龙眼成花转变与成花逆转的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以龙眼正常成花和成花逆转的花芽为研究对象,运用蛋白质组学方法和技术比较龙眼正常成花和成花逆转花芽的蛋白质组变化,应用双向电泳对花芽蛋白进行分离,从2-D凝胶上均检测到分离的蛋白质点约1000个,应用PDQuest软件对凝胶图谱进行分析,获得65个表达量差异在2倍以上的差异蛋白,其中28个蛋白在龙眼成花逆转花芽中上调表达, 37个蛋白下调表达。MALDI-TOF-TOF/MS串联质谱分析和数据库检索鉴定了其中41个差异表达蛋白,鉴定率为63%。鉴定得到的蛋白中,与龙眼成花逆转关系密切的物质和能量代谢相关蛋白,转录和翻译相关的蛋白,次生代谢相关蛋白,调控相关蛋白,抗逆相关蛋白和细胞骨架蛋白的生物学功能都得到了讨论。通过对这些差异蛋白在成花过程中的功能分析,表明这些蛋白在龙眼成花逆转过程中的差异表达可能影响了花芽的正常发育,进而导致了龙眼成花逆转。应用RT-PCR和RACE方法克隆其中4个与龙眼成花逆转关系密切的差异蛋白的基因:获得了上调表达的调控因子14-3-3蛋白(登录号FJ479618),细胞骨架α-微管蛋白(登录号FJ479617),转醛醇酶(登录号FJ472991)和下调表达的花青素合成酶(登录号FJ479616)的完整开放阅读框,4个基因的全长cDNA都分别在大肠杆菌中表达,获得相应外源蛋白,其中14-3-3蛋白和α-微管蛋白经过Western blotting验证确认。半定量RT-PCR结果显示,ANS和TAL在转录和翻译水平上具有同样表达差异,TUB和14-3-3在转录水平上无明显差异。
Proteomics method was used to compare and identify the differential proteins of normal flowering and floral reversion buds in longan (Dimocarpus longan Lour.). over 1000 protein spots were detected on 2 DE gels, PDQuest was applied on gel pattern analysis, 65 differentially expressed proteins were detected. Among these proteins, 28 were up-regulated and 37 were down-regulated on floral reversion buds. 41 differential proteins were identified by MALDI-TOF-TOF/MS and protein database searching, the identification rate was 63%. Biological function analysis showed these identificated proteins related with substance and energy metabolism, transcription and translation, secondary metabolism, regulation, stress tolerance and cytoskeleton. Open reading frame(ORF) of up-regulated protein regulation factor 14-3-3(GenBank Accession No. FJ479618), cytoskeleton alpha-tubulin(No. FJ479617), transaldolase(No. FJ472991) and down-regulated anthocyanidin synthase(No. FJ479616)were cloned with RACE method. All 4 genes were expressed in E.coli, and western blotting confirmed 14-3-3 and alpha-tubulin. Semi-Quantitative RT-PCR result showed ANS and TAL each has identical regulation on transcription and translation level, whileα-tublin and 14-3-3 each has minor expression differential on transcription level. The changes in expression level of these proteins might cause flower buds developing abnormally and lead to flowering reversion in longan.The results has an important significance in revealing the molecular mechanism of flowering reversion in longan.
引文
[1] Wilkins M. Government backs proteome proposal [J]. Nature, 1995, 378 (6538): 653-656.
    [2] Wasinger V C, Cordwell S J, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16 (7): 1090-1094.
    [3]曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊, 2002 (3): 166-169.
    [4] Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver [J]. Electrophoresis, 1997, 18 (3-4): 533-537.
    [5] Humphery-Smith I, Cordwell S J, Blackstock W P. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. [J]. Electrophoresis, 1997, 18: 1217-1242.
    [6]付琼.蛋白质组学研究进展与应用[J].江西农业大学学报, 2004,26(05):818-823.
    [7]朱红,周海涛,何春涤.蛋白质组学及其主要技术[J].癌变·畸变·突变,2005, 17(5): 318-320.
    [8] Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405: 837-846
    [9] Wickware P, Smaglik P. Proteomics technology character references [J]. Nature, 2001, 413: 869-875
    [10]俞利荣,王楠,吴高德,徐永华,夏其昌.蛋白质组研究技术及其进展.生命的化学, 1998, 18 (6) : 4 -9
    [11]孟慧,段翠芳,曾日中.植物蛋白质组学研究概况[J].热带农业科学,2006, 26(2):60-64.
