棉花响应黄萎病菌分子机制的蛋白质组学研究及HDTF1基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上最重要的经济作物之一。但是,棉花纤维的产量和质量受到棉花黄萎病的严重制约。棉花黄萎病是一种由大丽轮枝菌引起的土传性真菌维管束病害。当黄萎病暴发时,棉花的纤维品质和产量都会受到非常严重的影响,甚至会达到30%以上的减产。因此棉花黄萎病又被称为‘棉花的癌症’。然而目前在世界范围内都没有发现比较好的陆地棉抗黄萎病种质资源。遗传资源的缺乏,对发掘优良的抗病基因形成了挑战。另一方面,棉花黄萎病菌生理小种多,小种变异性强,加大了对棉花抗黄萎病菌的抗病机制以及抗病育种研究的难度。海岛棉相对于陆地棉品种往往表现出较好的耐病甚至抗病性,因此在海岛棉的抗病品种中,可能存在某些抗病基因或抗性机制。我们选择海岛棉品种海‘7124’作为研究材料,通过比较蛋白质组学的方法,来发掘棉花中的抗病相关基因,并研究其可能存在的抗病机制。
     通过双向电泳分析以及质谱鉴定,一共得到了188个在海'7124'根系中受黄萎病菌侵染后与水处理的平行对照相比表达量出现差异的蛋白。在这些差异表达的蛋白中,下调表达的蛋白数量达到47%,接近差异表达蛋白总数量的一半。通过生物学功能注释分类,这些差异蛋白一共可以分为17类。其中参与细胞过程、代谢过程和应激反应的蛋白数量最多。这些蛋白共同参与了棉花对黄萎病菌入侵的响应。说明棉花在受病原菌侵染后,正常情况下的细胞过程和生理代谢都发生了变化。
     棉酚是棉花特有的一类次生代谢物。在我们的蛋白表达谱中发现两个与棉酚代谢相关的酶GbCAD1和GbdHG-6-OMT。GbCAD1基因编码杜松稀合成酶,是棉酚合成的限速酶。通过病毒诱导的基因沉默(VIGS)技术干涉GbCAD1后,发现GbCAD1干涉植株棉酚含量显著降低。接种强致病力落叶型黄萎病菌'V991’后发现,干涉植株对黄萎病的抗性明显降低。说明棉酚可能影响棉花对黄萎病菌的抗性。在棉花根系中,检测黄萎病侵染后其它一些棉酚代谢相关基因的表达发现,棉酚合成在棉花受黄萎病侵染后是被激活的。而作为棉酚活性的负调控因子,编码脱氧半棉酚-6-氧甲基转移酶的GbdHG-6-OMT基因在病原菌侵染后下调表达。通过组织切片、组织化学染色以及棉酚含量的测定,进一步确认了棉花在黄萎病菌侵染后,植株体内的棉酚含量是大量积累的。这些结果表明棉酚的积累可能参与抵抗黄萎病菌的侵染。在研究棉酚代谢上游的调控因子及调控方式时,通过检测抗病相关植物激素水杨酸(SA)和茉莉酸甲酯(MeJA)处理后,棉酚代谢相关基因的表达,发现JA处理后,棉花植株体内棉酚代谢相关基因GbFPS、GbCADl和WRKY1表达上调。这说明棉酚代谢可能受茉莉酸信号的调控。
     BR介导的信号路径除了在植物的生长发育中发挥着重要的功能外,也参与了植物抗病。我们分离到两个在V991侵染后蛋白水平下调的14-3-3蛋白Gb14-3-3c和Gb14-3-3d。14-3-3蛋白是BR信号路径的负调控因子,通过调控BZR1和BZR2的蛋白定位,来影响BZR1和BZR2的活性,进而影响BR信号的传递以及下游基因的表达。而RT-PCR检测发现,在棉花受黄萎病侵染后,与BR信号路径正相关的关键基因GbBRI1和GbBZR1的表达量上调。说明黄萎病菌侵染后棉花BR信号路径被激活。外施BL或通过VIGS干涉Gb14-3-3c和Gb14-3-3d都能增强棉花对黄萎病菌的抗性。说明BR信号路径可能对棉花抗黄萎病起到正向调控的作用。检测BL处理后海'7124'根系中SA和JA相关基因的表达,发现JA信号路径相关基因的表达量上调。这说明在棉花中BR所介导的信号路径可能是处于JA信号路径的上游,或BR与JA信号路径有重叠或协同作用。
     SA和JA是植物抗病反应中两种非常重要的小分子激素。位于SA和JA信号传导结点的调节因子在这两种激素介导的抗病信号路径交叉网络中起着关键的调控作用。在我们的研究中分离到在转录水平和蛋白水平都受黄萎病菌诱导上调的硬脂酰去饱和酶GbSSI2。通过VIGS干涉掉GbSSI2后,干涉植株的茎和叶片组织都出现坏死斑,严重时会造成植株死亡。经分析发现,GbSSI2干涉植株体内的活性氧大量积累;同时SA含量升高,SA路径相关基因表达上调;而JA含量降低,JA相关基因的表达受到抑制。对干涉植株叶片进行离体接种实验,发现干涉GbSSI2降低了棉花对黄萎病菌的抗性。说明GbSSI2可能参与负调控SA信号路径,正调控JA路径和棉花抗黄萎病。此外,RT-PCR分析发现棉花受黄萎病侵染后,JA信号路径相关基因的表达上调。进一步说明了JA信号路径在棉花抗黄萎病中可能存在的正向调节作用。
