灰葡萄孢胞壁降解酶、角质酶及其对番茄植株的致病作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰葡萄孢(Botrytis cinerea)是重要的植物病原菌,在致病过程中可以产生多种酶类。研究病菌角质酶和胞壁降解酶种类及其在致病中的作用,可以为进一步阐述病菌的致病机理提供理论依据。
     在灰葡萄孢分生孢子的萌发液中,可以检测到角质酶和果胶酶,果胶酶包括多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)、果胶甲基酯酶(PME)、果胶甲基反式消除酶(PMTE)和多聚半乳糖醛酸反式消除酶(PGTE),其中以PG活性最高,为1.604 U/mg。在分生孢子的萌发液中没有纤维素酶(Cx)的活性。病菌菌丝除了可以产生角质酶和以上5种果胶酶外,还可以产生Cx。菌丝的果胶酶中以PMG活性最高,达48.539 U/mg。分生孢子在离体和活体条件下的产酶动态有一定差异。离体条件下,角质酶最大活性高峰出现在培养后的24h,活性为2.238×10-6 U/mg,但在活体下,只要12h就能达到高峰值,活性可以达到1.345×10-5 U/mg。分生孢子的果胶水解酶在离体培养时只要9h就能达到活性高峰,但活体植物体表,PMG高峰出现在分生孢子接种后的第12h。
     分别用果胶酶、纤维素酶以及两者的混合酶液处理番茄叶片,所有处理的叶片均出现不同程度的褐色、黄色病变以及水渍状病斑。症状表现形式与病菌接种较为相似。三种不同酶液处理中,以果胶酶和混合酶对叶片的致病症状严重。另外,胞壁降解酶在叶片有伤口时的症状要比无伤口时严重得多。番茄叶片用失活的酶液处理不出现任何病变症状。因此,病菌的胞壁降解酶能够对番茄叶片造成明显的致病作用。
     用扫描电镜观察分生孢子侵入时发现,分生孢子的侵染丝可以通过番茄叶片表皮细胞间隙侵入,但未见直接从表皮细胞壁侵入的现象。从分生孢子产生果胶酶的特点和侵染丝从细胞间隙侵入的现象可以得知,果胶酶特别是PG和PMG在病菌侵入阶段起着重要作用。
     酶液处理番茄叶片,可以使叶片细胞壁多糖降解,细胞膜明显受到损伤,膜透性改变,最终导致细胞内电解质渗漏。酶液对细胞膜的损伤,以混合酶最严重,损伤率达52.3%,其次是果胶酶,为47.1%,Cx损伤作用最小,为31.1%。通过投射电镜观察,粗酶液对番茄叶片细胞超微结构也有显著的破坏作用,主要表现为使叶片细胞质壁分离、细胞壁断裂甚至消解、叶绿体片层结构模糊不清,线粒体嵴模糊甚至消失、细胞核等细胞器受损并分解等现象。另外,混合酶液处理后6h即出现细胞被破坏的现象,36h时严重受害的细胞完全崩解。
     在番茄植株不同发病部位检测胞壁降解酶活性,发现发病花朵中PMG活性最高,为11.475 OD/g.min,其次为幼嫩茎杆中,叶片与成株期茎杆中活性相似,果实中活性最低,仅2.036OD/g.min。在病斑中心的褐色部位,也是PMG活性最高,为4.139 OD/g.min,病斑外圈黄色部位和病健交界处的健康部位PMG均较低,分别为0.583 OD/g.min与0.649 OD/g.min。另外,在病斑中心的褐色部位可以检测到纤维素酶活性,但病斑其它部位均没有活性。
     综上所述,灰葡萄孢胞壁降解酶在病菌侵入和致病过程中都发挥了重要作用,果胶酶作用又强于纤维素酶。
Botrytis cinerea is an important pathogenic fungi of plant and could produce many kinds of enzymes in disease development. Study the cell-wall degrading enzymes (CWDEs) and cutinase by Botrytis cinerea and their pathogenicity to plant could make us best understanding about pathogenic mechanisms of plant pathogens.
