稀土盐在装饰性钛合金阳极氧化中的作用及性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用阳极氧化技术可以在钛金属表面获得色彩鲜艳、耐腐蚀性较好的膜层。在钛合金的阳极氧化过程中,通过改变阳极氧化的电压即能使阳极氧化膜呈现不同的颜色。本文主要研究了在硫酸体系电解液中添加Ce(SO4)2对装饰性钛合金彩色阳极氧化膜的影响。
     首先,本文研究了应用基础电解液进行钛合金阳极氧化的工艺条件,其最佳工艺条件为:10 g/L硫酸、3 g/L硫酸铵,氧化时间20 min,氧化温度15℃左右。
     在基础电解液及工艺条件的基础上,研究了Ce(SO4)2在钛合金阳极氧化中的作用。评价了Ce(SO4)2对氧化膜的外观和耐腐蚀性能的影响。应用阳极极化曲线和电位-时间曲线分析了氧化膜的成膜过程;用极化曲线、电化学阻抗谱和全浸试验评价了氧化膜的耐蚀性。研究结果表明:在电解液中加入稀土盐Ce(SO4)2比未加稀土盐所制备的氧化膜在其外观质量及耐蚀性都有提高,Ce(SO4)2的最佳含量为0.75 g/L。并用SEM、XRD及EDX分析了彩色阳极氧化膜的表面形貌和组织结构。SEM分析结果显示电解液中加入稀土盐Ce(SO4)2使氧化膜表面更平滑、均匀;EDS分析表明了加入Ce(SO4)2可以使钛合金表面氧化更为充分,但氧化膜中并未检出Ce元素;用XRD图谱分析表明,氧化膜的主要组成相为TiO2。
Anodic oxidation coatings with bright colour and high corrosion resistance can be obtained on titanium using anodic oxidation technology. Different colors could appear on anodic oxidation coatings through changing anodic oxidation voltage in anodic oxidation process of titanium alloy. In this thesis, the influence of Ce(SO4)2 on ornamental Ti-alloy colorful anodic oxidation coatings in the vitriol electrolyte was researched.
     Firstly, the technological conditions of anodic oxidation coatings fabricated in basic electrolyte on titanium alloys were researched. The optimal technologcial conditions of anodic oxidation coatings fabricated in basic electrolyte were: 10 g/L vitriol acid, 3 g/L ammonium sulfate, the oxidation time was 20 min, the temperature was about 15℃.
     The effect of Ce(SO4)2 on Ti-alloy anodization was studied based on the research of basic electrolyte and technological conditions. The influence of Ce(SO4)2 on the appearance and corrosion resistance was evaluated. The oxidation process of the anodic oxidation coatings was analyzed by anodic polarization curves and potential-time curves. The corrosion resistance of the anodic oxidation coatings was evaluated by polarization curves、electrochemistry impendence spectrum and immersion test. The results showed that the oxidation coating formed in the electrolyte containing rare earth salt Ce(SO4)2 was better in the appearance and corrosion resistance than that formed in the electrolyte without rare earth salt. The optimum content of Ce(SO4)2 was 0.75 g/L. The surface morphology and phase composition of anodic oxidation coating were analyzed by SEM, XRD and EDX. The surface morphology was analyzed by SEM, it was shown that the surface by using rare-earth anodization was smoother and more symmetrical; With the EDS analysis of the film, it was shown that the oxidation of Ti-alloy surface was more sufficient by using rare-earth anodization than by the traditional oxidation, and there was not Ce element in the oxide film.;The structure of the oxide film was analyzed by means of XRD. The phase composition of oxidation film was TiO2。
引文
1李梁,孙健科,孟祥军.钛合金的应用现状及发展前景.钛工业进展, 2004, 21(5): 19-24
    2 A.V. Aleksandrov, Status of the Titanium Production, Research, and Applications in the CIS. Materials Science, 2008, 44(3): 311-327
    3 K.T. Oh, H.M. Shim, K.N. Kim. Properties of Titanium-silver Alloys for Dental Application. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74(1): 649-658
