CGRP和IB4(+)C纤维在神经病理性疼痛阳—阴性症状中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     神经病理性疼痛的外在表现既包含以痛觉过敏为特点的阳性症状也可能伴随以痛觉减退为特点的阴性症状,而同时伴随不同种类的阳性和阴性症状的神经病理性疼痛最为常见。探索可能导致不同症状的神经病理改变,是完善神经病理性疼痛发病机制并进行针对性治疗的必要条件。本研究采用应用不同的压力一过性挤压大鼠坐骨神经,构建复合神经病理性疼痛阳性和阴性症状的动物模型,并与经典的坐骨神经慢性缩窄伤(CCI)模型作对比。系统评估这两个模型大鼠热痛觉、冷痛觉、静态和动态机械痛觉以及疼痛相关行为等神经病理性疼痛表现,并分析外周传入神经纤维,背根神经节及其脊髓背角投射这一神经传导通路上IB4和CGRP的表达变化,探索CGRP和IB4免疫阳性神经传导通路对大鼠神经病理性疼痛阳性或阴性症状的不同调节作用。
     方法
     1.体重200-250g成年雄性SD大鼠24只,随机分为4组:Sham(n=6)、100g组(n=6)、400g组(n=6)和CCI组(n=6)。Sham组仅暴露左侧坐骨神经而不结扎,100g组和400g组分别以100g和400g的压力压迫大鼠坐骨神经3*10s,CCI组建立左侧CCI模型,术前1天及术后3、7、10、14、21、28天分别测定左足内外侧及右足内外侧机械痛阈和热痛阈和并对左右足的冷痛觉,动态触觉及自噬行为和疼痛行为等进行评价,术后3、10、21、28天分批灌注处死,取左侧坐骨神经、左侧腰5背根节及腰膨大处脊髓,多聚甲醛固定过夜。
     2.取以上4组大鼠3、10、21、28天腰5背根节,OCT包埋,取200微米、250微米、300微米处切面,行双标免疫荧光染色,计算背根节中阳性细胞个数,比较各时间点不同组之间的阳性细胞数差异。取以上4组大鼠3、10、21、28天腰膨大处脊髓(约L4、L5节段),OCT包埋后行双标免疫荧光染色,计算同侧及对侧板层Ⅱ内IB4纤维面积及CGRP纤维面积。取以上4组大鼠10天坐骨神经,行波蒂安银染,比较4组神经纤维密度。
     结果
     1.与DO天相比,100g组和CCI组先后出现了热痛和机械痛的痛觉过敏(P<0.05),冷痛觉、动态触觉和疼痛相关行为的评分也较DO天增高。与100g组和CCI组相反,400g组出现了明显的痛觉减退,表现为热痛阈和机械痛阈升高(P<0.05),尽管冷痛觉、动态触觉和疼痛相关行为的评分也一定程度的升高,但重触觉的变化却没有统计学意义(P>0.05)。
     2.在背根节中,与Sham组相比,100g组和CCI组的IB4和CGRP阳性细胞数出现了短暂的减少,而400g的IB4和CGRP阳性细胞数出现了持久的、难以恢复的减少。在脊髓当中,与对侧相比,100g组、400g和CCI组腰膨大板层Ⅱ中的IB4纤维均出现了减少,但只有400g组的CGRP纤维出现了明显的减少(P<0.05),而100g组和CCI组的CGRP纤维面积没有出现变化。在坐骨神经中,波蒂安银染显示400g组第10天的神经纤维明显较另外两组和sham组稀疏。
     结论
     1.100g压力一过性挤压大鼠坐骨神经产生与CCI类似的神经病理性疼痛阳性症状;400g压力除了导致冷痛觉和动态触觉过敏外,大鼠同时出现以热痛觉和机械性痛觉减退为表现的阴性症状。
     2.比较不同组之间DRG和脊髓中IB4和CGRP阳性细胞和神经纤维的动态变化进行分析,IB4神经细胞可能参与疼痛信号的中枢调控,而CGRP直接传递热痛等疼痛信号。
Objectives
     Hypoalgesia denotes a decreased or increased threshold to thermal, cold or mechanical stimuli. Hypoalgesia occurs after nerve injury, diabetes mellitus or other central or peripheral neuropathies, which accompany with positive or negative sign of neuropathic pain. In our experiment, negative and positive signs are induced by crushing the rat scaitic nerve with different pressures measured by FSR sensor. Furthermore, DRG and spine immunofluerescence staining showed that transient loss of IB4positive non-peptidergic C fiber occurred in the CCI and light crush groups with signs of hyperalgesia, while longer loss of CGRP positive peptidergic C fiber occurred in the heavy crush group with signs of hypoalgesia. The different phenotype indicated that these two kinds of C fiber had distinct functions in the pain signaling pathways: thermal hypoalgesia after nerve injury was resulted by the loss of peptidergic C fiber; non peptidergic C fiber played an important role in the central modulation of pain signaling and the onset of positive signs. These data provided new insights into the comprehensive therapy of neuropathic pain.
