疏浚底泥污染物在粘土防渗层中的运移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究湖泊疏浚底泥中的污染物在底泥堆场下部天然粘土防渗层中的渗透运移规律以及粘土层对污染物的阻隔与防渗效果对防止二次污染具有非常重要的意义。本论文在将固结理论与污染物运移理论相结合的基础上,建立了污染物在变形多孔介质中的运移模型。以国家“十五”863重大科技专项所属课题“太湖水污染控制与水体修复技术及工程示范”研究项目为依托,论文针对太湖周边地区存在丰富的粘土层这一地层条件,开展了底泥堆场防渗粘土层中污染物的运移与阻隔特性的研究工作,取得的主要研究成果如下:
     1、利用自制的试验设备—双联式三轴渗透仪,针对无锡雪浪堆场底部淤泥质粉质粘土层土样,在室内进行了大量全面系统的渗透、静态吸附和动态土柱试验,试验中考虑了固结变形对污染物在土柱中渗透运移的影响。通过渗透试验确定了氨氮污染物在土样中的渗透系数;根据静态吸附试验计算出了土样对氨氮的吸附系数,并由动态土柱试验测定了氨氮在土样中的扩散系数,根据试验结果得知堆场地基土层和围堰土层对底泥中的氨氮污染物具有良好的阻隔防渗效果,同时也揭示了污染物在粘土中的一些运移转化规律。
     2、在将比奥固结理论和污染物运移理论结合的基础上,提出了污染物在粘土防渗层中运移的一维数学模型,该模型的最大特点是考虑了土体受力变形对污染物运移的影响。
     3、经过合理简化,得到了不考虑污染源浓度衰减与考虑污染源浓度衰减两种情况下所建运移模型的解析解;并对底泥中所含氨氮污染物在堆场下卧的淤泥质粉质粘土层中的运移进行了数值模拟计算,同时还对氨氮浓度在土层中的时空分布进行了预测。根据模型计算结果、试验结果与调研资料,对无锡雪浪堆场的防渗隔污能力进行了评价。结果表明堆场的围堰和地基土层对太湖疏浚底泥中的污染物已具备了足够的阻隔能力,在堆场的使用年限内不会对周围环境造成二次污染。
     4、因为实际天然防渗层中以成层土居多,故推导污染物在成层土中的运移模型具有非常重要的工程价值和现实意义。根据多层地基的固结模型,给出了污染物在成层弹性地基中运移模型。利用所建模型计算了太湖疏浚底泥中含有的主要污染物-氨氮在双层地基中运移时浓度随时间和深度的变化。
     5、通过物质坐标系下的大变形固结方程的近似解,给出了考虑土体固结大变形的污染物运移模型的表达式。
The research on the infiltration and transport of contaminant in clay impermeable layer and obstruction of contaminant to clay layer is very important to prevent secondary pollution. In this paper the transport model of contaminant is set up in deformed porous medium on the base of combing the consolidation theory with contaminant transport theory. Relying on the project of state 863 important special problem, the research on transport and obstruction of contaminant in clay layer in sludge site is conducted using the abundant clay layer in peripheral area. The main research result is shown in the following:
    1 Using the duplex triaxial permeability testing machine and the muddy and silty clay of Xuelang heap site in Wuxi, a great deal of indoor tests on infiltration and static adsorption and dynamic soil column have been done, the effect of consolidation deformation on infiltration and transport of contaminant in soil column in tests is considered. The permeability coefficient of ammonia nitrogen in soil sample is found through infiltration test, the adsorption coefficient of soil sample to ammonia nitrogen is measured by static adsorption test, and the diffusion coefficient of soil sample to ammonia nitrogen is also measured by dynamic soil column test. Through the infiltration test results it can be gained that the heap site soil layer and coffered soil layer have good obstruction effect, and the transport rule of contaminant is presented in deformed clay layer.
    2 On the base of combing the Biot consolidation theory with contaminant transport theory the one-dimensional mathematic model of contaminant in clay layer is put forward. The greatest feature of model is considering the effect of soil deformation on contaminant transport through introducing the contaminant chroma adsorbed the solid grain to the contaminant transport model.