    [12]罗小敏,崔研,陈彤,等.植物蛋白质组学面临的挑战和前景[J].生物技术通报,2004(4):14-18.
    [13]阮松林,马华升,王世恒,忻雅,钱丽华,童建新,赵杭苹,王杰.植物蛋白质组学研究进展Ⅱ蛋白质组技术在植物生物学研究中的应用.遗传. 2006, 28 (12): 1633-1648
    [14] Schnable P S, Hochholdinger F, Nakazono M. Global expression profiling applied to plant development [J]. Current Opinion in Plant Biology, 2004, 7(1):50-56.
    [15] Tanaka N, Mitsui S, Nobori H, et al. Expression and function of proteins during development of the basal region in rice seedlings [J]. Molecular & Cellular Proteomicsv. 2005, 4(6):796-808.
    [16] Caifeng Zhao, Jingqiang Wang, Mengliang Cao, Kang Zhao, Jianmin Shao, Tingting Lei, Jianning Yin, Gradford G Hill, Ningzhi Xu and Siqi Liu. Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics. 2005, 5: 961–972
    [17] Saroj K. Pramanik and J. Derek Bewley. Post-transcriptional regulation of protein synthesis during alfalfa embryogenesis: proteins associated with the cytoplasmic polysomal and non-polysomal mRNAs (messenger ribonucleoprotein complex). Journal of Experimental Botany. 1996, 45(305) : 1871-1879
    [18] Pingfang Yang, Yu Liang, Shihua Shen and Tingyun Kuang. Proteome analysis of rice uppermost internodes at the milky stage. Proteomics. 2006, 6: 3330-3338
    [19] Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analy-sis of grain filling and seed maturation in barley. Plant Physiol, 2002, 129(6): 1308~1319.
    [20] William H. Vensel, Charlene K. Tanaka, Nick Cai, Joshua H. Wong, Bob B. Buchanan and William J. Hurkman. Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics. 2005, 5 : 1594-1611
    [21] Gallardo K, Signor C L, Vandekerckhove J, Thompson R D, Burstin J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol, 2003, 133(9): 664~682
    [22] Martin Hajduch, Ashwin Ganapathy, Joel W. Stein, and Jay J. Thelen. A Systematic Proteomic Study of Seed Filling in Soybean. Establishment of High-Resolution Two-Dimensional Reference Maps, Expression Profiles, and an Interactive Proteome Database. Plant Physiology. 2005, 137 : 1397-1419
    [23] Santoni V, Bellini C, Caboche M. Use of two-dimensional protein pattern analysis for the characterization of Arabidopsis thaliana mutants [J]. Planta, 1994, 192(4): 557-566.
    [24] Pere Puigdereajol, Anna Jofre, Gisela Mir Pla, Dolors Verdaguer, Gemmma Huguet and Marisa Molina. Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. Journal of Experimental Botany, 2002, 53(373) : 1445-1452
    [25] Raharjo T J, Widjaja I, Roytrakul S, et al. Comparative proteomics of Cannabis sativa plant tissues [J]. Journal of Biomolecular Techniques, 2004, 15(2): 97-106.
    [26] Koller A, Washburn M P, Lange B M, et al. Proteomic survey of metabolic pathways in rice[J]. Proceedings of the National Academy of Sciences 0f USA, 2002, 99(18): 11969-11974.
    [27] Dai S, Li L, Chen T, et al. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated potentially with pollen germination and tube growth [J]. Proteomics, 2006, 6:2504-2529。
    [28] Tanaka N, Fujita M, Handa H, et al. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments. Molecular Genetics and Genomics, 2004, 271 (5):566-576.
    [29] Robertson D, Mitchell G P, Gilroy J S, et al. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants [J]. The Journal of biological chemistry, 1997, 20, 272(25):15841-15848.
    [30] Santoni V, Rouquie D, Doumas P, et al. Use of a proteome strategy for tagging proteins present at the plasma membrane [J]. The Plant Journal ,1998,16(5):633-641.
    [31] Prime T A, Sherrier D J, Mahon P, et al. A proteomic analysis of organelles from arabidopsis thaliana [J]. Electrophoresis, 2000, 21(16): 3488-3499.
    [32] Bae M S, Cho E J, Choi E Y, et al. Analysis of the Arabidopsis nuclear proteome and its response to cold stress[J]. The Plant Journal, 2003, 36(5): 652-663.
