Med(Maywood).2002,227(3):214-22
    43.Lieber,C.S.Biochemical and molecular basis of alcohol-induced injury to liver and other tissues.N.Engl.J.Med.1988,319(25):1639-1650.
    44.Klyosov,A.A.,Rashkovetsky,L.G,Tahir,M.K.,Keung,W.M.Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism.Biochemistry 1996,35(14):4445-4456.
    45.Wieland,P.,Lauterburg,B.H.Oxidation of mitochondrial proteins and DNA following administration of ethanol.Biochem Biophys Res Commun 1995,213(3):815-819.
    46.Rouach,H.,Fataccioli,V.,Gentil,M.,French,S.W.,Mirimoto,M.,Nordmann,R.Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology.Hepatology 1997,25(2):351-355.
    47.Mira,L.,Maia,L.,Barreira,L.,Manso,C.F.Evidence for radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism.Arch Biochem Biophys 1995,318(1):53-58.
    48.Mantena,S.K.,King,A.L.,Andringa,K.K.,Landar,A.,Darley-Usmar,V.,Bailey, SM.Novel interactions of mitochondria and reactive oxygen nitrogen species in alcohol mediated liver disease.World J Gastroenterol.2007,13(37):4967-4973.
    49.Lieber,C.S.Cytochrome P-4502E1:its physiological and pathological role.Physiol Rev 1997,77(2):517-544.
    50.Bailey,S.M.,Robinson,G,Pinner,A.,Chamlee,L.,Ulasova,E.,Pompilius,M.,Page,G.P.,Chhieng,D.,Jhala,N.,Landar,A.,Kharbanda,K.K.,Ballinger,S.,Darley-Usmar,V.S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver.Am J Physiol Gastrointest Liver Physiol 2006,291(5):G857-G867.
    51.Venkatraman,A.,Shiva,S.,Wigley,A.,Ulasova,E.,Chhieng,D.,Bailey,S.M.,Darley-Usmar,V.M.The role of iNOS in alcohol-dependent hepatotoxicity and mitochondrial dysfunction in mice.Hepatology.2004,40(3):565-573
    52.Jian,H.Z.,Zhang,X.,Roneker,C.A,McClung,J.P,Zhang,S.,Thannhauser,.T.W.,Ripoll,D.R.,Sun,Q.,Lei,X.G Role of copper,zinc-superoxide dismutase in catalyzing nitrotyrosine formation in murine liver.Free Radic Biol Med.2008,45(5):611-618.
    53.Pacher,P.,Beckman,J.S.,Liaudet,L.Nitric oxide and peroxynitrite in health and disease.Physiol Rev.2007,87(1):315-424
    54.Brookes,P.S.,Kraus,D.W.,Shiva,S.,Doeller,J.E.,Barone,M.C.,Patel,R.P.,Lancaster,J.R.Jr,Darley-Usmar,V.Control of mitochondrial respiration by NO~*,effects of low oxygen and respiratory state.J Biol Chem 2003,278(34):31603-31609
    55.Brookes,P.S.,Levonen,A.L.,Shiva,S.,Sarti,P.,Darley-Usmar,V.M.Mitochondria:regulators of signal transduction by reactive oxygen and nitrogen species.Free Radic Biol Med 2002,33(6):755-764
    56.Radi,R.,Cassina,A.,Hodara,R.Nitric oxide and peroxynitrite interactions with mitochondria.Biol Chem 2002,383(3-4):401-409
    57.Susin,S.A.,Zamzami,N.Kroemer,G.Mitochondria as a regulator of apoptosis:doubt no more.Biochim.Biophys.Acta 1998,1366(1-2):151-165.
    58.Zoratti,M.,Szabo,I.The mitochondrial permeability transition.Biochem.Biophys.Acta 1995,1241(2):139-176.
    59.Kurose,I.,Higuchi,H.,Kato,S.,Miura,S.,Watanabe,N.,Kamegaya,Y.,Tomita,K.,Takaishi,M.,Horie,Y,Fukuda,M.,Mizukami,K.,Ishii,H.Oxidative stress on mitochondria and cell membrane of cultured rat hepatocytes and perfused liver exposed to ethanol.Gastroenterology 1997,112(4):1331-1343.
    60.Venkatraman,A.,Landar,A.,Davis,A.J.,Chamlee,L.,Sanderson,T.,Kim,H.,Page,G,Pompilius,M.,Ballinger,S.,Darley-Usmar,V.,Bailey,S.M.Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatotoxicity.J Biol Chem.2004,279(21):22092-22101.
    61.Narita,M.,Shimizu,S.,Ito,T.,Chittenden,T.,Lutz,R.J.,Matsuda,H.,Tsujimoto,Y.Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria.Proc Natl Acad Sci USA 1998,95(2):14681-14686.