     从棉花与黄萎病菌互作的转录表达谱中,分离得到一个受黄萎病菌侵染后差异表达的Homeodomain转录因子HDTFl。通过序列比对分析发现,其属于HD家族PINTOX类成员。表达模式分析发现,HDTF1在棉花的叶片组织中优势表达;受黄萎病菌及灰霉病菌侵染后显著下调表达;同时其表达还受SA的强烈诱导,但MeJA处理后,HDTF1的表达会受到抑制。利用VIGS方法把棉花中HDTF1基因干涉后,植株对黄萎病菌以及灰霉病菌的抗性明显增强。研究结果表明,HDTF1可能作为一个负调控因子,调节棉花的抗病性。随后的研究发现HDTF1干涉植株体内JA含量增多,JA合成以及下游响应相关基因表达被激活。而干涉植株体内SA含量以及SA路径相关基因表达相对于野生型植株都没有显著差异。说明HDTF1介导的抗性,可能不依赖于SA信号路径,或者是通过负调节JA信号路径来影响棉花的抗性。HDTF1在棉花抗黄萎病菌中的具体调控机制还有待进一步深入的研究。
Cotton is one of the most important commercial crops all over the world. However, cotton production is influenced by Verticillium wilt every year. Verticillium wilt is caused by Verticillium dahliae, which is a soil-borne fungi caused vascular disease. The quality and yield of cotton will be subjected to serious reduction, even more than30%reduction of production when the outbreak of Verticillium wilt. So Verticillium wilt is called the cancer of cotton. It is a challenge to explore resistance genes, because of lacking cotton germplasm with high resistance to V. dahliae. On the other hand, it is difficult to uncover the molecular mechanism of cotton resistance to V. dahliae, because the race of V. dahliae mutates rapidly in nature. Sea island cotton exhibit more resistance to V. dahliae compared with upland cotton, therefore there may be some resistance genes or resistance mechanisms in sea island cotton. We used sea island cotton '7124' with high resistance to V. dahliae as the research materials, and utilized comparative proteomics to discover resistance mechanisms during the interaction of cotton and V. dahliae.
     By two-dimensional electrophoresis and mass spectrometry analysis, totally188differentially expressed proteins were identified from '7124' roots after infection by V. dahliae. In these differentially expressed proteins,47%of them was down regulated. According to gene ontology analysis, these differentially expressed proteins can be divided into a total of17categories. The number of proteins which involved in cell processes, protein metabolic processes or stress responses is more than others. These proteins may participate in the response of cotton to V. dahliae. After cotton infection by V. dahliae, cellular metabolism and physiological processes were influenced, and it may be the response to pathogen invasion.