     The activities of cutinase and pectinases could be detected in the cultured filtrate from the conidia of Botrytis cinerea, and polygalacturonase (PG), pectin methylgalacturonase (PMG), pectin methylesterase (PME), pectin methyl trans-eliminase (PMTE) and polygalacturonic acid trans-eliminase (PGTE) were involved in the cultured filtrate except for cellulase. Among these pectinases from conidia, PG’s activity was the highest with 1.604 U/mg. Besides cutinase and above pectinases, the mycelium of Botrytis cinerea could produce cellulase. Among the pectinase of mycelium, PMG’s activity was the highest with 48.539 U/mg. There were some differences of the enzymes activity by conidia in vitro and in vivo. In vitro, the activity peak of cutinase with 2.238×10~(-6) U/mg appeared at the 24th hours after conidia germination, while in vivo the activity peak with 1.345×10~(-5) U/mg appeared at the 12th hours after inoculation using conidial suspension. At the same time the activity peaks of pectic hydrolases produced by conidia appeared at the 9th hours after conidia germination in vitro and at the 12th hours after inoculation using conidia in vivo.
     Treated by the crude enzymes of pectinase, cellulase and mixed enzymes, the tomato leaves were yellow brown and presented macerated while the leaves treated by the inactivity enzymes didn’t appear any lesion. The symptoms of leaves treated by enzymes were similar with the lesions of the leaves inoculated with Botrytis cinerea. The symptoms of leaves treated with pectinase and mixed enzymes were more serious than that of leaves treated by cellulase. Otherwise, when the leaves were wounded the lesions which caused by CWDEs was more serious than that of leaves unwounded. It indicated that the CWDEs of Botrytis cinerea were primary pathogenic factors.
     The observation the process of conidial invasion by scanning electron microscope show that the penetration peg of pathogen could penetrate tomato leaves through the space of epidermis cells, nevertheless the event of the penetration peg penetrating through the cell-wall of epidermis was not discovered. These results, just as the conidial invasion mode and characteristics of secretion pectinase by conidia, implied that the pectinases, especially PG and PMG, were favorable to the pathogen in the process of penetration.
     Treated tomato leaves with the crude enzymes the polysaccharide of cell walls could be degraded, the cytomembrane be damaged obviously, the osmosis of cytomembrane was changed, and finally the electrolyte substances of cell leaked out. In general, the mixed enzymes could produce the more serious lesions to cytomembrane which lesion rate was 53.2%, and the next was pectinase with 47.1%, and lower lesions were produce by cellulase which lesion rate was about 31.1%. Observations by transmission electricity microscope found that the crude enzymes of Botrytis cinerea had prominent damage effect on the cell ultrastructure of the tomato leaf. The crude enzymes could cause cell plasmolysis, cell-wall broken fractionally and even decomposition, the stroma lamella of chloroplast and the ridge of mitochondria unclearly, and other organelle damaged and even disappearance. By the way, after treated by mixed enzymes for 6 hours the cells exhibited damaged phenomenon, and the cells treated for 36 hours were damaged so seriously that the cells were breakdown.
     Detection the activities of CWDEs with different parts of tomato plant showed that the activity of PMG in infected flowers was the highest with 11.475 OD/g.min among the all samples. The next was in infected younger stem, and the activity in infected leaves was similar with that in older stem. The PMG’activity in infected fruit was the lowest with 2.036OD/g.min. Otherwise, PMG’s activity in brown region of necrosis was higher with 4.139 OD/g.min, which PMG’s activity were lower in yellow region of necrosis with 0.583 OD/g.min and healthy region of necrosis periphery with 0.649 OD/g.min. Whereas,
     The cellulase activity could be detected in brown region of necrosis, but in other regions of necrosis.
     Basing on above experiments we concluded that the CWEDs of Botrytis cinerea palyed an important role as pathogenetic factors in penetration of the penetration peg and disease development. The pathogenic effect of pectinase on tomato plant was stronger than that of cellulase.