    3 The analytic solutions of transport model are gained through rational predigestion, they include considering the decaying of pollutant source and without considering the decaying of pollutant source. The numerical calculation on transport of ammonia nitrogen in muddy and silty clay layer is done, and the space-time distributing of ammonia nitrogen chroma in soil layer is predicted. The impermeable ability of heap site is estimated according to the calculated result of model and test result and investigated data. The results have shown the cofferdam and ground soil layer has enough ability to obstruct the contaminant of dredged sludge and can't produce secondary pollution in the fixed number of year of heap site.
    4, The transport model of contaminant in layered elastic ground is found according to the consolidation model of multilayer ground. Using the transport model the change of ammonia nitrogen chroma with the time and depth is calculated in the double layer. Because the layered soil is abundant in actual impermeable layer, the transport model of contaminant in layered soil has important project value and realistic meaning.
    5 The expression of transport model of contaminant considering soil consolidation large deformation is put forward according to the approximate solution of large deformation consolidation equation in material coordinate.
引文
[1] 陈荷生,石建华.太湖底泥的生态疏浚工程-太湖水污染综合治理措施之一.水资源保护,1998,(3):11~16
    [2] 周中谟,易杰军等.GPS卫星测量原理与应用.北京:测绘出版社,1997
    [3] 张超等.地理信息系统.北京:高等教育出版社,1997
    [4] 何品晶,顾国维,李笃中等.城市污泥处理与利用.北京:科学出版社,2003
    [5] Wagner, Jean-Frank. Retention of heavy metals from blast-furnace dedusting sludges by a clayey subsoil. Water, Air and Soil Pollution, 1991, 57-58:351~357
    [6] Czurda, Kurt A. et al. Cation transport and retardation processes in view of the toxic waste deposition problem in clay rocks and clay liner encapsulation. Engineering Geology, 1991, 30(1): 103~113
    [7] Park, Jae K. et al. Transport of volatile organic compounds (VOCs) through a clay liner. Environmental Engineering, 1991, 6~11
    [8] Dubinchuk, V. T. et al. Field and laboratory nuclear techniques in radionuclide transport studies: methodology, technology and case studies in the territory of the Russian federation exposed to radioactive contamination due to the Chernobyl accident. International Atomic Energy Agency, Proceedings Series, 1993, (329): 101~146
    [9] Arsene, Carmen. et al. Experimental research of (14)~C migration in loess and clay - Distribution coefficients and retardation factors. Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM, 2001, 3:1339~1341
    [10] Garga, Vinod K., et al. Hydrogeological and contaminant-transport properties of fractured Champlain Sea clay in Eastern Ontario. Part 2. Contaminant transport. Canadian Geotechnical Joumal, 1994, 31(6): 902~915
    [11] Lo, Lrene M-C.,et al. Laboratory sorption and hydraulic conductivity tests: evaluation of modified-clay materials. Waste Management & Research, 1996, 14(3): 297-310
    [12] Nunez-Delgado, A. et al. Breakthrough of inorganic ions present in cattle slurry: Soil column trials. Water Research, 1997, 31(11): 2892~2898
    [13] Kuhlmeier, Paul D. Partitioning of arsenic species in fine-grained soils. Journal of the Air & Waste Management Association, 1997, 47(4): 481~490
    [14] Lo, I. M. C., Mak, R.. K. M.. Transport of phenolic compounds through a compacted organoclay liner. Water Science and Technology, 1998, 38(2): 143~150