     Methods
     1. Twenty four male SD rats were randomly divided into four group Sham (n=6),100g (n=6),400g(n=6)and group CCI (n=6). In group CCI, left sciatic nerve CCI model were established according to Bennett and Xie, in group Sham, left sciatic nerves were only exposed without ligation. In100g group and400g group, left sciatic nerves were crushed by100g and400g force respectively. Paw withdrawal threshold to mechanical stimuli(MWT) and paw withdrawal latency to a thermal nociceptive stimulus(TWL) were measured at1day before (baseline) and3,7,10,14,21,28days after operation in the lateral and medial part of both left and right paw. Evaluation of the cold allodynia, touch allodynia and pain-related behavior were performed at1day before (baseline) and3,7,10,14,21,28days after operation in both left and right paw. The animals were then sacrificed and the left sciatic nerve, L5DRG and lumbar enlargement of the spinal cord were harvested at7,10,21,28days after operation and immersed in4%formaldehyde for a night.
     2. The harvested DRG and Spine were embedded with OCT and stained with double labeling immunofluorescence method. In DRG, the segments at200micron,250micron and300micron were chose to calculate positive cells. In Spine, the area of positive nerve sprouting in ipilateral and contralateral lamina2were calculated. The sciatic nerve were performed with bodian silver staining method and the fiber density were compared in four group.
     Results
     1. Compared to DO, both the100g group and CCI groups showed thermal and mechanical hyperalgesia (P<0.05), and the behavior test scores of dynamic allodynia, cold allodynia and pain-related behavior were higher than DO. On the contrary, the400g group showed obvious hypoalgesia, which presented as higher thresholds of thermal and mechanical pain (P<0.05). Although there were a slight increase of the behavior test scores on dynamic allodynia, cold allodynia and pain-related beavior, but without statistical significance.
     2. In dorsal root ganglion (DRG), compared to the Sham group, the number of IB4and CGRP positive neurons showed temporary decrease in the100g group and CCI group, while presented as long lasting, unrestorable decrease in the400g group. In spinal cord, the decrease of IB4fibers in Lamina2of the lumbar enlargement comparing to the contra side was shown in all of the100g,400g and CCI groups, while the decrease of CGRP fibers was only detected in the400g group (P<0.05). In sciatic nerves, Bodian Silver Staining showed that the density of fibers on D3in the400g group was lower comparing with that in the other two groups.
     Conclusions
     1、100g crush generated a transient pressure on rat sciatic nerve, led to signs of hyperalgesia that similar to CCI model.400crush resulted to cold and touch allodynia, as well as negative signs presented as mechanical and heat hypoalgesia
     2、Compare the dynamic changes of IB4and CGRP positive neurons and fibers in DRG and spinal cord between groups, IB4fibers may take part in the central regulatory mechanisms of pain signaling, while CGRP fibers directly transduct the thermal pain signal.
引文
[1]Maier, C., et al.. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS):somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes[J]. Pain,2010,150(3):439-50.
    [2]Tzabazis, A., et al.. Ameroid rings for gradual chronic constriction of the sciatic nerve in rats:contribution of different nerves to neuropathic pain[J]. Brain Res Bull,2004,64(2):127-32.
    [3]Uchida, H., L. Ma, H. Ueda. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain[J]. J Neurosci,2010,30(13):4806-14.
    [4]Kajander, K.C., GJ. Bennett. Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons[J]. J Neurophysiol,1992,68(3):734-44.
    [5]Nagi, S.S., et al.. Allodynia mediated by C-tactile afferents in human hairy skin[J]. J Physiol,2011,589(Pt 16):4065-75.
    [6]Jones, T.L., et al.. GABAB receptors on central terminals of C-afferents mediate intersegmental Adelta-afferent evoked hypoalgesia[J]. Eur J Pain,2005,9(3): 233-42.