引文
[1] 陈利锋,徐敬友.农业植物病理学.北京.中国农业出版社.2001.
    [2] 许志刚.普通植物病理学.北京.中国农业出版社.1997.
    [3] 蓝海燕,陈正华.植物与病原真菌互作的形态变化及其生理、生化机制和基因调控. 植物 学通报.1999,16(4):345-351
    [4] 章元寿.植物病理生理学. 南京.江苏科学技术出版社.1993.
    [5] 林福呈.稻瘟病菌附着胞形成的细胞生物学.植物病理学报.2001,31(2):97-101.
    [6] 林福呈,李德葆.稻瘟病菌侵入机理.微生物学通报.1997,24(3):167-170.
    [7] Ramana V V, Reddy V K, Reddy S M, et al. Production of cellulases, hemicellulases, pectinases, proteinases and lipases by Cephalosporium maydis isolated from Zea mays stalks. Scientific Publishers. 1997:187~192.
    [8] 冯东晰,朱国仁,李宝栋等.菜豆锈菌侵染过程的显微和超微观察. 植物病理学报. 2000,30(1).53-59.
    [9] 李广旭, 沈永波, 高艳敏等. Botryosphaeria dothidea 在苹果果实上的侵染过程. 果树学 报. 2006,23(1):69-72.
    [10] 李广旭, 高艳敏, 杨华等. 轮纹病菌在苹果枝干上侵入途径的扫描电镜观察. 果树学报. 2005, 22(2):169-171.
    [11] Kolattukudy P E, K?ller W. Fungal penetration of the first line defensive barriers of plants. Biochemical Plant Pathology. New York: Wiley. 1983:79-100.
    [12] K?ller W. The plant cuticle: a barrier to be overcome by fungal plant pathogens. The Fungal Spore in Disease Initiation in Plants and Animals. New York.1991:219-246.
    [13] 石延霞,李宝聚,刘学敏.黄瓜霜霉病菌致病作用与两种细胞壁降解酶关系初探.园艺学报.2003,30(4):465-466.
    [14] 陈捷,高洪敏,纪明山,等.玉米茎腐病菌产生的细胞壁降解酶的致病作用.植物病理学报.1998,28(3):221-226.
    [15] Holz G, Knox-Davies P S. Possible involvement of apoplast sugar in endo-pectin-transeliminase synthesis and onion bulb rot caused by Fusarium oxysporum f. sp. cepae. Physiol Pathol. 1986, 28:403-410.
    [16] Jones T M, Anderson A J, Albersheim P. Host-pathogen interactions. Ⅳ. Studies on the polysaccharide degrading enzymes secreted by Fusarium oxysporium f.sp. lycopersici. Physiol Pathol. 1972,2:153-166.
    [17] 李欣允,陈维信,刘爱媛.炭疽病菌侵染对荔枝果实生理生化变化的影响.亚热带植物科学.2006,35(1):1-4.
    [18] 王建明,郭春绒,张作刚等.西瓜不同品种苗期感染枯萎病菌后的生理生化变化.中国农业科学.2002,35(1):1343-1348.
    [19] 毛健民,郑爱珍,白岩等.烟草叶片感染花叶病毒时的某些生理生化变化.吉林农业大学学报.2002,24(4):19-21.
    [20] 何若天,覃伟甘蔗和烟草幼叶原生质体分离前后的膜透性与脯氨酸含量的变化.广西农业生物科学.2002,12.21(4):255-257.
    [21] 赵蕾,张天宇.植物病原菌产生的降解酶及其作. 微生物学通报. 2002,29 (1):89-93.
    [22] 王金生.分子植物病理学.北京.中国农业出版社.1994.
    [23] K?ller W, Parker D M, Purification and Characterization of Cutinase from Venturia inaequalis Phytopathology. 1989, 79:278-283.