    [15] Donahue, Robert B., et al. Diffusion and adsorption of benzene in Regina clay: Canadian Geotechnical Journal, 1999, 36(3): 430-442
    [16] Garcia-Gutierrez, M. et al..Migration experiments in compacted Ca-bentonite. Materials Research Society Symposium - Proceedings, 1999, 556:695~701
    [17] Atalay, A. Variation in phosphorus sorption with soil particle size. Soil and Sediment Contamination, 2001, 10(3): 317~335
    [18] Witthuser, K.et al. Contaminant Transport in Fractured Chalk: Laboratory and Field Experiments. Ground Water, 2003, 41 (6): 806~815
    [19] Aertsens, Marc. et al. Modelling of silica diffusion experiments with (32)~Si in Boom Clay. Journal of Contaminant Hydrology, 2003, 61(1-4): 117~129
    [20] Lo, Irene M.-C. Innovative waste containment barriers for subsurface pollution control. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2003, 7(1): 37~45
    [21] 郑西来,刘孝义,席临平.多孔介质吸附对石油污染物运移的阻滞效应研究.长春科技大学学 报.1999,29(1):52~54
    [22] 刘长礼 王秀艳,张云.城市垃圾卫生填埋场粘性土衬垫的截污容量及其研究意义.地质论评.2000,46(1):79~85
    [23] 高松亭,韩朔睽,高士祥,王连生.土壤污染物的释放速率及阻隔措施研究.环境化学.2000,19(1):31~36
    [24] 邓飞跃,张可能,杨明.粘土固化注浆帷幕对有害物质的阻滞作用.中南工业大学学报.2000,31(6):524~526
    [25] 刘长礼,张云,焦鹏程,王成敏.上海浦东表层粘性土对城市垃圾污染质的阻隔能力.地球学报.2001,22(4):360~364
    [26] 成春奇.粘土对重金属污染物容纳阻滞能力研究.水文地质工程地质.2001,(6):12~14
    [27] 亢宇,鲁安怀,周平,李博文,李金洪,吴亚东,李明.北京六里屯垃圾填埋场天然粘土对有机污染物吸附结果与讨论.中国非金属矿工业导刊.2003,(2):42~44
    [28] Johnson, Richard L., Cherry, John A., Pankow, James E. Diffusive contaminant transport in natural clay: A field example and implications for clay-lined waste disposal sites. Environmental Science and Technology, 1989, 23(3): 340~349
    [29] Edil, T. B., Bcrthoucx, P. M., PJac Y., Edil, Tuncer B., Park, Jae K.. Effects of volatile organic compounds on clay landfill liner performance. Waste Management & Research, 1991, 9(3): 171~187
    [30] Myrand, D., Gillham, R. W., Sudicky, E. A., O'Hannesin, S. E, Johnson, R. L.. Diffusion of volatile organic compounds in natural clay deposits: Laboratory tests. Journal of Contaminant Hydrology, 1992, 10(2): 159~177
    [31] Edil, Tuncer B., Park, J. K., Berthouex, E M.. Attenuation and transport of volatile organic compounds in clay liners. Proceedings of the Mediterranean Conference on Environmental Geotechnology, 1992, p77
    [32] Bengtsson, G; Lindqvist, R.; Piwoni, M.D. Sorption of trace organics to colloidal clays, polymers, and bacteria. Soil Science Society of America Journal, 1993, 57(5): 1261~1270
    [33] Edil, Tuncer B., et al. Large-size test for transport of organics through clay liners. ASTM Special Technical Publication, 1994, (1142): 353~374
    [34] Keyes, B. R., Silcox, G D.. Fundamental study of the thermal desorption of toluene from montmorillonite clay particles. Environmental Science and Technology, 1994, 28(5): 840~849
    [35] Edil, Tuncer B.; Wambold, Wayne S.; Park, Jae K. Partitioning of VOCs in clay liner materials. Geotechnical Special Publication, 1995, (46/1): 775~790
    [36] Jin, An; Chang, Shoou-Yuh. Sensitivity test for partitioning of VOCs in a clay liner transport model. Proceedings of the International Conference on Solid Waste Technology and Management, 1996, 8pp
    [37] Zhang, Xiao. et al. Diffusion batch method for determination of the adsorption coefficient of benzene on clay soils. Canadian Geotechnical Journal, 1998, 35(4): 622~629