    [7]Yu, Y.Q., et al.. Antisense-mediated knockdown of Na(V)1.8, but not Na(V)1.9, generates inhibitory effects on complete Freund's adjuvant-induced inflammatory pain in rat[J]. PLoS One,2011,6(5):e19865.
    [8]Fernandes, C.P., et al.. A novel sensor for bite force determinations [J]. Dent Mater,2003,19(2):118-26.
    [9]Ro, L.S., J.M. Jacobs. The role of the saphenous nerve in experimental sciatic nerve mononeuropathy produced by loose ligatures:a behavioural study[J]. Pain, 1993,52(3):359-69.
    [10]Yeomans, D.C., V. Pirec, H.K. Proudfit. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: behavioral evidence[J]. Pain,1996,68(1):133-40.
    [11]You, H.J., et al.. Endogenous descending modulation:spatiotemporal effect of dynamic imbalance between descending facilitation and inhibition of nociception[J]. J Physiol,2010,588(Pt 21):4177-88.
    [12]Simone, D.A., et al.. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers:correlation with sensory function[J]. J Neurosci,1998,18(21):8947-59.
    [13]Torsney, C., J. Meredith-Middleton, M. Fitzgerald. Neonatal capsaicin treatment prevents the normal postnatal withdrawal of A fibres from lamina Ⅱ without affecting fos responses to innocuous peripheral stimulation[J]. Brain Res Dev Brain Res,2000,121(1):55-65.
    [14]Cameron, A.A., et al.. Time course of degenerative and regenerative changes in the dorsal horn in a rat model of peripheral neuropathy [J]. J Comp Neurol,1997, 379(3):428-42.
    [15]Villar, M.J., et al.. Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin[J]. Neuroscience,1989,33(3):587-604.
    [16]Delcroix, J.D., D.R. Tomlinson, P. Fernyhough. Diabetes and axotomy-induced deficits in retrograde axonal transport of nerve growth factor correlate with decreased levels of p75LNTR protein in lumbar dorsal root ganglia[J]. Brain Res Mol Brain Res,1997,51(1-2):82-90.
    [17]Cavanaugh, D.J., et al.. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli [J]. Proc Natl Acad Sci U S A,2009,106(22):9075-80.
    [18]Light, A.R,, H.H. Willcockson. Spinal laminae Ⅰ-Ⅱ neurons in rat recorded in vivo in whole cell, tight seal configuration:properties and opioid responses[J]. J Neurophysiol,1999,82(6):3316-26.
    [19]Lewin, G.R., A.M. Ritter, L.M. Mendell. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat[J]. J Neurosci,1993,13(5):2136-48.
    [20]Ye, Y, et al.. Analgesia targeting IB4-positive neurons in cancer-induced mechanical hypersensitivity[J]. J Pain,2012,13(6):524-31.
    [21]Zhou, H.Y., et al.. Increased C-fiber nociceptive input potentiates inhibitory glycinergic transmission in the spinal dorsal horn[J]. J Pharmacol Exp Ther,2008, 324(3):1000-10.
    [22]Lu, Y., E.R. Perl. A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input[J]. J Neurosci,2003,23(25):8752-8.
    [23]Taylor-Blake, B., M.J. Zylka. Prostatic acid phosphatase is expressed in peptidergic and nonpeptidergic nociceptive neurons of mice and rats[J]. PLoS One, 2010,5(1):e8674.
    [24]Neumann, S., et al.. Innocuous, not noxious, input activates PKCgamma interneurons of the spinal dorsal horn via myelinated afferent fibers [J]. J Neurosci, 2008,28(32):7936-44.
    [25]Malmberg, A.B., et al.. Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma[J]. Science,1997,278(5336):279-83.
    [26]Ferrari, L.F., O. Bogen, J.D. Levine. Nociceptor subpopulations involved in hyperalgesic priming[J]. Neuroscience,2010,165(3):896-901.
    [27]Sasase, T., et al.. Novel protein kinase C-beta isoform selective inhibitor JTT-010 ameliorates both hyper- and hypoalgesia in streptozotocin-induced diabetic rats[J]. Diabetes Obes Metab,2005,7(5):586-94.
    [28]Zylka, M.J., F.L. Rice, D.J. Anderson. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd[J]. Neuron,2005, 45(1):17-25.
    [29]Braz, J.M., et al.. Parallel "pain" pathways arise from subpopulations of primary afferent nociceptor[J]. Neuron,2005,47(6):787-93.