    [24] Sonia Longhi, Christian Cambillau. Structure-activity of cutinase, a small lipolytic enzyme. Biochimica et Biophysica Acta .1999.1441: 185-196
    [25] Petra C M. Weisenborn, Hans Meder, Maarten R Egmond, et al. Photophysics of the single tryptophan residue in Fusarium solani Cutinase: Evidence for the occurrence of conformational substates with unusual fluorescence behaviour. Biophysical Chemistry. 1996,58:281-288.
    [26] Sonia Longhi, Christian Cambillau. Structure-activity of cutinase, a small lipolytic enzyme. Biochimica et Biophysica Acta .1999,1441: 185-196
    [27] K A Davies, I Delorono, S J Foster, et al. Evidence for a role of cutinase in pathogenicity of Pyrenopeziza brassicae on brassicas. Physiological and Molecular Plant Pathology .2000(57): 63-75.
    [28] Purdy R E, Kolattukudy P E. Hydrolysis of plant cutin by plant pathogens. Purification, aminoacids composition, and molecular weight of two isoenzymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry 1975,14:2824-2831.
    [29] Maarten R Egmond, Jacob de Vlieg. Fusarium solani pisi cutinase. Biochimie .2000, 82: 1015?1021.
    [30] Nina Bandmann, Eric Collet, Jeanette Leijen, et al. Genetic engineering of the Fusarium solani pisi lipase cutinase for enhanced partitioning in PEG-phosphate aqueous two-phase systems. Journal of Biotechnology. 2000,79: 161–172.
    [31] Soliday C L, Kolattukudy P E. Primary structure of the active site region of fungal cutinase, an enzyme involved in phytopathogenesis. Biochemical and Biophysical Research Communication 1983,114:1017-1022.
    [32] Dantzig A H, Zuckerman S H, Andonov-Roland M M. Isolation of a Fusarium mutant reduced in cutinase activity and virulence. Journal of Bacteriology.1986,168: 911-916.
    [33] Cecília R C, Calado M, ?ngela Taipa, et al.Optimisation of conditions and characterization of cutinase produced by recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology .2002, 31:161-170.
    [34] Guang-Yi Wang, Themis J Michailides, Bruce D Hammock, et al. Affinity Purification and Characterization of a Cutinase from the Fungal Plant Pathogen Monilinia fructicola (Wint.) Honey. Archives of Biochemistry and Biophysics.2000, 382(1) : 31-38.
    [35] M L M Mannesse, J W P Boots, R Dijkman, et al. Phosphonate analogues of triacylglycerols are potent inhibitors of lipase. Biochimica et Biophysica Acta. 1995,1259:56-64.
    [36] Sathyanarayana N Gummadi , T Panda. Purification and biochemical properties of microbial pectinases-a review. Process Biochemistry 2003,38 :987-996.
    [37] 高增贵,陈捷,高洪敏,等.玉米茎腐病菌产生的细胞壁降解酶种类及其活性分析.植物病理学报.2000,30(2):148-152.
    [38] 陈捷,梁知洁,宋佐衡等. 阳离子对黄瓜苗期猝倒病菌果胶酶活性的影响,植物病理学报. 1994, 24(1):43-48.
    [39] 张红,徐敬友. 培养条件对病原物胞壁降解酶种类和活性的影响. 安徽农业科学. 2005,33(7):1172-1173.
    [40] 贾俊英,云兴福,马立国,等.氯钾离子共体诱导后黄瓜叶片中细胞壁降解酶活性分析.内蒙古农业大学学报,2004,25(3):52-56.
    [41] 宋凤鸣,郑重,童贤明,等.儿茶素对棉枯萎病菌胞壁降解酶的抑制及在棉花抗病性中的作用.真菌学报.1996,15(4):297-303.
    [42] Patil S S, Dimond A E. Repression of polygalacturonase synthesis in Fusarium oxysporum f.sp.lycopersici by sugars and its effect on symptoms development in infected tomato plants. Phytopathology. 1968, 58:676-682.
    [43] Mankarios A T, Friend J. Polysaccharide degrading enzymes of Botrytis allii and Sclerotium Cepivorum: Enzyme production in culture and the effect of the enzymes on isolated onion cell walls. Physiol. Plant Pathol. 1980,17:93-104.