    4 I. Agote, E. Silveira, P. Egizabal. Titanium Composite Materials for Transportation Applications. JOM, 2008, 60(11): 40-46
    5 C. Yao, J.W. Thomas. A Promising Nano-modification Technique of Titanium Implants for Orthopedic Applications. Journal of Nanoscience and Nanotechnology, 2006 ,6(9-10): 2682-2692
    6王向东,郝斌,逯福生等.钛的基本性质、应用及我国钛工业概况.钛工业进展, 2004, 21(1): 6-10
    7任敬心,康仁科.难加工材料的磨削.北京:国防工业出版社, 1999: 22-25
    8 A. Kostov, B. Friedrich. Predicting Thermodynamic Stability of Crucible Oxides in Molten Titanium and Titanium Alloys. Computational Materials Science, 2006, 38(2): 374-385
    9 W. Chrzanowski, J. Szewczenko, J. Tyrlik-Held. Influence of the Anodic Oxidation on the Physicochemical Properties of the Ti6Al4V ELI Alloy. Journal of Materials Processing Technology, 2005, (4): 163~168
    10 V. Zwilling, M. Aucouturier, E. Darque-Ceretti. Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media An Electrochemical Approach. Electrochimica Acta, 1999, 45: 921~929
    11 H.J. Song, M.K. Kim, G.C. Jung. The Effects of Spark Anodizing Treatment of Pure Titanium Metals and Titanium Alloys on Corrosion Characteristics. Surface &Coatings Technology, 2007, 201: 8738-8745
    12 S.P. Il, G.W. Tae. Surface Characteristics of Titanium Anodized in the Four Different Types of Electrolyte. Electrochimica Acta, 2007: 53: 863–870
    13 A thy wang. The Use of Titanium for Medical Applications in USA. Journal of Materials Science and Engineering A , 1996, 213: 134-137
    14孟祥军.钛合金在舰船上的应用.舰船科学技术, 2001, (2): 23-27
    15 D.V. Talapin, A.I. Kulak. Electrochemical Oxidation of Titanium by Pulsed Discharge in Electrolyte. Journal of Electroanalytical Chemistry, 2005, 579(2): 299-310
    16 H. Nanjo, T. Aizawa, M. Kanakubo. Growth Process of Atomically Flat Anodic Films on Titanium Under Potentiostatical Electrochemical Treatment in H2SO4 Solution. Surface Science, 2007, 601(22): 5133-5141
    17刘华.钛合金表面技术展望.科技资讯, 2008, (6): 11-13
    18 S.P. ll, M.H. Lee, S.B. Tea. Effects of Anodic Oxidation Parameters on a Modified Titanium Surface. Journal of Biomedical Materials Research, 2008, 84(2): 422-429
    19 M.V. Diamanti, M.P. Pedeferri. Effect of Anodic Oxidation Parameters on the Titanium Oxides Formation. Corrosion Science, 2007, 49(2): 939-948
    20 W. Wang, J. Tao, L. Wang. Photocatalytic Activity of Porous TiO2 Films Prepared by Anodic Oxidation. Rare Metals, 2007, 26(2): 136-141
    21 Z.G. Jin, F. Hou, X. Wang. Synthesis and Morphology of TiO2 Nanotube Arrays by Anodic Oxidation Using Modified Glycerol-based Electrolytes. Journal of the American Ceramic Society, 2007, 90(8): 2384-2389
    22吴申敏.钛合金电镀新工艺及其应用.上海航天, 1994, (3):22-24
    23李立群,袭建军,姚英学.钛合金微弧氧化技术的研究.焊接专题综述, 2008, (5): 15-18
    24刘天国,张海金.钛及钛合金阳极氧化.航空精密制造技术, 2004, 40(4): 17-19
    25王钧石,晏永华,陈桂容.钛合金等离子体源离子注入表面改性.稀有金属, 2006, 30(5):582-585
    26何利舰,张小农.钛及钛合金的表面处理技术新进展.上海金属, 2005, 27(3): 39-44
    27 H.S. Lee, J.H. Yoon. Oxidation behavior of titanium alloy under diffusion bonding. Thermochimica Acta, 2007, 455: 105–108