    [33] Carter C, Pan S, Zouhar J, et al. The vegetative vacuole proteome of Arabidopsis thalianareveals predicted and unexpected proteins [J]. Plant Cell, 2004, 16(12):3285-3303.
    [34] Alexandersson E, Saalbach G, Larsson C, et al. Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking[J]. Plant and cell physiology, 2004, 45(11): 1543-1556.
    [35] Peltier J B, Friso G, Kalume D E, et al.Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal peripheral thylakoid proteins [J].Plant Cell, 2000, 12(3):319-341.
    [36] Seigneurin-Berny D, Rolland N, Garin J, et al. Technical Advance: Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins [J]. The Plant Journal, 1999, 19(2):217-228.
    [37] Ferro M, Salvi D, Riviere-Rolland H, et al. Integral membrane proteins of the chloroplast envelope: Identification and subcellular localization of new transporters[J]. Proceedings of the National Academy of Sciences, 2002, 99(17):11487-11492.
    [38] Schubert M, Petersson U A, Haas B J, et al. Proteome map of the chloroplast lumen of Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2002, 277(10): 8354-8365.
    [39] Peltier J B, Emanuelsson O, Kalume D E, et al. Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction[J]. Plant Cell, 2002, 14(1):211-236.
    [40] Maria Schbert, Ulrika A. Petersson, Brain J. Haas, Christiane Funk, Wolfgang P. Schroder and Thomas Kieselbach. Proteome map of the chloroplast lumen of Arabidopsis thaliana. The Journal of Biological Chemistry. 2002, 10(227) : 8354-8365
    [41] Bong Kwan Phee, Jin Hwan Cho, Sebyul Park, Jin Hee Jung, Youn Hyung Lee, Jong Seong Jeon, Seong Hee Bhoo and Tae Ryong Hahn. Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomics. 2004, 4 : 3560-3568
    [42] Joshua L. Heazelewood, Katharine A. Howell, James Whelan and A. Harbey Millar. Towards an analysis of the rice mitochondrial proteome. Plant Physiology. 2003, 132 : 230-242
    [43] Kruft V, Eubel H, J?nsch L, Werhahn W, Braun H P. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol, 2001, 127(12): 1694-1710
    [44] Nover L, Scharf K D. Synthesis, modification and structural binding of heat-shock proteins in tomato cell cultures [J]. European Journal of Biochemistry, 1984, 139 (2): 303-313.
    [45] Pere Puigdereajol, Anna Jofre, Gisela Mir Pla, Dolors Verdaguer, Gemmma Huguet and Marisa Molina. Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. Journal of Experimental Botany, 2002, 53 (373) : 1445-1452
    [46] Majoul T, Bancel E, Tribo E, et al. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction [J]. Proteomics, 2004, 4(2):505-513.
    [47] Norifumi Ukaji, Chikako Kuwabara, Daisuke Takezawa, Keita Arakawa and Seizo Fujikawa.Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cell of mulberry tree was homologous to group 3 Late-Embryogenesis Abundant proteins. Plant physiology. 2001, 126: 1588-1597
    [48] Pennington S R, Dunn M J. Proteomics: from Protein Squence to Function. USA: BIOS Scientific Publishers Limited, 2001.
    [49] Guy C L, Haskell D. Detection of polypeptides associated with the cold acclimation process in spinach [J]. Electophoresis, 1988, 9(11): 787-796.
    [50] Leymarie J, Damerval C, Marcotte L, et al. Two-dimensional protein patterns of Arabidopsis wild-type and auxin insensitive mutants, axr1, axr2, reveal interactions between drought and hormonal responses [J]. Plant and Cell Physiology, 1996, 37(7):966-975.
    [51] Fida Mohammad Abbasi and Setsuko Komatsu. Aproteomic approach to analyze salt-responsive protein in rice leaf sheath. Proteomics. 2004, 4: 2072-2081
    [52] Ramagopal S. Salinity stress induces tissue-specific proteins in barley seedlings [J]. Plant Physiology, 1987, 84(2): 324-331.
    [53] Majoul T, Chahed K, Zamiti E, et al. Analysis by two-dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and a salt-sensitive cultivar of wheat[J]. Electrophoresis, 2000, 21(12):2562-2565.
    [54] Chang W W P, Huang L, Shen M, Et al. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry[J]. Plant Physiology, 2000, 122(2): 295-318.