    [44] Karr A L, Albersheim P. Polysaccharide-degrading enzymes are unable to attack plant cell walls without prior action by a “wall-modefying enzyme”. Plant Physiol. 1970,46:69-80.
    [45] Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants:Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993,3:1-30.
    [46] 冯晶,高增贵,薛春生.玉米弯孢霉叶斑病菌产生的细胞壁降解酶的致病作用研究.杂粮作物.2002,22(3):164-166.
    [47] Fonseca M J V, Said S. Sequential production of pectinases by Penicillium frequentans. World Journal of Microbiology and Biotechnology. 1995,11(2):174-177.
    [48] Ortega J. Production of pectinases by Exserohilum rostratum. Texas Journal of Science. 1994, 46(1): 79-86.
    [49] Kang Z, Buchenauer H. Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. Journal of Phytopathology. 2000, 148(5):263-275.
    [50] Cam B le, Lebreton L, Massiot P, et al. Production of cell-wall polysaccharide degrading enzymes in carrot root tissues infected by Mycocentrospora acerina. Plant Pathology. 1997,46(2):276-281.
    [51]陈夕军,张红,徐敬友. 水稻纹枯病菌胞壁降解酶的产生及致病作用. 江苏农业学报.2006,22(1):24-28.
    [52] 张红.立枯丝核菌胞壁降解酶及其在致病中的作用.扬州大学研究生论文.2004.
    [53] 李宝聚,周长力,赵奎华. 黄瓜黑星病菌致病机理的研究Ⅱ细胞壁降解酶及其在致病中的作用.植物病理学报. 2000,30(1):13-18.
    [54] Rogers L M, Kim Yeonki, Guo Wenjin, et al. Requirement for either a host- or pectin- induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97(17):9813-9818.
    [55] Suzuki S, Komiya Y, Mitsui T, et al. Release of cell wall degrading enzymes from conidia of Blumeria graminis on artificial substrate. Annals of the Phytopathological Society of Japan. 1998, 64(3):160-167.
    [56] 李碧鹰,贺伟.果蔬产后病害病原菌胞外酶的启动及其调控.河北林果研究.2005, 20(2):174-178.
    [57] Dagüstü N. Production of cell wall degrading enzymes by Pythium violae. Journal of Turkish Phytopathology. 1998,27(2/3):91-103.
    [58] 陈捷,高洪敏,朱有.黄瓜腐霉菌苗期猝倒病致病机制研究. 植物病理学报. 1996,26(1):55-61
    [59] Cary J W, Brown R, Cleveland T E, et al. Cloning and characterization of a novel polygalacturonase-encoding gene from Aspergillus parasiticus Gene. 1995, 153(1):129-133.
    [60] Chen Shangwu, Zhang Dapeng, Zhang Weiyi. The cell wall-degrading enzymes and mode of infection of melon fruits by Rhizopus stolonifer (Ehrenb.) Vuill and Fusarium semitectum Berk et Rav. Acta Phytopathologica Sinica. 1998, 28(1):55-60.
    [61] 黄丽丽,王兰,康振生等.玉米叶片新月弯孢菌侵染后的细胞病理学变化.植物病理学报.2004, 34(1):21-26.
    [62] Wanjiru W M, Kang ZhenSheng, Buchenauer H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. European Journal of Plant Pathology. 2002, 108(8):803-810.
    [63] 杨谦.核盘菌侵入油菜超微结构及侵染机制的研究.植物病理学报.1994, 24(3):245-249.
    [64] 杨谦, R.T.V.Fox.核盘菌在亚麻上侵染致病的微观过程.植物病理学报.1996, 6(4) : 325-329.
    [65] 李宝聚,周长力,赵奎华.黄瓜黑星病菌致病机理的研究Ⅲ细胞壁降解酶和毒素对寄主超微结构的影响及协同作用.植物病理学报.2001,31(1):63-64.