    [30]Jimenez-Andrade, J.M., et al.. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin:therapeutic opportunity for treating skeletal pain[J]. Bone,2010,46(2):306-13.
    [31]Zhang, L., et al.. Arthritic calcitonin/alpha calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity[J]. Pain,2001,89(2-3): 265-73.
    [32]McCoy, E.S., B. Taylor-Blake, M.J. Zylka. CGRPalpha-expressing sensory neurons respond to stimuli that evoke sensations of pain and itch[J]. PLoS One,2012, 7(5):e36355.
    [33]Craig, A.D.. Lamina I, but not lamina V, spinothalamic neurons exhibit responses that correspond with burning pain[J]. J Neurophysiol,2004,92(4):2604-9.
    [34]Lu, Y., E.R. Perl. Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae Ⅰ and Ⅱ) [J]. J Neurosci,2005, 25(15):3900-7.
    [35]Sango, K., et al.. Nerve growth factor (NGF) restores depletions of calcitonin gene-related peptide and substance P in sensory neurons from diabetic mice in vitro[J]. J Neurol Sci,1994,126(1):1-5.
    [36]Hsieh, Y.L., et al.. Role of Peptidergic Nerve Terminals in the Skin: Reversal of Thermal Sensation by Calcitonin Gene-Related Peptide in TRPV1-Depleted Neuropathy[J]. PLoS One,2012,7(11):e50805.
    [37]Caterina, M.J., et al.. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J]. Science,2000,288(5464):306-13.
    [38]Nakamura, Y., et al.. Activation of transient receptor potential ankyrin 1 evokes nociception through substance P release from primary sensory neurons [J]. J Neurochem,2012,120(6):1036-47.
    [39]Mogil, J.S., et al.. Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene[J]. Proc Natl Acad Sci U S A,2005, 102(36):12938-43.
    [40]Yu, L.C., et al.. Intrathecal CGRP8-37-induced bilateral increase in hindpaw withdrawal latency in rats with unilateral inflammation[J]. Br J Pharmacol,1996, 117(1):43-50.
    [1]Sherrington, C.S.. Observations on the scratch-reflex in the spinal dog[J]. J Physiol,1906,34(1-2):1-50.
    [2]Woolf, C.J.. Evidence for a central component of post-injury pain hypersensitivity[J]. Nature,1983,306(5944):686-8.
    [3]Lee, S.J., et al.. Activation of CaMKⅡ in single dendritic spines during long-term potentiation[J]. Nature,2009,458(7236):299-304.
    [4]Stephenson, F.A.. S.L. Cousins, A.V. Kenny, Assembly and forward trafficking of NMD A receptors (Review) [J]. Mol Membr Biol,2008,25(4):311-20.
    [5]Ma, Q.P., C.J. Woolf. Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch: implications for the treatment of mechanical allodynia[J]. Pain,1995,61(3):383-90.
    [6]South, S.M., et al.. A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain[J]. J Neurosci,2003,23(12):5031-40.
    [7]Mayer, M.L., G.L. Westbrook, P.B. Guthrie. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones[J]. Nature,1984,309(5965): 261-3.
    [8]Polgar, E., et al.. Expression of AMPA receptor subunits at synapses in laminae Ⅰ-Ⅲ of the rodent spinal dorsal horn[J]. Mol Pain,2008,4:5.
    [9]Alvarez, F.J., et al.. Differential distribution of metabotropic glutamate receptors 1a, 1b, and 5 in the rat spinal cord[J]. J Comp Neurol,2000,422(3):464-87.
    [10]Aronica, E., et al.. Immunohistochemical localization of group Ⅰ and Ⅱ metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord:upregulation in reactive astrocytes[J]. Neuroscience,2001,105(2): 509-20.
    [11]Xu, X.J., C.J. Dalsgaard, Z. Wiesenfeld-Hallin. Spinal substance P and N-methyl-D-aspartate receptors are coactivated in the induction of central sensitization of the nociceptive flexor refiex[J]. Neuroscience,1992,51(3):641-8.
    [12]Khasabov, S.G., et al.. Spinal neurons that possess the substance P receptor are required for the development of central sensitization[J]. J Neurosci,2002,22(20): 9086-98.
    [13]Sun, R.Q., et al.. Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization[J]. J Neurophysiol,2004,92(5):2859-66.
    [14]Balkowiec, A., D.M. Katz. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ[J]. J Neurosci,2000,20(19):7417-23.
