钢铁表面低温搪瓷改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以Q235A热轧钢和HT250灰口铸铁为基体材料,采用搪瓷技术在其表面制备了陶瓷层,并对其瓷层的组成、烧制工艺参数进行了系统的实验和研究。利用日本理学D/Max2500X型X射线衍射仪对瓷层相组成进行了XRD分析;采用FM-700型(HV)显微硬度仪测量了搪瓷层的硬度;利用JSM-5600型扫描电镜对基体与瓷层界面、瓷层磨损形貌进行了观察;在OLS3000型激光共聚焦显微镜下记录了磨损表面的三维形貌;并分析了添加纳米级形核剂TiO_2后搪瓷层硬度、耐磨性能的变化;测定了搪瓷层的耐热振性和耐蚀性能。
     结果表明,瓷层的氧化物组成、烧制工艺参数(烧结温度、保温时间)对瓷层的表面形貌、厚度、相组成和微观形貌都有不同程度的影响,因此可以通过优化上述几项要素来制备性能优异的搪瓷层。另外通过对添加纳米形核剂试样的研究,了解到添加形核剂后相结构出现了新相NaAlSi_2O_6和AlK(P_2O_7),耐磨性也得到了较大提高。
With the advances in modern science and technology, We have higher requirements for the properties of the industrial materials. In the oil pipeline industry, because their poor working conditions, except the impact of fluid,they must also withstand the corrosion of the corrosive medium. So,It is required that the pipe wall material has not only good mechanical properties, but also corrosion resistance and wear resistance. It is difficult for pure metal to meet these requirements. The ceramic materials have high wear resistance and corrosion resistance, good high temperature stability, lowfriction coefficient, low thermal expansion coefficient, etc. Therefore, it is important to coat ceramic materials evenly on metal (or alloy) surface and obtain both the good mechanical properties of metal materials and excellent wear resistance and corrosion resistance of ceramic materials. The research has not only theoretical significance but also important useful value and has become another research focus.
     In this thesis, Our aim is to prepare enamel layer with low melting point on the surface of steel and iron in order to improve the wear and corrosion resistance of steel and iron surfaces. Excellent enamel was prepared by a dip method. The research contents are as follows:
     First, the steel and iron enamels were manufactured using various oxides as ceramic glaze components and iron and steel as the base. The effects of different sintering temperatures, sintering time, addition of nucleating agent TiO_2 on the production process, microstructure and properties of the surface enamel layers of the steel and iron were studied. The best sintering temperature, sintering time and the ceramic layer thickness were determined using orthogonal experiment after decarburization treatment.
     The results showed that after pre-decarbonization of the steel plate, the gas bubbles defects produced on the substrate surfaces during the firing were removed, and the effect of the gas holes on the latter properties was reduced. Under different sintering temperatures and sintering time, by macro-observation for the morphologies (smoothness, gloss, color, porosity, etc.), the optimum firing temperature and sintering time were obtained, and they were 780℃and 8min, respectively.
     Second, the phases in the enamel layer were analyzed using D/Max2500X Type X-ray diffractometer; the microhardness of the enamel layer was measured using FM-700 Type vickers hardness tester; the bonded interface and wear morphology of the enamel layer were observed using JSM-5600 Type scanning electron microscope (SEM).
     The results showed after adding nucleating agents, two new phases NaAlSi_2O_6 and AlK (P_2O_7) appeared in the enamel layer. Under the same sintering time, the addition of TiO_2 nucleating agent significantly increased the hardness of the enamel layer. Under the same firing temperature,the enamel hardness increased with increasing holding time. The adherence level between the enamel coating and the base metal was expressed using the ratioηof the interface length between enamel coating and base metal to the base metal length at unit length. The adhesion degree between enamel layer and the metal substrate increased with the increase of sintering temperature.
     Third, the wear resistance of ceramic layers was characterized using MG-2000 type tribometer, and the morphology of the worn surface was recorded using the JSM-5600 scanning electron microscope. The effects of the applied load and wearing time on the friction coefficient and mass loss of the enamel layer were discussed. The change of the wear resistance after adding nucleating agents TiO_2 was analyzed.
     The results showed that the friction coefficient reduced with increasing the load under different wear time. Under different loads, the friction coefficient increased with increasing the wearing time. The addition of nucleation agent TiO_2 significantly increased the friction coefficient of the enamel layer.
     Finally, the heat-resistant vibration of the enamel layer was determined according to national standard GB11419-89. The heat resistance was measured using the traditional method for measuring the softening point of ceramic, The acid and alkali resistances of the enamel layer were examined according to national standard GB4738.2-84.