    [55] Agrawal G K, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings[J]. Proteomics, 2002, 2(8): 947-959.
    [56] Shihua Shen, Yuxiang Jing and Tingyun Kuang. Proteomics approach to identify wound-response relate proteins from rice leaf sheath. Proteomics. 2003, 3 : 537-535
    [57] Sun Tae Kim, Kyu Seong Cho, Seok Yu, Sang Gon Kim, Jong Chan Hong, Chang-deok Han, Dong Won Bae, Myung Hee Nam, Kyu Young Kang, Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics. 2003, 3 : 2368–2378
    [58] Battey N H, Lyndon R F, Reversion of flowering. Bot Rev, 1990. 56:162-189
    [59]吴存祥韩天富.植物开花逆转研究进展.植物学通报, 2002, 19(5): 523-529
    [60] Washburn CF, Thomas JF. Reversion of flowering in Glycine Max (Fabaceae). Am J Bot. 2000 ,87(10):1425-1438
    [61] Bernier G. The control of floral evocation and morphogenesis [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1988, 39:175-219
    [62] Lyndon R F. Rates of Growth and Primordial Initiation During Flower Development in Silene at Different Temperatures [J]. Annals of Botany, 1979, 43:539-551
    [63] Lord E M, Eckard K J. Shoot development in Citrus sinensis L. (Washington Navel orange). II. Alteration of developmental fate of flowering shoots after GA3 treatment [J]. Botanical gazette, 1987, 148(1):17-22
    [64] Thompson P A. Reversal of photoperiodic induction of strawberries with maleic hydrazide [J]. Nature,1963,200:146-148
    [65]博永福,孟繁静.植物成花转变过程的基因调控[J].植物生理学通讯,1997,33 (5):393-400.
    [66] Sommer H, Beltran J P, Huijser P, et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors [J]. The EMBO Journal, 1990, 9:605-613
    [67] Huala E, Sussex I M. LEAFY Interacts with floral homeotic genes to regulate Arabidopsis floral development [J]. The Plant Cell, 1992, 4 (8):901-913
    [68] Weigel D, Alvarez J, Smyth D R, et al. LEAFY controls floral meristem identity in Arabidopsis [J].Cell, 1992, 69(5):843-859
    [69] Coen E S, Romero J M, Doyle S. Floricaula: a homeotic gene required for flower development in antirrhinum majus [J]. Cell, 1990, 63(6):1311-1322
    [70] Nissen O, Weigel D. Modulating the timing of flowering [J]. Current Opinion in Biotechnology, 1997, 8(2):195-199
    [71] Ma H. To be or not to be, a flower control of floral meristem identity [J]. Treads in Genet, 1998, 14(1):26-32
    [72] Moon Y H, Chen L, Pan R L, et al. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis[J]. The Plant Cell, 2003, 15(3):681-693
    [73] Pouteau S, Nicholls D, Tooke F, Coen E, Battey N. Transcription pattern of a FIM homologue in Impatiens during floral development and reversion. Plant J, (1998a),14:235–246.
    [74] Wu CX, Ma QB, Yam KM. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system[J]. Planta, 2006, 223: 725–735
    [75] Charles A D, Bret A. M, Paul S. Down-Regulation of TM29, a tomato sepallata homolog, causes parthenocarpic fruit development and floral reversion[J]. Plant Physiology, 2002, 130: 605–617
    [76]白素兰,谢中稳.植物的成花逆转.植物生理学通讯, 2000, 36 (3):252-257
    [77] Xing Hui Liu, Cui-Lan. Production And Research Of Longan In China. International Symposium on Litchi and Longan ISHS Acta Horticulturae 558. 2008,I
    [78]陈秀萍,蒋际谋,高慧颖,郏少泉.龙眼种质资源果实经济性状的稳定性评价.热带作物学报. 2006, 27 (4) : 16-20
    [79]吕柳新,林顺权.果树生殖学导论.中国农业出版社,北京,1995
    [80]梁元冈.中国热带、南亚热带果树.北京:中国农业出版社,1998:91-107
    [81]王长春,柯冠武.东壁龙眼花序发育和花朵分化次序的观察[J].福建省农科院学报,1988,3(2):68-71
    [82]林顺权,等.龙眼的成花逆转与“冲梢调控”[J].植物生理学通讯,2001,37 (6):581-583
    [83]邱金淡,张海岚,吴定尧等.石硖龙眼花芽分化的研究[J].华南农业大学学报,2001,22(1):27-30.