    [15]Slack, S.E., et al.. TrkB expression and phospho-ERK activation by brain-derived neurotrophic factor in rat spinothalamic tract neurons[J]. J Comp Neurol, 2005,489(1):59-68.
    [16]Kohno, T., et al.. Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity[J]. J Neurosci,2008,28(17):4533-40.
    [17]Ding, J.D., R.J. Weinberg. Localization of soluble guanylyl cyclase in the superficial dorsal horn[J]. J Comp Neurol,2006,495(6):668-78.
    [18]Schwartz, E.S., et al.. Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice[J]. Pain, 2008,138(3):514-24.
    [19]Vikman, K.S., B.K. Rycroft, and M.J. Christie. Switch to Ca2+-permeable AMPA and reduced NR2B NMDA receptor-mediated neurotransmission at dorsal horn nociceptive synapses during inflammatory pain in the rat[J]. J Physiol,2008, 586(2):515-27.
    [20]Carvalho, A.L., C.B. Duarte, A.P. Carvalho. Regulation of AMPA receptors by phosphorylation[J]. Neurochem Res,2000,25(9-10):1245-55.
    [21]Chen, B.S., K.W. Roche. Regulation of NMDA receptors by phosphorylation[J]. Neuropharmacology,2007,53(3):362-8.
    [22]Galan, A., J.M. Laird, F. Cervero. In vivo recruitment by painful stimuli of AMPA receptor subunits to the plasma membrane of spinal cord neurons [J]. Pain, 2004,112(3):315-23.
    [23]Slack, S.E., et al.. Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord[J]. Eur J Neurosci,2004,20(7):1769-78.
    [24]Liu, X.J., et al.. Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex[J]. Nat Med,2008,14(12): 1325-32.
    [25]Chen, L., L.Y. Huang. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation [J]. Nature,1992,356(6369): 521-3.
    [26]Lin, Q., Y.B. Peng, W.D. Willis. Inhibition of primate spinothalamic tract neurons by spinal glycine and GAB A is reduced during central sensitization[J]. J Neurophysiol,1996,76(2):1005-14.
    [27]Wei, F., et al.. Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice[J]. J Neurosci,2006,26(3):851-61.
    [28]Ji, R.R., et al.. MAP kinase and pain. Brain Res Rev,2009.60(1):135-48.
    [29]Ji, R.R., et al.. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity[J]. Nat Neurosci,1999,2(12):1114-9.
    [30]Hu, H.J., et al.. The kv4.2 potassium channel subunit is required for pain plasticity[J]. Neuron,2006,50(1):89-100.
    [31]Kawasaki, Y., et al.. Cytokine mechanisms of central sensitization:distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord[J]. J Neurosci,2008,28(20):5189-94.
    [32]Costigan, M., et al.. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury[J]. BMC Neurosci,2002,3:16.
    [33]Xiao, H.S., et al.. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain[J]. Proc Natl Acad Sci USA,2002,99(12):8360-5.
    [34]Lekan, H.A., S.M. Carlton, R.E. Coggeshall. Sprouting of A beta fibers into lamina Ⅱ of the rat dorsal horn in peripheral neuropathy [J]. Neurosci Lett,1996, 208(3):147-50.
    [35]Scholz, J., et al.. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina Ⅱ of the dorsal horn after peripheral nerve injury[J]. J Neurosci,2005,25(32):7317-23.
    [36]Miletic, G., V. Miletic. Loose ligation of the sciatic nerve is associated with TrkB receptor-dependent decreases in KCC2 protein levels in the ipsilateral spinal dorsal horn[J]. Pain,2008,137(3):532-9.
    [37]Horvath, R.J., et al.. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures[J]. J Neurochem,2008,107(2):557-69.
    [38]Cheret, C., et al.. Neurotoxic activation of microglia is promoted by a noxl-dependent NADPH oxidase[J]. J Neurosci,2008,28(46):12039-51.
    [39]Vikman, K.S., et al.. Interferon-gamma induces characteristics of central sensitization in spinal dorsal horn neurons in vitro[J]. Pain,2003,106(3):241-51.
    [40]Rodriguez Parkitna, J., et al.. Comparison of gene expression profiles in neuropathic and inflammatory pain[J]. J Physiol Pharmacol,2006,57(3):401-14.
    [41]Vardeh, D., et al.. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice[J]. J Clin Invest,2009,119(2):287-94.
    [42]Baba, H., et al.. Direct activation of rat spinal dorsal horn neurons by prostaglandin E2[J]. J Neurosci,2001,21(5):1750-6.