     The results showed that the heat-resistant vibration temperature of the enamel layer is 420℃, the heat-resistant temperature is 690℃, and they are higher than those of the general industrial enamel required by the Ministry of Chemical Industry. Acid-resistant degree is 93.74%, and alkali-resistant degree is 95.45%.
引文
[1]陈林.搪瓷着瓷钢板和搪瓷釉料[J].中国搪瓷,2003,24(3):59-82.
    [2]赵永贵,王世杏,张炎明.浅析防腐蚀上作在石油、石化和化上生产安全管理上作中的重要性[J].全面腐蚀控制,2002,16(4):3-6.
    [3]胡涛,王千,陶刚,周云.金属管道的腐蚀与防腐蚀技术现状[J].石油化工腐蚀与防护,2008,25(3):27-32.
    [4]王留芳,张卫国,冯云亭等.环保型油田管道内壁纳米环氧防腐涂料的研究[J].涂料工业,2005,35(9):11-16.
    [5]刘京山.国外涂搪技术新进展[J].中国搪瓷,1998,19(2):19-21.
    [6]陈小英,王红玲,王允夫.混合微晶釉及其烧制方法[J].玻璃与搪瓷,2005, 33(2):24-26.
    [7]陈玉华,刘颖.搪瓷、喷管、管道及其连接技术国内外研究现状[J].表面技术,2008,37(6):74-77.
    [8] Engel P A,Bayer R G,Sirico J L.Impact wear testing machine[J].Wear,1972,19:343-354.
    [9]徐赣川,杜磊.防腐涂料在石油天然气管道中的应用[J].上海涂料,2008.46(6):23-27.
    [10] Swanson P A,Vetter A F.The measurement of particles shape and its effect on wear[J].ASLE Trans.1985,28(2):225-230.
    [11] Yang Y Y,Fang H S,Zheng Y K.The Failure Models Induced by White Layers during Impact Wear [J].Wear,199,185:17-22.
    [12]程道腴.珐琅学[M].台北:徐氏基金会出版,1977.
    [13]王允夫.中国搪瓷工业的生产与发展[J].硅酸盐通报,1995,12(4):90-96.
    [14]邵规贤.搪瓷工业发展简史[J].玻璃与搪瓷,1998,19(5):43-51.
    [15]唐景平,蒋伟忠.氧化镍在搪瓷密着及抑制磷爆中的作用[J].中国搪瓷,2003,24(30):22-49.
    [16]张安富.影响钢铁大气腐蚀的因素[J].材料保护,1999,16(3):13-15.
    [17] Grossman D G.Machinable glass-ceramics based on tetrasilicicmica[J].JamCeram Soc,1972,55(99):446-449.
    [18]卢屹东,亢世江,丁敏.金属表面陶瓷涂层的技术特点及应用[J].焊接技术,2005,34(2):7-9.
    [19] V.M.Plastinin,E.K.Khutoyanskaya.New materials and corrosion protection[J]. Materials science and Engineering,2004,379:432-436.
    [20]涂小华,王修杰.石油工业中管道的腐蚀与防腐[J].江西化工,2006,(4):266-267.
    [21] F.S.Shied,M.J.Deng,K.C.Lin.Effect of surface pretreatments on the adherence of porcelain enamel to a type 316L stainless steel[J].Journal of Materials Science,1999(34):5265-5272.
    [22]周武艺,唐绍袭,刘文超.金属基高温耐磨陶瓷涂层的研制及其耐磨性能影响因素[J].山东陶瓷,2002,25(2):15-18.
    [23]张家生,王黔平,吴丽华.金属基陶瓷涂层的制备[J].河北理工学院学报,2007,29(2):107-110.
    [24] V.M.Plastinin,V.M.Mizonov,P.S.Shkolvar.Temperature relationship of the anherence strength in a porcelain enamel-metal system[J].Ceramics International,1999,25:27-34.
    [25] Jonson B,Johamsson Envimmnental concern-adrivnig force for modificntion of coloured and opal gloss campositions[J].G Lastechnisk tid skrift.1977,52(1):1-5.
    [26]金童.平板金属间的涂搪方法及其涂搪后的制品.中国搪瓷,1999,20(1):43-48.
    [27] Jost H P.Tribology education and research[R].Jost Rep.Department of Education and Science,HMAO,London,1966.
    [28]张进超,王德庆,齐若斌.无底釉一次涂搪法制备搪瓷层工艺研究[J].大连交通大学学报,2008,29(1):100-106.
    [29]刘建国,陈存华,郑家燊.非金属材料化学镀工艺中基体表面活化方法的研究[J].表面技术,2002,31(3):5-9.