    [38] Valsaraj, Kalliat T. et al. Partition constants and adsorption/desorption hysteresis for volatile organic compounds on soil from a Louisiana Superfund site. Environmental Monitoring and Assessment, 1999, 58(2): 225~241
    [39] Kim, Jae Y., Edil, Tuncer B., Park, Jae K.. Volatile organic compound (VOC) transport through compacted clay. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(2): 126~134
    [40] Edil, Tuncer B. A review of aqueous-phase VOC transport in modern landfill liners. Waste Management, 2003, 23(7): 561~571
    [41] Itakura, T., Airey, D. W., Leo, C. J.. The diffusion and sorption of volatile organic compounds through kaolinitic clayey soils. Journal of Contaminant Hydrology, 2003, 65(3-4): 219~243
    [42] Shackelford, Charles D., Daniel, David E., Liljestrand, Howard M.. Diffusion of inorganic chemical species in compacted clay soil. Journal of Contaminant Hydrology,1989, 4(3): 241~273
    [43] Garisto, Nava C., Garisto, Frank. Transport of uranium through a cracked clay barrier. Annals of Nuclear Energy, 1990, 17(4): 183~193
    [44] Murray, Kent. et al. Distribution and mobility of lead in soils at an outdoor shooting range. Journal of Soil Contamination, 1997, 6(1): 79~93
    [45] Andre, Christine. et al. Analysis of breakthrough curves of Np(V) in clayey sand packed column in terms of mass transfer kinetics. Journal of Contaminant Hydrology, 1998, 35(1-3): 161~173
    [46] Wu, Guangxi; Li, Loretta Y. Modeling of heavy metal migration in sand/bentonite and the leachate pH effect. Journal of Contaminant Hydrology, 1998, 33(3-4): 313~336
    [47] Li, Loretta Y.et al. Numerical simulation of transport of four heavy metals in kaolinite clay. Journal of Environmental Engineering, 1999, 125(4): 314~324
    [48] Kohn, Jacqueline. et al. Behaviour of contaminant plumes at the interface between the Pampeano and Puelche aquifers in the province of Buenos Aires, Argentina. IAHS Publication (International Association of Hydrological Sciences), 2000, (260): 81~86
    [49] Rameback, H., AIbinsson, Y., Skalberg, M., Eklund, U. B., Kjellberg, L.. Werme, L.. Transport and leaching of technetium and uranium from spent UO_2 fuel in compacted bentonite clay. Journal of Nuclear Materials, 2000, 277(2-3): 288~294
    [50] Chang, C. M., et al.Transport modeling of copper and cadmium with linear and nonlinear retardation factors. Chemosphere, 2001, 43 (8): 1133~1139
    [51] Elzahabi, M., Yong, R.N. pH influence on sorption characie(?) of heavy metal in the vadose zone. Engineering Geology, 2001, 60(1-4): 61~68
    [52] Zeki, Camur, M., Yazicigil, H.. Experimental determination of hydrodynamic dispersion coefficients for heavy metals using compacted clay. IAHS-AISH Publication, 2001, (269): 283~286
    [53] Ferrell, Ray E. et al. Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners. Applied Clay Science, 2002, 21(1-2): 59~66
    [54] Zhang, Ke-Neng, Chen, Yong-Gui, Deng, Fei-Yue, Tian, Qing-Yu. Retention of clay-solidified grouting curtain to Cd~(2+), Pb~(2+) and Hg~(2+) in landfill of municipal solid waste. Journal of Central South University of Technology (English Edition), 2004, 11(4): 419~422
    [55] Du, Y. J., Hayashi, S., Xu, Y. E. Some factors controlling the adsorption of potassium ions on clayey soils. Applied Clay Science, 2004, 27(3-4): 209~213
    [56] Kim, Jae Y., Edil, Tuncer B., Park, Jae K.. Effective porosity and seepage velocity in column tests on compacted clay. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12): 1135~1141