    28 T. Ohtsuka, T. Otsuki. The Influence of the Growth Rate on the Semiconductive Properties of Titanium Anodic Oxide Films. Corrosion Science, 1998, 40(6): 951-958
    29张小明.钛的表面处理技术.稀有金属快报, 2001, (8): 17-19
    30殷英,邱望标,杨绿.钛合金阳极氧化电解液配方与电源波形的选择.机械工程材料, 2005, 29(12): 35-37
    31张永德.钛的着色工艺原理及其应用.表面技术, 2001, 30(2): 33
    32糜丹青.钛的着色.钛工业进展, 1997, (5): 16-18
    33刘美红.阳极氧化对钛表面着色及其性能研究. [武汉理工大学硕士学位论文]. 2006: 18-19, 23-30
    34王革,程祥荣.阳极氧化对纯钛氧化膜影响的初步研究.中华口腔医学杂志, 2001, 36(6): 427-430
    35刘静安,温育智.稀土在有色金属工业中的开发与应用.四川有色金属, 2002(4): 7-12
    36黄拿灿.稀土元素在表面工程技术中的应用.金属热处理, 2003, 28(4): 7-10
    37马燕合.我国稀土应用开发现状及其展望.材料导报, 2000, 14(1): 3-5
    38李凌杰,李获,张胜涛.稀土元素在铝合金阳极氧化及其后处理工序中的应用.表面技术, 2001, 30(2): 40-43
    39杨胜奇.稀土在金属表面处理工艺中的应用技术(1).材料保护, 2008, 41(4): 76-77
    40闫洪.稀土在金属表面处理工艺中的应用.涂料涂装与电镀, 2005, 3(5): 13-15
    41汪继红,费锡明,龙光斗等.稀土对镍-钴合金电极的析氢催化性能的影响.材料保护, 2003, 36(6): 12-16
    42金学平,吴俊,黄清安等.含稀土的镍基合金的析氢电催化行为.中国稀土学报, 2001, 19(3): 243-246
    43王保玉,申义阳,刘淑兰等.稀土在镍铁合金电沉积中的作用.材料保护, 1998, 31(1): 12-14
    44陈一胜,张乐观,王勇.稀土对化学镀镍稳定性的影响.材料保护, 2002, 35(4):38-40
    45章磊,宣天鹏,黄芹华等.铈对化学镀Co-Ni-P合金工艺的影响.电镀与精饰, 2002, 24(1): 1-4
    46江辉,李云东,李根生等.硫酸铈对快速刷镀层的影响.稀土, 2003, 24(2): 50-52
    47李全安,文九巴,张荥渊等.镧镨铈混合稀土对热浸渗铝工艺的影响.材料保护, 2002, 35(9): 20-21
    48谢学兵,程西云.稀土在金属表面处理中的应用及发展趋势.机械研究与应用, 2003, 16(4): 4-5
    49杨哲龙,安茂忠,方海涛等.稀土添加剂对LY12铝合金硬质氧化膜性能的影响.材料工程, 1998(7) :6- 8
    50王春涛,林伟国,曹华珍等.含稀土介质中铝合金阳极氧化研究.表面技术, 2003, 32(3): 49-51
    51牛新书,刘山虎,李华等.电解液中掺杂Ce4+对阳极氧化铝膜的影响.材料保护. 2007, 40(8): 38-40
    52姜伟,申德新,张云琨等.钛合金着色技术的研究.材料保护, 2005, 38(9): 12-15
    53李松梅,吴昊,刘建华等. Ce在钛合金阳极化中作用的研究.航空学报, 2002, 23(1): 91-93
    54刘建华,吴昊,李松梅等.钛合金稀土阳极化成膜过程的电化学研究.航空学报, 2001, 22(5): 478-480
    55赵晴,杜楠,王元正等. H3PO4 + C6H11NaO7体系中钛合金阳极氧化着色工艺研究.南昌航空工业学院学报, 2000, 14(1): 47-49
    56李凌杰,雷惊雷,李荻等.几种稀土盐封闭的铝阳极氧化试样的腐蚀行为.中国稀土学报, 2007, 25(1): 64-67
    57于兴文,严川伟,曹楚南. LY12铝合金阳极氧化稀土封孔工艺及性能的研究.电镀与涂饰, 2001, 20(5): 1-4
    58朱祖芳,高亢之,王本仁等.有色金属的耐腐蚀性及其应用.北京:化学工业出版社, 1995: 96-99
    59王冰.稀土对6063变形铝合金阳极氧化的影响.稀土, 1991, 12(5): 24-28
    60 B. Hinton, D. Arnott . The inhibition of Aluminum Alloy Corrosion by Cerous Coating.Metals Forum, 1984, 7(4): 211- 213
    61李久青.铝合金表面四价铈盐转化膜及其耐蚀性.腐蚀科学与防护技术, 1996, 8(4): 271-274
    62李久青.铝合金表面稀土铈耐蚀膜.北京科技大学学报, 1995, 17(6): 584-589
    63 F. Mansfeld. The Ce-Mo Process for the Development of Astainless Aluminum. Electrochimica Acta, 1992, 37(12): 2277-2282
    64张果金,刘文来,魏无际.钛合金阳极氧化膜的生长规律.南京化工大学学报, 2000, 22(5): 86~89
    65任清,李书平,冯继红等.金属钛黑色阳极氧化工艺应用.材料保护, 2007, 40(2): 62-64
    66曹楚楠,张鉴清.电化学阻抗谱导论.北京:科学出版社, 2002: 44-48
    67史美伦.交流阻抗谱原理及应用.北京:国防工业出版社, 2001:37-42
    68胡会利,李宁.电化学测量.国防工业出版社. 2007:35-40
    69 J. Hitzig, K. Juttner, W.J. Lorenz. AC-impedance Measurements on Porous Aluminum Oxide Films. Corrosion Science, 1984, 24(11-12): 945-952
    70席锦会,谢英杰,姚广春等.电解质对铝电解用阳极润湿性的研究.轻金属, 2007(2): 31-34
    71 R.R. Wang. Controlling Coloration for Titanium Restorations. J Prosthet Dent, 1995, (7): 613~614
    72苏锵.稀土化学.郑州:河南科技出版社, 1993: 5-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700