    [84]吕柳新,林顺权.果树生殖学导论[M].北京:中国农业出版社,1995.22
    [85]柯冠武,黄进华,王长春.龙眼花穗“冲梢”形态解剖学的观察.中国果树,1988,(1):22-24
    [86]邱金淡.龙眼花芽分化及调控的研究[D].广州:华南农业大学,1999
    [87]关夏玉,詹志磷,陈清西,等.龙眼“冲梢”的研究和调控.广西园艺,2005,16(2):55-57.
    [88]刘星辉,郑家基,潘东明等.龙眼叶片营养诊断的研究.福建农学院学报.1986, 15(3): 237-245.
    [89]陈开明,何光泽,潘仰星等.龙眼叶片营养与开花结果关系的研究[J].福建果树,1985,(3):1-5.
    [90]温福光.相对低温对龙眼产量的影响.福建果树.1988, (1):55-59.
    [91]吴定尧,邱金淡.环割促进龙眼成花的研究.中国农业科学. 2000,33 (6): 40-43
    [92]许明宪.果树环切的增产效应及机理.果树科学. 1987,4(2): 7-14
    [93]陈尚漠,黄寿波,温福光.果树气象学[M].北京:气象出版社.1988,435
    [94]王纪忠,刘星辉,陈立松.龙眼花芽形态分化期基枝叶片碳水化合物含量与成花逆转的关系[J].福建农林大学学报,33(3):322-325.
    [95]林绍鸢,卢美英.龙眼树结果母枝的形成与培育[J].广西农业科学,1992,(5):209-212.
    [96]黄羌维.龙眼内源激素变化及花芽分化及大小年结果的关系[J].热带亚热带植物学报,1996,4 (2):58-62.
    [97]苏明华,刘志成,庄伊美等.水涨龙眼结果母枝内源激素含量变化对花芽分化的影响[J].热带作物学报,1997,18 (2):66-71.
    [98]李松刚,陈清西.龙眼花芽形成及其调控研究进展.亚热带植物科学. 2002, 31(4) : 12-15
    [99]陈清西,李松刚. KClO3诱导龙眼成花及其叶片碳水化合物与蛋白质的变化.福建农林大学学报(自然科学版), 2004,33(2):182-185.
    [100]王纪忠,刘星辉,陈立松.龙眼成花逆转与花芽形态分化期秋梢叶片矿质营养的关系.福建农林大学学报(自然科学版)2006, 35(02)
    [101]苏明华,刘志成.几种植物生长调节剂对龙眼促花促果的效应.中国南方果树,1996,25(3):28
    [102]张乃燕,赵海鹄.龙眼不同结果母枝类型对成花的影响.广西林业科学,2001,30(4):189-194
    [103] Bradford, M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 1976, 7(72): 248-254.
    [104]李合生.现代植物生理学.高等教育出版社. 2002,第一版
    [105] Bower J P,et al. Interaction of plant growth regulator and carbohydrate in flowering and fruit set. Acta Horticulturae. 1990, 275:425-434.
    [106]韩宁林.郑挺杨.银杏二年生开花结实萌蘖技叶营养成分的研究.经济林研究. 2000, 18(4) : 24-30
    [107]吴志祥,王令霞,陶忠良,周兆德,阳辛凤, 2个荔枝品种花芽分化期碳氮营养的变化.热带作物学报. 2006, 27(4): 22-26
    [108] Ong HT. Climatic changes in water balances and their effects on tropical flowering in rambutan. Planter Kuala Lumpur. 1976, 52:174-179
    [109] Yu TienShin, Lue WeiLing, Wang ShueMei, Chen JyChian, Yu TS, Lue WL, Wang SM, Chen JC. Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant physiology. 2000, 123 (1) : 319-326
    [110] Steven E. Travers, Timothy P. Holtsford. Differential siring success of Pgi genotypes in Clarkia Unguiculata (Onagraceae). American Journal of Botany. 2000, 87:1091-1098
    [111]王晓云,毕玉芬.植物苹果酸脱氢酶研究进展.生物技术通报. 2006, 4: 44-47
    [112]张文利,沈文飚,叶茂炳,徐朗莱.植物顺乌头酸酶及其生理功能.植物生理学通讯. 2003, 39(4): 2-12
    [113] P. R. Levering and L. Dijkhuizen Regulation and function of transaldolase isoenzymes involved in sugar and one-carbon metabolism in the ribulose monophosphate cycle methylotroph Arthrobacter P1 Arch Microbiol . 1986, 144: 116-123
    [114] Paul D. Boyer. The Atp Synthase-A Splendid Molecular Machine . Annual Review of Biochemistry. 2003, 66: 717-749
    [115] Aguilar F,Montandon PE,Stutz E.Two genes encoding the soyabean translation elongation factor eEF-1A are transcribed in seedling leaves. Plant Mol Bio1.1991,17:351-360
    [116] Mahe A,Grisvard J,Dron M.Fungal- and plant-specific gene markers to follow the bean anthracnose infection process and normalize a bean chitinase mRNA induction. MoL Plant Microbe Inter,1992,5:242-248