    [57] Van Dam, Jos C.. Simulation of field-scale water flow and bromide transport in a cracked clay soil. Hydrological Processes, 2000, 14(6): 1101~1117
    [58] Lake, C. B., Rowe, R. K.. Diffusion of sodium and chloride through geosynthetic clay liners. Geotextiles and Geomembranes, 2000, 18(2): 103~131
    [59] Li, Zhaohui.et al. Organo-illite as a low permeability sorbent to retard migration of anionic contaminants. Journal of Environmental Engineering, 2002, 128(7): 583~587
    [60] Aertsens, M., Wemaere, I., Wouters, L.. Spatial variability of transport parameters in the Boom Clay. Applied Clay Science, 2004, 26(1-4): 37~45
    [61] Malusis, Michael A., Shackelford, Charles D.. Explicit and implicit coupling during solute transport through clay membrane barriers. Joumal of Contaminant Hydrology, 2004, 72(1-4): 259~285
    [62] Jungnickel, Christian, Smith, David, Fityus, Stephen. Coupled multi-ion electrodiffusion analysis for clay soils. Canadian Geotectmical Journal, 2004, 41(2): 287~298
    [63] White, Everett M.. Possible clay concentration effects on soluble phosphate contents of runoff. Environmental Science and Technology, 1981, 15(1):103~106
    [64] Ulen, B., Shirmohammadi, A., Bergstrom, L. E. Phosphorus transport through a clay soil. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 1998, 33(1): 67~82
    [65] Oscarson, D. W., Sawatsky, N. G, Cho, W.-J., Choi, J.-W.. Compacted clays as barriers to radionuclide transport. Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM, 1995, 1:751~754
    [66] Wildenschild, D. et al. Laboratory analysis of the effect of macropores on solute transport. Ground Water, 1994, 32(3): 381~389
    [67] Pusch, Roland. Transport phenomena in smectite clay explained by considering microstructural features. Materials Research Society Symposium - Proceedings, 1997, 506:439~448
    [68] Yong, Raymond N.. Influence of microstructural features on water, ion diffusion and transport in clay soils. Applied Clay Science, 2003, 23(1-4): 3~13
    [69] Yong, Raymond N., Mulligan, Catherine N.. The impact of clay microstructural features on the natural attenuation of contaminants. Applied Clay Science, 2003, 23(1-4): 179~186
    [70] Carnahan, C. L.. Thermodynamically coupled mass transport processes in a saturated clay. Materials Research Society Symposia Proceedings, 1985, 44:491~498
    [71] Lo, Irene M. C., Liljestrand, Howard M., Daniel, David E.. Hydraulic conductivity and adsorption parameters for pollutant transport through montmorillonite and modified montmorillonite clay liner materials. ASTM Special Technical Publication, 1994, 1142:422~438
    [72] Gaston, L. A.; Locke, M. A. Organic chemicals in the environment. Fluometuron sorption and transport in Dundee soil. Journal of Environmental Quality, 1995, 24(1): 29~36
    [73] Fesch, Claudia. et al. Nonlinear sorption and nonequilibrium solute transport in aggregated porous media: experiments, process identification and modeling. Journal of Contaminant Hydrology, 1998, 31(3-4): 373~407
    [74] McCarthy, John E et al. Effect of pH on sorption and transport of fluorobenzoic acid ground water tracers. Journal of Environmental Quality, 2000,29(6):1806~1813
    [75] Persson, Magnus, Bemdtsson, Ronny, Nasri, Slah, Albergel, Jean, Zante, Patrick, Yumegaki, Yuki. Solute transport and water content measurements in clay soils using time domain reflectometry. Hydrological Sciences Journal, 2000, 45(6): 833~847