    [43]Harvey, R.J., et al.. GlyR alpha3:an essential target for spinal PGE2-mediated inflammatory pain sensitization [J]. Science,2004,304(5672):884-7.
    [44]Vasko, M.R., W.B. Campbell, K.J. Waite. Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture [J]. J Neurosci,1994,14(8):4987-97.
    [45]Ma, W., B. St-Jacques, P.C. Duarte. Targeting pain mediators induced by injured nerve-derived COX2 and PGE2 to treat neuropathic pain[J]. Expert Opin Ther Targets,2012,16(6); 527-40.
    [46]Luo, C., et al.. Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states[J]. Pain,2008,140(2):358-67.
    [47]Pitcher, M.H., A. Ribeiro-da-Silva, T.J. Coderre. Effects of inflammation on the ultrastructural localization of spinal cord dorsal horn group I metabotropic glutamate receptors[J]. J Comp Neurol,2007,505(4):412-23.
    [48]Guo, W., et al.. Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia[J]. J Neurosci, 2004,24(41):9161-73.
    [49]Gottrup, H., et al.. Aftersensations in experimental and clinical hypersensitivity[J]. Pain,2003.103(1-2):57-64.
    [50]Freynhagen, R., et al.. Pseudoradicular and radicular low-back pain--a disease continuum rather than different entities? Answers from quantitative sensory testing[J]. Pain,2008,135(1-2):65-74.
    [51]Attal, N., et al.. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity:a prospective quantified sensory assessment study [J]. Pain,2009, 144(3):245-52.
    [52]Staud, R., et al.. Temporal summation of pain from mechanical stimulation of muscle tissue in normal controls and subjects with fibromyalgia syndrome [J]. Pain, 2003,102(1-2):87-95.
    [53]Graven-Nielsen, T., et al.. Ketamine reduces muscle pain, temporal summation, and referred pain in fibromyalgia patients[J]. Pain,2000,85(3):483-91.
    [54]Staud, R., et al.. Brain activity associated with slow temporal summation of C-fiber evoked pain in fibromyalgia patients and healthy controls[J]. Eur J Pain,2008, 12(8):1078-89.
    [55]Vartiainen, N.V., E. Kirveskari, N. Forss. Central processing of tactile and nociceptive stimuli in complex regional pain syndrome[J]. Clin Neurophysiol,2008, 119(10):2380-8.
    [56]Huge, V., et al.. Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type Ⅰ (CRPS Ⅰ) [J]. PLoS One,2008,3(7):e2742.
    [57]Schwartzman, R.J., et al.. Outpatient intravenous ketamine for the treatment of complex regional pain syndrome:a double-blind placebo controlled study[J]. Pain, 2009,147(1-3):107-15.
    [58]Wilder-Smith, C.H., J. Robert-Yap. Abnormal endogenous pain modulation and somatic and visceral hypersensitivity in female patients with irritable bowel syndrome[J]. World J Gastroenterol,2007,13(27):3699-704.
    [59]Munakata, J., et al.. Repetitive sigmoid stimulation induces rectal hyperalgesia in patients with irritable bowel syndrome [J]. Gastroenterology,1997, 112(1):55-63.
    [60]Drewes, A.M., et al.. Central sensitization in patients with non-cardiac chest pain:a clinical experimental study [J]. Scand J Gastroenterol,2006,41(6):640-9.
    [61]Dimcevski, G., et al.. Assessment of experimental pain from skin, muscle, and esophagus in patients with chronic pancreatitis [J]. Pancreas,2007,35(1):22-9.
    [62]Buscher, H.C., H. van Goor, O.H. Wilder-Smith. Effect of thoracoscopic splanchnic denervation on pain processing in chronic pancreatitis patients [J]. Eur J Pain,2007,11(4):437-43.
    [63]Turini, D., et al.. Heat/burning sensation induced by topical application of capsaicin on perineal cutaneous area:new approach in diagnosis and treatment of chronic prostatitis/chronic pelvic pain syndrome[J]. Urology,2006,67(5):910-3.
    [64]Foster, D.C., R.H. Dworkin, R.W. Wood. Effects of intradermal foot and forearm capsaicin injections in normal and vulvodynia-afflicted women[J]. Pain,2005, 117(1-2):128-36.
    [65]Klumpp, D.J., C.N. Rudick. Summation model of pelvic pain in interstitial cystitis[J]. Nat Clin Pract Urol,2008,5(9):494-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700