    [117] Durso NA,Leslie JD,Cyr RJ. In situ immunocyto chemical evi. dence that a homolog of protein translation elongation factor EF-1 is as sociated with microtubules in carrot cells.Protoplasma, 1996, 190:141-150
    [118] Rao TR,Slobin L1.The stability of mRNA for eukaryotic elongation factor Tu in friend erylhroleukemia cells varies with growthrate.MoL Cell BioL. 1988, 8:1085-1092
    [119] Shepherd JCW ,WalldorfU,HugP et a1.Fruit flies with additional expression of theelongation factor EF-1A live longer.Proc Natl Acad Sci USA,1989,74:5463-5467
    [120]凌宇,王宏芝,李瑞芬,魏建华. eIF-5A的功能及其在植物改良中的应用.自然科学进展. 2007, 3: 19-27
    [121] Feng H ZH, Chen Q G, Feng J, et al. Functional Characterization of the arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death[J]. Plant Physiology, 2007, 7(144): 1531–1545.
    [122] Philip J, Hogg.M. Disulfide bonds as switchs for protein function[J].Trends in Biochemical Sciences, 2003,28: 210- 214.
    [123] Gilbert H F. Protein disulfide isomerase[J]. Methods Enzymes, 1998, 290 : 26-50.
    [124]李宪利,袁志友,高东升.高等植物成花分子机理研究现状及展望.西北植物学报,2002,22(1):173-183
    [125] Ferrer JL, Jez JM, Bowman ME, et al. Structure of chalcone synthase and the molecular basis of plant polypeptide biosynthesis. Nat Struct Biol, 1999, 6: 775-84
    [126] Meldgaard M. Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor Appl Genet, 1992, 83: 695-706
    [127] Rosati C, Cadic A, Duron M, et al. Molecular characterization of the anthocyanidin synthase gene in Forsythia intermedia reveals organ-specific expression during flower development. Plant Sci, 1999, 149: 73-9
    [128] Koes R.E., Quattrocchio F., and Mol J.N.M., The flavonoid biosynthetic pathway in plants: function and evolution, BioEssays, 1994, 16(22): 123-132
    [129] Van Der Meer I M, S Tam M E, Van Tunen A J, et al. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility[J]. The Plant Cell, 1992, 4:253-262.
    [130] Ylstra B, Busscher J, Franken J, et al., Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth [J]. The Plant Journal.1994, 6(2):201-212.
    [131] Ylstra B, Touraev A, Moreno R M B. et al. Flavonols stimulate development, germination, and tube growth of tobacco pollen[J]. Plant Physiology, 1992, 100:902-907.
    [132]邵莉,李毅,杨美珠,宋云,陈章良.查尔酮合酶基因对转基因植物花色和育性的影响.植物学报. 1996,38 (7):517-524
    [133] S. Froemel , p. de Vlaming , G. Stotz 1, H. Wiering , G. Forkmann 1 and A. W. Schram. Genetic and biochemical studies on the conversion of flavanones to dihydroflavonols in flowers of Petunia hybrida. Theor Appl Genet. 1985, 70:561-568
    [134] Michael R. 2000. Regulatory 14-3-3 protein–protein interactions in plant cells. Current Opinion in Plant Biology, 3 (5): 400-405.
    [135] Roberts M R, Salinas J, Collinge D B. 2002. 14-3-3 proteins and the response to abiotic andbiotic stress. Plant Molecular Biology, 50 (6): 1031-1039.