     Gossypol is one of cotton-specific secondary metabolites. GbCAD1and GbdHG-6-OMT, two enzymes involved in gossypol metabolism, were found to differentially expressed in our protein profile. GbCADl, a cadinene synthase gene, is a key regulator in gossypol synthesis. After silencing GbCADl by VIGS, the gossypol content of GbCAD1-silenced plants was reduced compared with mock. Meanwhile, the resistance to V. dahliae was significantly reduced after GbCAD1was silenced. So gossypol may affect the cotton resistance to V. dahliae. Some other gossypol metabolism-related genes were found to up regulated in cotton roots after infection by V. dahliae, suggesting that gossypol metabolism was activated in cotton after infection. As a negative regulator of the activity of gossypol, GbdHG-6-OMT encodes desoxyhemigossypol-6-O-methyltransferase, and was down regulated after pathogen infection. By histochemical analysis, gossypol was accumulated in cotton after infection by V. dahliae. It is suggested that the accumulation of gossypol in cotton may enhance the resistance to V. dahliae. Gossypol metabolism-related genes (GbFPS, GbCAD1,WRKY1) were found to up regulated in cotton plants with methyl jasmonate treatment, indicating that the metabolism of gossypol may be regulated by jasmonate signal.
     In addition to playing an important role in plant growth and development, BR-mediated signal pathway is also reported to involve in plant immunity. Four Gb14-3-3proteins, the homologous genes of which in Arabidopsis were reported to interact with the BIN2-phosphorylated targets in the BZR1protein, were all down-regulated significantly in the protein expression profile. According to RT-PCR analysis, the positive regulated genes (GbBRI1and GbBZR1) in BR signal pathway were up regulated in cotton after infection with V. dahliae, indicating BR signal pathway was activated in infected cotton. Application of exogenous BL or silencing of Gb14-3-3by VIGS can enhance cotton disease resistance to V. dahliae, suggesting that BR signal pathway may contribute to cotton disease resistance. After treated cotton with BL, genes related to JA signal pathway were up regulated using qRT analysis, indicating that the BR signal pathway might be upstream JA signal pathway in cotton, and JA signal pathway might be have crosstalk with BR signal pathway.
     SA and JA are two very important small molecule hormones in plant disease resistance responses. Some genes located at the junction of the SA and JA signal pathway play important roles in regulating crosstalk of these two hormones. In our study, GbSSI2was isolated from protein profile, which was up regulated in the transcript and protein levels in cotton after infection with V. dahliae. After silencing GbSSI2by VIGS, GbSSI2-silenced plants appeared necrosis on stems and leaves; severe necrosis even caused plant death. After ROS detection, the H2O2was accumulated in the GbSSI2-silenced plants; the SA content was accumulated and SA signal related genes were up regulated; while JA content was decreased and JA signal-related genes were suppressed in the silenced cotton plants. After the leaves of silenced plants infected by V. dahliae, the GbSSI2-silenced leaves were more susceptive to V. dahliae. All the mentions above indicate that GbSSI2may influence the cotton resistance by altering SA-and JA-mediated defense signaling. By RT-PCR analysis, JA signal related genes were up regulated in cotton after infection with V. dahliae, indicating JA signal pathway might contribute to cotton disease resistance to V. dahliae.
     The molecular mechanism that underlies Verticillium dahliae resistance in cotton is poorly understood at present. Here we characterize HDTF1, which is cloned from transcription expression profile of cotton response to V. dahliae. HDTF1was predicted to encode a nuclear homeodomain transcription factor and HDTF1expression was down-regulated in cotton upon Verticillium dahliae and Botrytis cinerea inoculation. To elucidate the possible involvement of HDTF1in cotton-pathogen interactions, we employed virus-induced gene silencing to generate HDTF1-silenced cotton. Silencing HDTF1significantly enhanced cotton resistance to the fungal pathogens V. dahliae and B. cinerea. In addition, HDTF1silencing caused the accumulation of the phytohormone JA in addition to the activation of a JA-related signal pathway. We could not detect altered SA levels or differential expression in the SA-related genes of HDTFl-silenced plants. Our studies suggest that silencing of HDTF1transcripts in cotton resulted in improved resistance to V. dahliae and B. cinerea, and HDTF1was involved in regulating the JA signaling pathway.