    [66] Tans-kersten J, Guan Yanfen, Allen C. Ralstonia solanacearum pectin methylesterase is required for growth on methylated pectin but not for bacterial wilt virulence. Applied and Environmental Microbiology. 1998, 64(12):4918-4923.
    [67] Spagnuolo M, Crecchio C, Pizzigallo M D R, et al. Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresource Technology. 1997, 60(3):215-222.
    [68] Bartling S, Wegener C, Olsen O. Synergism between Erwinia pectate lyase isoenzymes that depolymerize both pectate and pectin. Microbiology (Reading). 1995 ,141(4):873-881.
    [69] Pissavin C, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N. Biochemical characterization of the pectate lysae PelZ of Erwinia chrysanthemi3937. Biochimica et Biophysica Acta,Protein Structure and Molecular Enzymology. 1998, 1383(2):188-196.
    [70] Pardo A G, Forchiassin F. Influence of temperature and pH on cellulase activity and stability in Nectria catalinensis. Revista Argentina de Microbiología. 1999, 31(1):31-35.
    [71] Mandeep Kaur, Mandahar C L. Influence of cultural conditions on production of cellulolytic enzymes by Helminthosporium maydis. Research Bulletin of the Panjab University,Science. 1994, 44(1/4):85-92.
    [72] Touzani A, Donèche B. Production and properties of the cellulosic complex of Botrytis cinerea. Canadian Journal of Botany. 1996, 74(3):486-491.
    [73] S Dori, Z Solel, I Barash.cell wall-degrading enzymes produced by Gaeumannomyces graminis var. tritici in vitro and in vivo. Physiological and Molecular Pathology. 1995, 46:189-198.
    [74] Pissavin C, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N. Biochemical characterization of the pectate lysae PelZ of Erwinia chrysanthemi3937. Biochimica et Biophysica Acta,Protein Structure and Molecular Enzymology. 1998, 1383(2):188-196.
    [75] Marcus L, Barash I, Sneh B, et al. Purification and characterization of pectolytic enzymesproduced by virulent and hypovirulent isolates of Rhizoctonia solani Kuhn[J]. Physiol and Mol Plant Pathol. 1986, 29:325-336.
    [76] Dahm H, Strzelczyk E, Mańka M. Production of cellulolytic and pectolytic enzymes by Fusarium oxysporum (Schlecht), Rhizoctonia solani (Kühn) and Trichoderma viride (Pers.ex Gray). Phytopathologia Polonica. 1997, (13):19-30.
    [77] Nabanita Chattopadhyay, Kaiser S A K M, Gupta P K S. Production of pectic and cellulolytic enzymes by three soil borne fungal pathogens of chickpea. Journal of Mycopathological Research.1999, 37(2):73-75.
    [78] Wei-Yun Zhu, Michael K Theodorou, Bettina Bonde Nielsen. Dilution Rate Increases Production of Plant Cell-wallDegrading Enzymes by Anaerobic Fungi in Continuous-flow Culture. Anaerobe . 1997, 3:49-59.
    [79] Fu-Ming Dai,Tong Xu, Gerhard A. Wolf, et al. Physiological and Molecular Features of the Pathosystem Arabidopsis thaliana L-Sclerotinia sclerotiorum Libert. Journal of Inregrative Plant Biology. 2006, 48(1):44-52.
    [80] A Sampathnarayanan, E R B Shanmugasundaram. Studies on cellulase of the cotton wilt pathogen fusarium vasinfectum ATK. Madras University Biochemistry Laboratories, Madras-25, India. 1970, 41 :3-4 .
    [81] 罗焕亮,王军,张景宁.青枯菌胞外酶对木麻黄的致病作用研究. 森林病虫通讯.1998, 3:1-2.
    [82] Strider D L, Winstead N N. Production of cell-wall dissolving enzymes by Cladosporium cucumerinum in cucumber tissue and in artificial media. Phytopathology. 1961, 5(11):765-768.
    [83] Suzuki S, Komiya Y, Mitsui T, et al. Release of cell wall degrading enzymes from conidia of Blumeria graminis on artificial substrate. Annals of the Phytopathological Society of Japan.1998, 64(3):160-167.