    [136] Campos Alvarez F, Cruz Garcia F, Torres Espinosa A, Sanchez Jimenez M, Colmenero Flores JM, Smith E. Expression of late embryogenesis abundant (lea) protein codifying genes during osmopriming of maize and bean seeds. Agrociencia. 2002, 36(4) : 134-142
    [137] Reid J L, Walker-simmons M K. Group 3 late embryogenesisabundant proteins in desiccation-tolerant of wheat (Triticumaestivum L.) [J]. Plant Physiol, 1993, 102: 125-31
    [138] Griffiths, A., Parry, A.D., Jones, H.G., Tomos, A.D. Abscisic acid and turgor pressure regulation in tomato roots. Journal of plant physiology. 1997, 149 (3/4) : 372-376
    [139] Nancy A. Eckardt. Function of Tubulin in Plants. 2006, The Plant Cell 18:1327-1329
    [140] Dhugga KS, Tiwari SC, Ray PM. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc Natl Acad Sci USA .1997, 94: 7679–7684
    [141] Dhugga KS, Ulvskov P, Gallagher SR, Ray PM. Plant polypeptides reversibly glycosylated by UDP-glucose—possible components of Golgi beta-glucan synthase in pea cells. J Biol Chem 1991, 266: 21977–21984
    [142] Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 2003, 133: 713–725
    [143] Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003, 132: 640–652
    [144] Pina C, Pinto F, Feijo JA, Becker JD. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 2005, 138: 744–756
    [145] Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S. Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics. 2005, 5: 4864–4884
    [146] Noir S, Brautigam A, Colby T, Schmidt J, Panstruga R. A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun. 2005, 337: 1257–1266
    [147] Dai S, Li L, Chen T, Chong K, Xue Y, Wang T. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics. 2006, 6: 2504–2529
    [148] M Peng, J Kuc. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Physiologe and biochemistry. 1992, 11: 696-700
    [149] Ravindra N. Chibbar and Robert B. van Huystee. Characterization of Peroxidase in Plant Cells. Plant Physiology. 1984, 75:956-958
    [150] A. S. Gupta, R. P. Webb, A. S. Holaday and R. D. Allen Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants) Plant Physiology , 2002, 103(4): 1067-1073
    [151] LM Lagrimini, S Bradford, and S Rothstein Peroxidase-Induced Wilting in Transgenic Tobacco Plants. Plant Cell. 1990 , 2(1): 7–18.
    [152] Silverstone A L .Gibberellins and green revolution. Trends In Plant Science. 2000, 5: 1-2
    [153]林晓东.激素调节花芽分化的研究进展.果树科学, 1997, 14 (4): 269-274
    [154] Mclaughlin J M, Greene D W. Effects of BA,GA4+7,and daminozide on fruit set, fruit quality, vegetative growth, flower initiation and flower quality of‘Golden Delicious’apples. Journal of American Society for Horticultural Science. 1984,109(1):34~39.
    [155]肖华山,吕柳新,陈志彤.荔枝花发育过程中雌雄蕊内源激素的动态变化.应用与环境生物学报. 2003, 9 (1) 29-35
    [156] Yoshida K, Kato Y T, Kameda K. Sepal color variation of Hydrangea macrophylla and vacuolar pH measured. Plant Cell Physiol, 2003, 44(3): 262-268.
    [157] Wilmouth J, Turnbull R, Welford I, Clifton A, Prescott C. Structure and Mechanism of Anthocyanidin Synthase from Arabidopsis thaliana. Structure, 1999, 10(1): 93-103
    [158] Rosati C, Cadic A, Duron M, Renou J P, Simoneau P. Molecular characterization of the anthocyanidin synthase gene in Forsythia intermedia reveals organ-specific expression during flower development. Plant Science, 1999, 149: 73-79
    [159] Yoshikazu T, Shinzo T, Takaaki K. Metabolic Engineering to Modify Flower Color. Plant and Cell Physiology, 1998, 39(11): 1119-1126
    [160] Saito K , Kobayashi M , Gong Z Z , Tanaka Y, Yamazaki M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate -dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. The Plant Journal, 1998, 17(2): 181-189