引文
1. 马存.棉花黄萎病和枯萎病的研究。北京:中国农业出版社,2005
    2.孙济中,陈布圣.棉作学。北京:中国农业出版社,1999
    3. 房卫平,祝水金,季道藩.棉花黄萎病菌与抗黄萎病遗传育种研究进展.棉花学报2001,(02):116-12
    4. Alkher H, El Hadrami A, Rashid K, Adam L, Daayf F. Cross-pathogenicity of Verticillium dahliae between potato and sunflower. Eur J Plant Pathol, 2009,124: 505-519.
    5. Alvarado V, Scholthof HB. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol, 2009,20: 1032-1040.
    6. An C, Mou Z. Salicylic acid and its function in plant immunity. J Integr Plant Biol, 2011,53:412-428.
    7. Back MA, Haydock PPJ, Jenkinson P. Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology, 2002,51:683-697.
    8. Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem, 2009,47:1-8.
    9. Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol, 2009,69: 473-488.
    10. Bernoux M, Ellis JG, Dodds PN. New insights in plant immunity signaling activation. Curr Opin Plant Biol, 2011,14:512-518.
    11. Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 1994,6:1845-1857.
    12. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72: 248-254.
    13. Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD. Virus-induced gene silencing in Solanum species. Plant J, 2004,39:264-272.
    14. Brisson LF, Tenhaken R, Lamb C. Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell,1994,6:1703-1712.
    15. Bu B, Qiu D, Zeng H, Guo L, Yuan J, Yang X. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Rep, 2013.
    16. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 2009,55:611-622.
    17. Choe, S. Brassinosteroid biosynthesis and inactivation. Physiol Plant, 2006,126: 539-548.
    18. Choi du S, Hwang BK. Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell,2011,23:823-842.
    19. Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Benefits of brassinosteroid crosstalk. Trends Plant Sci,2012,17:594-605.
    20. Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P. An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell,2005,17:2123-2137.
    21. Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff SA, Glazebrook J. A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci U S A, 2003,100: 4945-4950.
    22. Cooper RM, Wood RKS. Cell wall degrading enzymes of vascular wilt fungi. Ⅲ. Possible involvement of endo-pectin lyase in Verticillium wilt of tomato. Physiol Plant Pathol,1980,16:285-300.
    23. Coumans JV, Poljak A, Raftery MJ, Backhouse D, Pereg-Gerk L. Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus Thielaviopsis basicola. Proteomics, 2009,9:335-349.
    24. de Jonge R, Peter van Esse H, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ. Tomato immune receptor Vel recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences, 2012.
    25. de Vries SC.14-3-3 proteins in plant brassinosteroid signaling. Dev Cell, 2007,13: 162-164.
    26. Dempsey DA, Klessig DF. SOS-too many signals for systemic acquired resistance? Trends Plant Sci,2012,17:538-545.
    27. Denance N, Sanchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 2013,4.
    28. Donofrio NM, Wilson RA. Redox and rice blast: new tools for dissecting molecular fungal-plant interactions. New Phytol, 2014,201:367-369.
    29. Dowd C, Wilson IW, McFadden H. Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact,2004,17:654-667.
    30. Ellendorff U, Fradin EF, de Jonge R, Thomma BP. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot, 2009,60:591-602.
    31. Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J, 1999,18:265-276.
    32. Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R. The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses. The Plant Cell Online,2011,23:701-715.
    33. Finnie C, Maeda K, O OS, Bak-Jensen KS, Larsen J, Svensson B. Aspects of the barley seed proteome during development and germination. Biochem Soc Trans, 2004,32:517-519.