    [76] Mammar, N., Rosanne, M., Prunet-Foch, B., Thovert, J.-F, Tevissen, E., Adler, P. M.. Transport properties of compact clays: I. Conductivity permeability. Journal of Colloid and Interface Science, 2001, 240(2): 498~508
    [77] Malusis, Michael A., Shackelford, Charles D.. Theory for reactive solute transport through clay membrane barriers. Journal of Contaminant Hydrology, 2002, 59(3-4): 291~316
    [78] Jang, Yeon-Soo, Hong, Gyeong-Taek. Analysis of effective diffusion and transport of inorganic solute through a landfall liner system. Environmental Geology, 2002, 42(8): 929~936
    [79] Lee, S. Y. et al. Sorption of hydrophobic organic compounds onto organoclays. Chemosphere, 2004, 55(5):781~785
    [80] 阎先良.污染物质在包气带中运移规律的实验研究.环境科学.1993,14(5):32~38
    [81] 任欣,刘和平,刘金洁,夏秋香.铬(Ⅵ)在粘土衬层中迁移转化的研究.环境科学研究.1994.7(4):25~30
    [82] 刘新华,沈照理.含油污水在微裂隙发育粘性土层中的迁移特征.水文地质工程地质.1996,23(3):20~23
    [83] 刘和平,郑洁明,刘巧丽.铅和镉在粘土衬层中渗透、迁移、转化的研究.环境科学研究.1997.10(4):56~60
    [84] 吕家珑,张一平,苏仕平.土壤磷运移研究.土壤学报.1999,36(1):75~82
    [85] 魏俊峰,吴大清,彭金莲,刁桂仪.铜(Ⅱ)在高岭石表面的吸附.矿物岩石,2000,20(3):19~22
    [86] 席永慧,任杰,胡中雄.污染物离子在粘土介质中扩散系数的测定.同济大学学报.2003,31(5):595~599
    [87] 张宇峰,张雪英,徐炎华,王晓军,王晓蓉.土壤中水动力弥散系数的研究进展.环境污染治理技术与设备.2003,4(7):8~12
    [88] 钱学德,施建勇,郭志平,吕进.粘土衬垫系统污染物迁移规律研究.河海大学学报:自然科学版.2004,32(4):415~420
    [89] Rowe, R. Kerry.; Booker, John R. Pollutant migration through liner underlain by fractured soil. Journal of Geotechnical Engineering, 1991, 117(12): 1902~1919
    [90] Woodbury, Allan D. Probabilistic fracture transport model: Application to contaminant transport in a fractured clay deposit. Canadian Gcotechnical Journal, 1997, 34(5): 784~798
    [91] Jorgensen, Peter R. et al. Modeling of non-reactive solute transport in fractured clayey till during variable flow rate and time. Journal of Contaminant Hydrology, 2004, 68(3-4): 193~216
    [92] Segall, Burton A. Bruell, Clifford J. Electroosmotic contaminant-removal processes. Journal of Environmental Engineering, 1992, 118(1): 84~100
    [93] Jacobs, Richard A.; Probstein, Ronald F. Two-dimensional modeling of electroremediation. AIChE Journal, 1996, 42(6): 1685~1696
    [94] Kim, Soon-Oh. et al. Numerical and experimental studies on cadmium (Ⅱ) transport in kaolinite clay under electrical fields. Water, Air, and Soil Pollution, 2003, 150(1-4): 135~162
    [95] Kennedy, Daniel T. Mitchell, Robert J. Centrifuge modelling of clay liner performance characteristics. Gcotechnical Special Publication, 1995, (46/1): 421~433
    [96] Mckinley, J.D. et al. Centrifuge modelling of the transport of a pulse of two contaminants through a clay layer. Geotechnique, 1998, 48(3): 421~425
    [97] Mckinley, J. D., Price, B. A., Lynch, R. J., Schofield, A. N.. Centrifuge modelling of the transport of a pulse of two contaminants through a clay layer. Gcotechnique, 1998, 48(3): 421~425
    [98] Yong, Raymond N. Samani, Hossein M. V.. Modelling of contaminant transport in clays via irreversible thermodynamics. Geotechnical Special Publication, 1987,(13):846~860
    [99] Yong, Raymond N. Warith, Mostafa A. Contaminant migration effect on dispersion coefficients. ASTM Special Technical Publication, 1990, (1095): 69~80
    [100] Garisto, Nava C., Garisto, Frank. Preliminary model for carbon-14 transport in a clay buffer. Proc Ist Int Top Meet High Level Radioact Waste Manage Part 1, 1990, 130~136