    [161] Rosati C, Cadic A, Duron M, Renou J P, Simoneau P. Molecular characterization of the anthocyanidin synthase gene in Forsythia intermedia reveals organ-specific expression during flower development. Plant Science, 1999, 149: 73-79
    [162] Noriko N, Masako F M, Kiyoshi M, Kenichi S, Yoshikazu K. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol, 2006, 23(1): 13-17
    [163] Nakajima J, Tanaka Y, Yamazaki M, Saito K. cDNA Cloning and Gene Expression of Anthocyanidin Synthase from Torenia fournieri. Plant Biotechnol, 2000, 17(4): 331-335
    [164] Nakatsuka T, Nishihara M, Mishiba K. Two different mutations are involved in the formation of white-flowered gentian plants. Plant Science, 2005, 169: 949-958
    [165] Garzon G A, Wrolstad R E. Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Phytochemistry, 2004, 65(15): 2219-2227
    [166] Louis C. Morejohn and Donald E. Fosket. Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature. 1982, 297: 426– 428
    [167] Steven R. Ludwig, David G. Oppenheimer, Carolyn D. Silflow , Peter Snustad. The alph-l-tubulin gene of Arabidopsis thaliana: primary structure and preferential expression in flowers. Plant Molecular Biology. 1988, 10:311-321
    [168] Carpenter J L,Ploense S E. Snustad D P.et a1.Preferential expression of anα-tubulin gene of Arabidopsis in pollen.Plant Cel1.1992,4:557-571
    [169] Montolin L,Puigdomenech P.Rigau J.The Tuba3 gene from Zea mays:structure and expression in dividing plant tissues.Gene,1990,94:201-207
    [170] Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133: 713–725
    [171]庞国彩.龙眼花芽与叶芽差异蛋白质的初步研究.硕士学位论文. 2008
    [172] Würtele M, Jelich-Ottmann C, Wittinghofer A, Oecking C (2003) Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J. 22, 987-994.
    [173] Shin-ichiro Kidou, Masaaki Umeda, Atsushi Kato, Hirofumi Uchimiya. 1993. Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene. Plant Molecular Biology, 21 (1): 191-194.
    [174] Oksvold M P, Huitfeldt H S, Langdon W Y. 2004. Identification of 14-3-3 zeta as an EGF receptor interacting protein. FEBS Letters, 569 (1): 207– 210
    [175]解莉楠,聂玉哲,张晓磊,李玉花. 2007.盐碱胁迫下羊草消减文库的构建及分析.分子植物育种, 5 (3): 371-376.
    [176] Kerkeb L, Venema K, Donaire J P, Pilar M. 2002. Enhanced H+/ATP coupling ratio of H+-ATPase and increased 14-3-3 protein content in plasma membrane of tomato cells upon osmotic shock. Physiologia Plantarum, 116 (1): 37– 41
    [177] Abarca D, Madueńo F, Mart?n?ez-Zapater J M. 1999. Dimerization of Arabidopsis 14-3-3 proteins: structural requirements within the N-terminal domain and effect of calcium. FEBS Letters, 462 (3): 377-382
    [178] Caillau Maxime,Quick W. Paul. New insights into plant transaldolase. Plant journal. 2005, 43: 1-16
    [179] Nicholas J Kruger, Antje von Schaewen. The oxidative pentose phosphate pathway: structure and organization. Current Opinion in Plant Biology. 2003, 6 (3) : 236-246
    [180]刘鸿先等.低温对不同耐冷力黄瓜幼苗呼吸代谢的影响.植物生理学报. 1984, 10: 191-199
    [181]杨根平,王昭唐.渗透胁迫对小麦幼苗根系呼吸的影响.植物生理学报. 1989, 1 5 (1): 179-183
    [182] Nemoto Yasue, Sasakuma Tetsuo. Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.). Plant science. 2000, 158: 53-60
    [183]韩建国,浦心春,毛培胜.高羊茅种子老化过程中酶活性的变化.草地学报.1998, 6(2):84-89
    [184]林善枝,李雪平,张志毅.在低温诱导毛白杨抗冻性中CaM含量和G6PDHase及ATPase活性的变化..北京林业大学学报, 2001,23(5):4-9
    [185]刘晓忠,汪宗立,高煜珠.涝渍逆境对玉米根系磷酸戊糖途径的影响.江苏农业学报. 1992,6(4):43-46
    [186]彭克勤,夏石头,李阳生.涝害对早中稻生理特性及产量的影响.湖南农业大学学报(自然科学版). 2001,2l: 173-176
    [187] Sindelar L,Sindelarova M ,Burketova L,1999.Changes in activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenase isozymes upon potato virus Y infection in tobacco leaf tissues and protoplasts.Plant Physiol Bioch,37: 195-201
    [188]焦鸿俊.抗柑桔细菌溃疡病的柑桔叶组织内一些酶活性的研究.广西农业大学学报. 1992,11(3):71-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700