    34. Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GC, Joosten MH, Thomma BP. Interfamily transfer of tomato Vel mediates Verticillium resistance in Arabidopsis. Plant Physiol, 2011,156:2255-2265.
    35. Fradin EF, Thomma BPHJ. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol, 2006,7:71-86.
    36. Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CD, Nazar RN, Robb J, Liu CM, Thomma BP. Genetic dissection of Verticillium wilt resistance mediated by tomato Vel. Plant Physiol, 2009,150:320-332.
    37. Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB. Virus-induced gene silencing in tomato fruit. Plant J, 2005,43:299-308.
    38. Fu ZQ, Dong X. Systemic acquired resistance:turning local infection into global defense. Annu Rev Plant Biol,2013,64:839-863.
    39. Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M. iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol, 2011,155:1893-1907.
    40. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol, 2006,141:436-445.
    41. Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM, Chen H, Shibagaki N, Ferl RJ, Ehrhardt D, Chong K, Burlingame AL, Wang ZY. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell, 2007,13:177-189.
    42. Gao W, Long L, Zhu L, Xu L, Gao W, Sun L, Liu L, Zhang X. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that Gossypol, Brassinosteroids and Jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics,2013,12:3690-3703.
    43. Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L. Silencing GhNDRl and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011,66: 293-305.
    44. Garcia-Andrade J, Ramirez V, Flors V, Vera P. Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. Plant J, 2011,67:783-794.
    45. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005,43:205-227.
    46. Godge MR, Purkayastha A, Dasgupta I, Kumar PP. Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep, 2008,27:209-219.
    47. Gold J, Robb J. The role of the coating response in Craigella tomatoes infected with Verticillium dahliae, races 1 and 2. Physiol Mol Plant Pathol,1995,47:141-157.
    48. Gomez-Gomez L, Bauer Z, Boller T. Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell, 2001,13:1155-1163.
    49. Gonzalez-Garcia MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-Delgado AI. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development, 2011,138:849-859.
    50. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000,21:1037-1053.
    51. Gu Z, Huang C, Li F, Zhou X. A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J, 2014.
    52. Gudesblat GE, Russinova E. Plants grow on brassinosteroids. Curr Opin Plant Biol, 2011,14:530-537.
    53. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999, 17:994-999.
    54. Hall C, Heath R, Guest DI. Rapid and intense accumulation of terpenoid phytoalexins in infected xylem tissues of cotton (Gossypium hirsutum) resistant to Fusarium oxysporum f.sp. vasinfectum. Physiol Mol Plant Pathol, 2011,76:182-188.
    55. Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A, 2007,104:12217-12222.
    56. Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B, Chardakov V, Cognet-Holliger C, Colot V, Crowe M, Darimont C, Durinck S, Eickhoff H, de Longevialle AF, Farmer EE, Grant M, Kuiper MT, Lehrach H, Leon C, Leyva A, Lundeberg J, Lurin C, Moreau Y, Nietfeld W, Paz-Ares J, Reymond P, Rouze P, Sandberg G, Segura MD, Serizet C, Tabrett A, Taconnat L, Thareau V, Van Hummelen P, Vercruysse S, Vuylsteke M, Weingartner M, Weisbeek PJ, Wirta V, Wittink FR, Zabeau M, Small I. Versatile gene-specific sequence tags for Arabidopsis functional genomics:transcript profiling and reverse genetics applications. Genome Res, 2004,14:2176-2189.
    57. Hirano H, Islam N, Kawasaki H. Technical aspects of functional proteomics in plants. Phytochemistry, 2004,65:1487-1498.
    58. Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell, 2012,24:2635-2648.
    59. Hu G, Koh J, Yoo MJ, Grupp K, Chen S, Wendel JF. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytol, 2013,200:570-582.
    60. Hu H, Liu Y, Shi GL, Liu YP, Wu RJ, Yang AZ, Wang YM, Hua BG, Wang YN. Proteomic analysis of peach endocarp and mesocarp during early fruit development. Physiol Plant, 2011,142:390-406.