    [84] M Carmen Ruiz, Antonio Di Pietro, M Isabel G Roncero. Purification and characterization of an acidic endo-β-1,4-xylanase from the tomato vascular pathogen Fusarium oxysporum f. sp. Lycopersici. FEMS Microbiology Letters. 148 (1):75-82.
    [85] Lalaoui F, Halama P, Dumortier V, et al. Cell wall-degrading enzymes produced in vitro byisolates of Phaeosphaeria nodorum differing in aggressiveness. Plant Pathology. 2000, 49(6):727-733.
    [86] 吴宝荣,阳振芳. 灰霉病发生规律与防治技术的探索. 江西园艺.2004, 6:78-80.
    [87] 黄仲生. 番茄灰霉病的发生与防治. 植物保护.2003, 3:47-48.
    [88] A Kapat, G Zimand, Y Elad. Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiological and Molecular Plant Pathology . 1998,52: 127-137.
    [89] 魏宝东,车芙蓉,马岩松.芽抱杆菌(Bacillus)发酵滤液对灰霉葡萄抱菌的作用.辽宁农业科学. 2004, 3:5-7.
    [90] Katia Gindro, Roger Pezet. Evidence foe a consititutive cytoplasmic cutinase in ungerminated conidia of Botrytis cinerea Pers. FEMS Microbiology Letters.1997:89-92.
    [91] Katia Gindro, Roger Pezet. Puri¢cation and characterization of a 40.8-kDa cutinase in ungerminated conidia of Botrytis cinerea Pers. FEMS Microbiology Letters,1999 :239-243.
    [92] Kapat A, Zimand G, Elad Y. Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycological Research.1998, 102(8):1017-1024.
    [93] C J B van der Vlugt-Bergmans, C A M Wagemakers, J A L van Kan. Cloning and Expression of the Cutinase A Gene of Botrytis cinerea, The American Phytopathological Society. 1997, 10(1): 21-29.
    [94] Jiko Shishiyama, Fujio Araki, Shigeyasu Akai. Studies on cutin-esterase II. Characteristics of cutin-esterase from Botrytis cinerea and its activity on tomato-cutin. Plant and Cell Physiology. 1970, 11(6) :937-945.
    [95] 李宝聚,陈立芹,孟伟军等.温湿度调控对番茄灰霉病菌产生的细胞壁降解酶的影响.植物病理学报.2003, 33(3):209~212.
    [96] Arjen ten Have, Wendy Oude Breuil, Jos P. Wubben,1 Jaap Visser. Botrytis cinerea Endopolygalacturonase Genes Are Differentially Expressed in Various Plant Tissues. Fungal Genetics and Biology .2001, 33:97-105
    [97] Eugene Rha, Hong Jai Park, Myeong Ok Kim, et al. Expression of exo-polygalacturonases in Botrytis cinerea. FEMS Microbiology Letters. 2001: 105-109.
    [98] K Verhoeff, Judith M Warren. In vitro and in vivo production of cell wall degrading enzymes by Botrytis cinerea from tomato. European Journal of Plant Pathology.1972, 78(4):179-185.
    [99] Robert P Doss. Composition and Enzymatic Activity of the Extracellular Matrix Secreted by Germlings of Botrytis cinerea. Applied and Environmental Microbiology.1999, 65(2):404-408.
    [100] R C Staples, A M Mayer. Putative virulence factors of Botrytis cinerea acting as a wound parhogen. FEMS Microbiology Letters. 1995, 134:1-7 .
    [101] A J Colmenares, J Aleu, R Durán-Patrón, et al. The Putative Role of Botrydial and Related Metabolites in the Infection Mechanism of Botrytis cinerea. Earth and Environmental Science 2002, 28(5):997-1005.
    [102] 张金 林 , 徐 扩 , 李 川等 . 灰葡 萄 孢诱变 菌株毒素 的除 草活 性研究 . 中 国农 业科学.2005,38(6):1174-1181.