    [30]贾庆远.溶胶凝胶法制备TiO_2薄膜的微观结构及其摩擦磨损性能研究[D].河南:河南大学,2007.
    [31] E.A.Yatsenko,V.N.Selivanov and M.S.Shchepeleeva.Efficiency of depositing glass enamels by electrophoresis[J].Glass and Ceramics,2004,61(9-10):352-354.
    [32]张冬梅.机械涂搪边下沿缩釉现象浅析[J].中国搪瓷,1995,16(1):23-26.
    [33]林竹,秦延龙,黄骁卓,王晶岩.天然气管道减阻耐磨涂料的研究和应用进展[J].腐蚀与防护,2004,24(5):206-210.
    [34]蒋伟忠,钱蕙春.钢板搪瓷鱼鳞爆的克服和预防[J].玻璃与搪瓷,1988,20(2):16-22.
    [35]王禹,王允夫.涂搪工艺系统[J].玻璃与搪瓷,1999,28(1):18-22.
    [36]赵超俊等.鱼鳞爆及解决办法[J].中国搪瓷,1985,13(13):6-8.
    [37] Sophie P,Monique M.Glass and glass-ceramic materials,srticles and method of perparing the same[P].USP:US7153795,2006-12.
    [38] X.Yang,A.Jha,R.C.Cochrane.The effects of a nickel oxide precoat on the gas bubble structures and fish-scaling resistance in vitreous enamels[J].Materials Science and Engineering,2004,A366:254-261.
    [39]邵规贤.搪瓷学[M].北京:轻工业出版社,1983.
    [40]王海燕,程麟,凌志达.搪瓷瓷釉与金属之间的密着[J].玻璃与搪瓷,2007,35(5):33-36.
    [41]徐子阳.低温无底釉耐酸搪瓷釉的研制.玻璃与搪瓷,2005,32(5):24-27.
    [42]张家生,王黔平.陶瓷涂层的热震稳定性及界面结合机理[J].河北理工大学学报,2007,29(3):91-95.
    [43] A.J.Irelanda,M.Sherriff,The influence of alloy composition on anaerobic adhesives in dental bonding[J].Journal of Dentistry,1998,26:701-706.
    [44]张进超.高硬度耐高温腐蚀搪瓷层制备工艺研究[J].大连交通大学学报,2008,29(2):55-60.
    [45]殷海荣,王显,陈福.微晶搪玻璃釉的研制[J].陕西科技大学学报,2005 23(1):18-21.
    [46] Uno Tomoko,Kasuga Toshihio,Nakajima Kiichi.High-strength mica-containingglass-ceramics[J].Joumal of the American Ceramic Society,1991,74(12):3139-3141.
    [47]冶银平,李建功,陈建敏.氧化钛纳米陶瓷的制备及其结构与力学性能[J].中南大学学报,2008,39(4):682-688.
    [48]何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001.
    [49]胡海霞.环氧树脂及尼龙66基复合材料的摩擦磨损性能[D].吉林大学博士学位论文
    [50]梁小平.Y-TZP基陶瓷材料摩擦磨损的研究[D].天津大学博士学位论文.
    [51]刘长霞.Al2O3基大型结构陶瓷导轨材料及其摩擦磨损性能研究[D].山东大学博士学位论文.
    [52] Lan Currie.Stoneware Glazes A Systematic Approach[M].Australia Bootstriop Press.1987.
    [53] B.W.king,H.P.tripp,W.H.Duckworth.Nature of adherence of porcelain enamels to metals[J].Ceram.Soc,1979,42(11):504-511.
    [54]徐帮学.搪瓷与搪瓷制品生产加工工艺与技术标准规范实施手册[M].吉林:吉林音像出版社,2003.
    [55] Thorsten D,ralf J,Haruke E.Lithium-alum inosilicate glass ceramic with high keatite content[P].USP:US7107793,2009-09.
    [56]陆佩文.无机材料科学基础[M].武汉:武汉理工大学出版社,2003.
    [57]卢进标,陈明沪,褚宝莲.高耐蚀高耐磨抗冲击金属材料表面搪瓷工艺研究[J].中国搪瓷,1990,11(5):3-18.
    [58] M.Magallanes-Perdomo , P.Pena , P.N.De Aza.Devitrification studies of wollastonite–tricalcium phosphate eutectic glass[J].Acta Biomaterialia,2009,(5):3057-3066.
    [59] R.S.Hobson,J.F.McCabe,S.D.Hogg.Bond strength to surface enamel for different tooth types[J].Ceramics International,2001,17:184-189.
    [60] Guoping Ling,Junhui He.The influence of nano-A1203 additive on the adhesion between enamel and steel[J].Materials Science and Engineering,2004,379:432-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700