    61. James JT, Dubery I A. Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton. Phytochemistry, 2001,57:149-156.
    62. Jiang CJ, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009,22:820-829.
    63. Jiang Y, Yang B, Harris NS, Deyholos MK. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 2007,58:3591-3607.
    64. Jones JDG, Dangl JL. The plant immune system. Nature, 2006,444:323-329.
    65. Kachroo P, Kachroo A, Lapchyk L, Hildebrand D, Klessig DF. Restoration of defective cross talk in ssi2 mutants:role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. Mol Plant Microbe Interact, 2003,16:1022-1029.
    66. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A, 2001, 98:6511-6515.
    67. Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Mussig C, Thomma BP, Albrecht C, de Vries SC, Hirt H, Nurnberger T. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol, 2007,17:1116-1122.
    68. Khripach V. Twenty Years of Brassinosteroids:Steroidal Plant Hormones Warrant Better Crops for the ⅩⅪ Century. Annals of Botany, 2000,86:441-447.
    69. Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol, 2010,61:681-704.
    70. Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A,1995,92:1679-1683.
    71. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell,2004,16:3496-3507.
    72. Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol, 1997,48:251-275.
    73. Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RA, Ritsema T, Pieterse CM. Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol, 2009,149:1797-1809.
    74. Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994,79:583-593.
    75. Li J, Brader G, Palva ET. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 2004,16:319-331.
    76. Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG, America AHP, Sklenar J, Jones AME, Tameling WIL, Robatzek S, Thomma BPHJ, Joosten MHAJ. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences, 2013.
    77. Liechti R, Farmer EE. The Jasmonate Pathway. Science, 2002,296:1649-1650.
    78. Liu CJ, Heinstein P, Chen XY. Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors. Mol Plant Microbe Interact, 1999a,12:1095-1104.
    79. Liu H, Li X, Xiao J, Wang S. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods, 2012a,8:2.
    80. Liu J, Benedict CR, Stipanovic RD, Bell AA. Purification and characterization of S-adenosyl-L-methionine:desoxyhemigossypol-6-O-methyltransferase from cotton plants. An enzyme capable of methylating the defense terpenoids of cotton. Plant Physiol, 1999b,121:1017-1024.
    81. Liu J, Benedict CR, Stipanovic RD, Magill CW, Bell AA. Cloning and expression of desoxyhemigossypol-6-O-methyltransferase from cotton (Gossypium barbadense). J Agric Food Chem, 2002a,50:3165-3172.
    82. Liu K, Han M, Zhang C, Yao L, Sun J, Zhang T. Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. J Proteomics,2012b, 75:845-856.
    83. Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant J, 2002b,31:777-786.
    84. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP. Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J, 2002c,30:415-429.
    85. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25:402-408.
    86. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J, 2003,22:5690-5699.
    87. Luo P, Wang YH, Wang GD, Essenberg M, Chen XY. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J, 2001,28: 95-104.
    88. Mace ME, Bell AA, Beckman CH. Histochemistry and identification of disease-induced terpenoid aldehydes in Verticillium-wilt-resistant and -susceptible cottons. Can J Bot,1976,54:2095-2099.
    89. Mace ME, Stipanovic RD, Bell AA. Histochemical localization of desoxyhemigossypol, a phytoalexin in Verticillium dahliae-infected cotton stems. New Phytol, 1989,111:229-232.
    90. Mascia T, Nigro F, Abdallah A, Ferrara M, De Stradis A, Faedda R, Palukaitis P, Gallitelli D. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector. Proc Natl Acad Sci U S A, 2014,111:4291-4296.
    91. Meng Y, Liu F, Pang C, Fan S, Song M, Wang D, Li W, Yu S. Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide. J Proteome Res, 2011,10: 5416-5432.
    92. Mengiste T. Plant immunity to necrotrophs. Annu Rev Phytopathol, 2012,50: 267-294.
    93. Minagawa H, Honda M, Miyazaki K, Tabuse Y, Teramoto R, Yamashita T, Nishino R, Takatori H, Ueda T, Kamijo K, Kaneko S. Comparative proteomic and transcriptomic profiling of the human hepatocellular carcinoma. Biochem Biophys Res Commun, 2008,366:186-192.