    [103] 朱宝成, 梁伯璠,周毓君等. 草莓灰霉病菌的培养毒素提取及生物测定. 植物病理学报. 1994, 2(3):239-245.
    [104]周毓君,郭明申,朱宝成等. 草莓灰霉菌毒素的稳定性及致病力的研究. 河北大学学报. 1995,15(3):40-43.
    [105] 王惠,张凤云, 董金皋等.灰葡萄孢及其毒素的生物活性测定. 西北农林科技大学学报. 2003, 31(4):119-122.
    [106] 方中达编著.植病研究法[M].北京:中国农业出版社.1998.
    [107] 陈尚武,张大鹏,张维一.匍枝根霉和半裸镰刀菌侵染甜瓜果实产生的胞壁降解酶与侵染方式. 植物病理学报. 1998, 28(1):55-60.
    [108] CA Murphy, JA Cameron, SJ Huang, et al. Inactivation of polycaprolactone depolymerase (cutinase) in Fusarium cultures by an extracellular protease. Journal of Industrial Microbiology & Biotechnology .1999, 22, 71-77.
    [109] David J, Pocalyko, Michael Tallman. Effects of amphipaths on the activity and stability of Fusarium solani pisi cutinase. Enzyme Microb Technol. 1998, 22:647-65.
    [110] ten Have A. The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In The Mycota XI: Application in Agriculture. 2002:341-358.
    [111] Van Etten H D, Maxwell D P, Bateman D F. Leision maturation, fungal development, and distribution of endopolygalacturonase and cellulase in Rhizoctonia-infected bean hypocotyl tissues. Phytopathology. 1967, 57:121-126.
    [112] Jayasinghe C K,Fernando T H P S, Priyanka U M S. Production of cell wall degrading enzymes by Corynespora cassiicola in culture and infected rubber tissue. Journal of the Rubber Research Institute of Sri Lanka. 1998, 81:1-13.
    [113] Cruyssen G van der, Meester E de, Kamoen D. Expression of polygalacturonase of Botrytis cinerea in vitro and in vivo. In 46th International symposium on crop protection Gent Belgium Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent. 1994,59(3):895-905.
    [114] Espino J J. Botrytis cinerea endo-b-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis.Physiol. Mol Plant Pathol. 2005, 66, 213-221.
    [115] Amadioha A C. Interaction of hydrolytic enzymes produced by Rhizoctonia bataticola during rot development. Acta Phytopathologica et Entomologica Hungarica. 1997, 32(1/2):79-87.
    [116] Valette-Collet O.Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Plant Microbe Interact.2003, 16:360-367.
    [117] Ilona Kars, Melysia McCalman, Lia Wagemakers, Jan A L Van kan. Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Molecular Plant Pathology.2005,6 (6):641-652. [118 N Brito. The ndo-b-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Plant Microbe Interact. 2006, 19:25-32.
    [119] Powell A L T. Transgenic expression of pear PGIP in tomato limits fungal colonization. Plant Microbe Interact. 2000,13:942-950.
    [120] Ferrari S. Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell .2003,15:93-106.
    [121] Agu ero C B. Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L expressing the pear PGIP gene. Plant Pathol. 2005, 6:43-51.
    [122] De Lorenzo, Renato D'Ovidio, Felice Cervone. The role of polygalacturonase-inhibuting proteins(PGIPs) in defense against pathogenic fungi.Annual Review of Phytopathology.2001, 39: 313-335.
    [123] D'Ovidio R, Mattei B, Roberti S, et al. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta. 2004,12 (2):237-244.
    [124] Ferrari S, Gallett R, Vairo D, et al. Antisense expression of the Arabidopsis thaliana At PGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Molecular Plant-Microbe Interactions. 2006, 19(8):931-936.
    [125]I Gazendama, D Oelofsea, D K Bergerb. High-level expression of apple PGIP1 is not sufficient to protect transgenic potato against Verticillium dahliae. Physiological and Molecular Plant Pathology, 2004, 65: 145-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700