    62.Shimizu,S.,Narita,M.,Tsujimoto,Y Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC.Nature 1999,399(6735):483-487
    63.Nagata,S.Fas ligand-induced apoptosis.Annu Rev Genet 1999,33:29-55
    64.Peter,M.E.,Krammer,P.H.Mechanisms of CD95(Apo-1/Fas)-mediated apoptosis.Curr Opin Immunol 1998,10(5):545-551.
    65.Zhou,Z.,Sun,X.,Kang,Y.J.Ethanol-induced apoptosis in mouse liver:Fas and cytochrome c-mediated caspase-3 activation pathway.Am J Pathol 2001,159(1):329-338.
    66.Lambert,J.C,Zhou,Z.,Kang,Y.J.Suppression of Fas-mediated signaling pathway is involved in zinc inhibition of ethanol-induced liver apoptosis.Exp Biol Med(Maywood).2003,228(4):406-12.
    67.Burstein,E.,Duckett,C.S.Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery.Curr Opin Cell Biol.2003,15(6):732-737
    [1]Safadi R,Friedman SL.Hepatic fibrosis--role of hepatic stellate cell activation[J].Med Gen Med,2002,4(3):27.
    [2]Friedman SL.Liver fibrosis ~ from bench to bedside[J].J Hepatol,2003,38(Suppl 1):S38-S53.
    [3]Wu D,Cederbaum AI.Alcohol,oxidative stress,and free radical damage[J].Alcohol Res Health,2003,27(4):277-284.
    [4]Tuma DJ,Casey CA.Dangerous byproducts of alcohol breakdown--focus on adduct[J].Alcohol Res Health,2003,27(4):285-290.
    [5]Tuma DJ.Role of malondialdehyde-acetaldehyde adducts in liver injury[J].Free Radic Biol Med,2002,32(4):303-308.
    [7]Apte M.Oxidative stress:does it 'initiate' hepatic stellate cell activation or only 'perpetuate' the process[J]? J Gastroenterol Hepatol,2002,17(10):1045-1048.
    [7]Wheeler MD.Endotoxin and Kupffer cell activation in alcoholic liver disease[J].Alcohol Res Health,2003,27(4):300-306.
    [8]Sung CK,She H,Xiong S,et al.Tumor necrosis factor-alpha inhibits peroxisome proliferator-activated receptor gamma activity at a posttranslational level in hepatic stellate cells[J].Am J Physiol Gastrointest Liver Physiol,2004,286(5):G722-G729.
    [9]Neuman MG.Cytokines—central factors in alcoholic liver disease[J].Alcohol Res Health,2003,27(4):307-316
    [10]Pinzani M,Marra F.Cytokine receptors and signaling in hepatic stellate cells[J].Semin Liver Dis,2001,21(3):397-416.
    [11]Kato J,Sato Y,Inui N,et al.Ethanol induces transforming growth factor-alpha expression in hepatocytes,leading to stimulation of collagen synthesis by hepatic stellate cells[J].Alcohol Clin Exp Res,2003,27(8 Suppl):58S-63S.
    [12]Rachfal AW,Brigstock DR.Connective tissue growth factor(CTGF/CCN2) in hepatic fibrosis[J].Hepatol Res,2003,26(1):1-9.
    [13]Rockey DC.Vascular mediators in the injured liver[J].Hepatology,2003,37(1):4-12.
    [14]Bataller R,Schwabe RF,Choi YH,et al.NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis[J].J Clin Invest,2003,112(9):1383-1394.
    [15]Xu J,Fu Y,Chen A.Activation of peroxisome proliferator-activated receptor-γ contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth[J].Am J Physiol Gastrointest Liver Physiol 2003,285(1):G20-G30
    [16]Hazra S,Xiong S,Wang J,et al.Peroxisome proliferators-activated receptor-γ induceds a phenotypic switch from activated to quiescent hepatic stellate cells[J].J Biol Chem 2004,279(12):11392-11401
    [17]Senoo H.Structure and function of hepatic stellate cells[J].Med Electron Microsc,2004,37(1):3-15.
    [18]Eng FJ,Friedman SL.Fibrogenesis I.New insights into hepatic stellate cell activation:the simple becomes complex[J].Am J Physiol Gastrointest Liver Physiol,2000,279(1):G7-GH.
    [19]Tsukamoto H,Lu SC.Current concepts in the pathogenesis of alcoholic liver injury[J].FASEB J,2001,15(8):1335-49.
    [20]Wu J,Zern MA.Hepatic stellate cells:a target for the treatment of liver fibrosis[J].J Gastroenterol.2000,35(9):665-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700