    [101] McBride,J.F.et al. Kinetics of quinoline biodegradation, sorption and desorption in a clay-coated model soil containing a quinoline-degrading bacterium. Journal of Contaminant Hydrology, Chemical Mediation of Pollutant Transport in Aqueous Systems, 1992,9(1-2):133~154
    [102] Kookana, Rai. et al. Vertical heterogeneity and contaminant transport through soil profiles. National Conference Publication - Institution of Engineers, Australia, 1994, 1(94/10):153~158
    [103] Cheung, S. C. H.. Modeling of inorganic contaminant transport in dense bentonite. Journal of Soil Contamination, 1994, 3(2): 137~157
    [104] Lo, Irene M. C. Role of organic attenuation in saturated clay barrier system. Water Science and Technology.1996,33(8):145~151
    [105] Lo,lrene M.-C. et al. Risk assessment using stochastic modeling of pollutant transport in landfill clay liners. Water Science and Technology, 1999,39(10-11):337~341
    [106] Hendriks, Rob F. A., Oostindie, Klaas, Hamminga, Pim. Simulation of bromide tracer and nitrogen transport in a cracked clay soil with the FLOCR/ANIMO model combination. Journal of Hydrology,1999,215(1-4):94~115
    [107] Bright, Mildred 1. et al. Attenuation of landfill leachate by clay liner materials in laboratory columns, 1. Experimental procedures and behaviour of organic contaminants. Waste Management and Research,2000,18(3):198~214
    [108] Soler, J.M. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport. Journal of Contaminant Hydrology,2001,53(1-2):63~84
    [109] Karapanagioti, Hrissi K., Gossard, Chris M., Strevett, Keith A., Kolar, Randall L. Sabatini, David A.. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes. Journal of Contaminant Hydrology,2001,48:1~21
    [110] Bell, L. S. J. et al. Rigorous uncertainty assessment in contaminant transport inverse modelling: A case study of fluoride diffusion through clay liners. Journal of Contaminant Hydrology, 2002, 57(1-2): 1~20
    [111] Kooi H, Garavita AM, Bader S. Numerical modelling of chemical osmosis and ultrafiltration across clay formations. Journal of Geochemical Exploration.2003,78(9):333~336
    [112] Bourg, lan C., Bourg, Alain C. M., Sposito, Garrison. Modeling diffusion and adsorption in compacted bentonite: A critical review. Journal of Contaminant Hydrology, 2003, 61(1-4): 293~302
    [113] Bourg, lan C., Bourg, Alain C.M., Sposito, Garrison. Modeling diffusion and adsorption in compacted bentonite: A critical review. Journal of Contaminant Hydrology, 2003, 61(1-4): 293~302
    [114] Bader, S., Kooi, H.. Modelling of solute and water transport in semi-permeable clay membranes: Comparison with experiments. Advances in Water Resources, 2005, 28(3): 203~214
    [115] Dominijanni, Andrea, Manassero, Mario. Modelling osmosis and solute transport through clay membrane barriers. Geotechnical Special Publication,2005,(130-142):3437~3448
    [116] 任理,李春友,李韵珠.粘性土壤溶质运移新模型的应用.水科学进展.1997,8(4):321~328
    [117] 薛强,梁冰,刘晓丽.土壤气抽出过程中挥发性有机污染物运移动力学模型的研究.灌溉排水.2001,20(4):5~9
    [118] 薛强,梁冰,刘晓丽,陈贺.土壤水环境中有机污染物运移环境预测模型的研究.水利学报.2003,(6):48~55
    [119] 王红旗,舒艳,王亚男.污水土地处理磷污染物迁移转化模拟讨论分析.城市环境与城市生态.2002,15(4):36~38
    [120] 王红旗,舒艳,王亚男.污水土地处理磷迁移转化模拟模型与检验.环境污染与防治.2003,25(3):179~182
    [121] 栾茂田,张金利,杨庆.非平衡—非线性吸附情况下填埋场污染物运移分析.岩土力学.2004,25(12):1855~1861
    [122] 张金利,栾茂田,杨庆.固体废弃物生物降解时污染物运移过程—维数值分析.大连理工大学学报.2004,44(6):870~876
    [123] Smith, D.W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem. International Journal for Numerical and Analytical Methods in Geomechanies, 2000,24(8):693~722