    94. Moore JW, Loake GJ, Spoel SH. Transcription dynamics in plant immunity. Plant Cell,2011,23:2809-2820.
    95. Mukherjee AK, Carp MJ, Zuchman R, Ziv T, Horwitz BA, Gepstein S. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics, 2010,73:709-720.
    96. Mukherjee K, Brocchieri L, Burglin TR. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009,26:2775-2794.
    97. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J,2003,33:887-898.
    98. Ni Y, Wang X, Li D, Wu Y, Xu W, Li X. Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones. Acta Biochim Biophys Sin (Shanghai),2008,40:78-84.
    99. Nurnberger T, Brunner F. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol, 2002,5:318-324.
    100. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975,250:4007-4021.
    101. Pan Z, Guan R, Zhu S, Deng X. Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep, 2009,28:281-289.
    102. Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics, 2010,9: 2019-2033.
    103. Panstruga R, Parker JE, Schulze-Lefert P. SnapShot: Plant immune response pathways. Cell, 2009,136:978 e971-973.
    104. Park SY, Choi J, Lim SE, Lee GW, Park J, Kim Y, Kong S, Kim SR, Rho HS, Jeon J, Chi MH, Kim S, Khang CH, Kang S, Lee YH. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog, 2013,9:e1003350.
    105. Pegg GF. Phytotoxin Production by Verticillium albo-atrum Reinke et Berthold. Nature,1965,208:1228-1229.
    106. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 2000,103:1111-1120.
    107. Pieterse CM, Leon-Reyes A, Van der Ent, S, and Van Wees SC. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009,5:308-316.
    108. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal Modulation of Plant Immunity. Annu Rev Cell Dev Biol, 2012,28: 489-521.
    109. Piotrowska A, Bajguz A. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry, 2011,72:2097-2112.
    110. Purkayastha A, Dasgupta I. Virus-induced gene silencing:a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem, 2009,47:967-976.
    111. Qin J, Zuo K, Zhao J, Ling H, Cao Y, Qiu C, Li F, Sun X, Tang K. Overexpression of GbERF confers alteration of ethylene-responsive gene expression and enhanced resistance to Pseudomonas syringae in transgenic tobacco. J Biosci, 2006,31:255-263.
    112. Ramirez V, Coego A, Lopez A, Agorio A, Flors V, Vera P. Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator. Plant J, 2009,58: 578-591.
    113. Ren CM, Zhu Q, Gao BD, Ke SY, Yu WC, Xie DX, Peng W. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling. J Integr Plant Biol, 2008,50:630-637.
    114. Reusche M, Truskina J, Thole K, Nagel L, Rindfleisch S, Tran VT, Braus-Stromeyer SA, Braus GH, Teichmann T, Lipka V. Infections with the vascular pathogens Verticillium longisporum and Verticillium dahliae induce distinct disease symptoms and differentially affect drought stress tolerance of Arabidopsis thaliana. Environ Exp Bot, 2013.
    115. Rubin BA, Pereviazkina LM. Importance of tannic substances in the resistance phenomena in cotton to wilt. Dokl Akad Nauk SSSR, 1951,79:303-306.
    116. Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced gene silencing. Plant Cell, 1998,10:937-946.
    117. Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci,2010,15:247-258.
    118. Ryu C-M, Anand A, Kang L, Mysore KS. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. The Plant Journal, 2004,40:322-331.
    119. Santhanam P, van Esse HP, Albert I, Faino L, Nurnberger T, Thomma BP. Evidence for functional diversification within a fungal NEP1-like protein family. Mol Plant Microbe Interact,2013,26: 278-286.
    120. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc,2008,3:1101-1108.
    121. Senthil-Kumar M, Hema R, Anand A, Kang L, Udayakumar M, Mysore KS. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol, 2007,176:782-791.