    [124] Peters, Glen P., Smith, David W.. Solute transport through a deforming porous medium. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(7): 683~717
    [125] Fox, Patrick J. Numerical model for contaminant transport in consolidating sediments. ASTM Special Technical Publication,2003,(1442):266~281
    [126] Alshawabkeh, Akram N. Rahbar, Nima, Sheahan, Thomas C., Tang, Guoping. Volume change effects on solute transport in clay under consolidation. Geoteclmical Pratice Publication, Geo Jordan 2004 - Advances in Geotechnical Engineering with Emphasis on Dams, Highway Materials, and Soil Improvement: Proceedings of the Conference, 2004, 1: 105~115
    [127] Peters, Glen P., Smith, David W.. The influence of advective transport on coupled chemical and mechanical consolidation of clays. Mechanics of Materials,2004,36(5-6):467~486
    [128] 钱家欢,殷宗泽.土工原理与计算(第2版).北京:中国水利水电出版社,1996
    [129] 谢新宇.—维大变形固结理论的研究[博士学位论文].杭州:浙江大学,1996
    [130] Bear J. Dynamics of fluid in porous media. American Elsevier Publishing Company, 1972, INC
    [131] Lee K, Sills G C. A Moving Boundary Approach to Large Strain Consolidation of a Thin Soil Layer. In: Proceeding of 3rd International Conference on Numerical Methods in Geomechanics, 1979:193~173
    [132] 朱学愚,谢春红.地下水运移模型.北京:中国建筑工业出版社,1990
    [133] 郑西来,钱会,杨喜成.地下水含水介质的弥散度测定.西安工程学院学报,1998,20(4):33~36
    [134] Smith, D.W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem. International Journal for Numerical and Analytical Methods in Geomechanics,2000,24(8):693~722
    [1] 土工试验方法标准,GB/T 50123-1999.北京:中国计划出版社,1999
    [2] 国家环境保护总局《水和废水监测分析方法》编委会编,水和废水监测分析方法(第四版).北京:中国环境科学出版社.2002
    [3] CJJ17-2004,生活垃圾卫生填埋技术规范[S].北京:中国建筑工业出版社,2004
    [4] 刘长礼,王秀艳,张云.城市垃圾卫生填埋场粘性土衬垫的截污容量及其研究意义.城市论评,2000,46(1):79~85
    [5] 地下水质量标准GB/T 14848-93,1993
    [1] Smith, D.W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem. Int. J. Num. and Analy. Methods in Geom., 2000, 24(8): 693~722
    [2] Biot M A. General theory of three-dimensional consolidation, J. Appl. Phys. 1941, 12:155~164
    [3] 地下水质量标准GB/T 14848-93,1993
    [4] 谢康和,施淑群,潘秋元.双层地基固结实用计算理论与曲线(一).地基处理,1993,4(4):1~14
    [5] Gray, H. Simultaneous consolidation of contiguous layers of unlike compressible soils. Trans. ASCE, 1945,110:1327~1356
    [6] 黄文熙主编,《土的工程性质》,水利电力出版社,1983
    [1] Gray H. Simultaneous Consolidation of Contiguous Layers of Unlike Compressible Soils. Trans. ASCE,1945,110:1327~1356
    [2] Schiffman R L, Stein J R. One-dimensional Consolidation of Layered Systems. JSMFD, ASCE, 1970,96(4):1499~1504
    [3] 陈根媛.多层地基的—维固结计算方法与砂井地基计算的改进建议.水利水运科学研究,1984,(2):1~13
    [4] 黄文熙主编.土的工程性质.北京:水利电力出版社,1983
    [5] 栾茂田,钱令希.层状饱和土体—维固结分析.岩土力学,1992,13(4):45~56
    [6] 谢康和.双层地基—维固结理论与应用.岩土工程学报,1994,16(5):24~35
    [7] 徐长节,蔡袁强,吴世明.任意荷载下成层弹性地基的—维固结.土木工程学报,1999,32(4):57~63
    [8] Smith, D.W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem. Int. J. Num. and Analy. Methods in Geom., 2000, 24(8): 693~722
    [1] 潘祖梁,陈仲慈,陈士良,姚文苏.数学物理方程.杭州:浙江大学出版社,1988
    [2] 南京工学院教研组,数学物理方程与特殊函数(第二版).北京:高等教育出版社,1982
    [3] 沈凤贤,丁英仁,赵文晖.Mathematica手册:用IBMPC机处理数学问题通用软件包.北京:海洋出版社,1992
    [4] 谢新宇,朱向荣,谢康和,潘秋元.饱和土体—维大变形固结理论新进展.岩土工程学报.1997,(19)4:30~38
    [5] Smith, D.W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem. Int. J. Num. and Analy. Methods in Geom., 2000,24(8): 693-722

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700