    122. Senthil-Kumar M, Mysore KS. New dimensions for VIGS in plant functional genomics. Trends Plant Sci, 2011,16:656-665.
    123. Shapiro AD and Zhang C. The Role of NDR1 in Avirulence Gene-Directed Signaling and Control of Programmed Cell Death in Arabidopsis. Plant Physiol, 2001, 127:1089-1101.
    124. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature, 2010, 468:400-405.
    125. Sink KC and Grey WE. A root-injection method to assess verticillium wilt resistance of peppermint (Mentha × piperita L.) and its use in identifying resistant somaclones of cv. Black Mitcham. Euphytica, 1999,106:223-230.
    126. Spoel SH, Johnson JS, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A, 2007,104: 18842-18847.
    127. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell, 2003,15:760-770.
    128. Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X. Proteasome-Mediated Turnover of the Transcription Coactivator NPR1 Plays Dual Roles in Regulating Plant Immunity. Cell, 2009,137:860-872.
    129. Tan XP, Liang WQ, Liu CJ, Luo P, Heinstein P, Chen XY. Expression pattern of (+)-delta-cadinene synthase genes and biosynthesis of sesquiterpene aldehydes in plants of Gossypium arboreum L. Planta, 2000,210:644-651.
    130. Townsend BJ, Poole A, Blake CJ, Llewellyn DJ. Antisense suppression of a (+)-delta-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol,2005,138:516-528.
    131. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012,7:562-578.
    132. Tuttle JR, Idris AM, Brown JK, Haigler CH, Robertson D. Geminivirus-Mediated Gene Silencing from Cotton Leaf Crumple Virus Is Enhanced by Low Temperature in Cotton. Plant Physiol,2008,148:41-50.
    133. Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C. Efficient Virus-Induced Gene Silencing in Roots Using a Modified Tobacco Rattle Virus Vector. Plant Physiol,2004,136:3999-4009.
    134. Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ. Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics,2005,5:1594-1611.
    135. Verhage A, van Wees SC, Pieterse CM. Plant immunity:it's the hormones talking, but what do they say? Plant Physiol, 2010,154:536-540.
    136. Vlot, A.C, Dempsey, D.A, and Klessig, D.F. Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol, 2009,47:177-206.
    137. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012,44:1098-1103.
    138. Wang W, Vignani R, Scali M, Cresti M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis, 2006,27:2782-2786.
    139. Wang, F.X, Ma, Y.P, Yang, C.L, Zhao, P.M, Yao, Y, Jian, G.L, Luo, Y.M, and Xia, GX. Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics, 2011.
    140. Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot, 2013,111:1021-1058.
    141. Watson JM, Fusaro AF, Wang M, Waterhouse PM. RNA silencing platforms in plants. FEBS Lett, 2005,579:5982-5987.
    142. Williams JS, Hall SA, Hawkesford MJ, Beale MH, Cooper RM. Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiol, 2002,128:150-159.
    143. Wu Y, Zhou J-M Receptor-Like Kinases in Plant Innate Immunity. J Integr Plant Biol,2013,55:1271-1286.
    144. Xu F, Yang L, Zhang J, Guo X, Zhang X, Li G Prevalence of the defoliating pathotype of Verticillium dahliae on cotton in central china and virulence on selected cotton cultivars. J Phytopathol, 2012,160:369-376.
    145. Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot, 2011a, 62:5607-5621.
    146. Xu L, Zhu LF, Tu LL, Guo XP, Long L, Sun LQ, Gao W, Zhang XL. Differential gene expression in cotton defence response to Verticillium dahliae by SSH. J Phytopathol, 2011b, 159:606-615.
    147. Xu YH, Wang JW, Wang S, Wang JY, Chen XY. Characterization of GaWRKYl, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol, 2004,135:507-515.
    148. Yang DH, Hettenhausen C, Baldwin IT, Wu J. BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory. J Exp Bot, 2011,62:641-652.
    149. Yang YW, Bian SM, Yao Y, Liu JY. Comparative Proteomic Analysis Provides New Insights into the Fiber Elongating Process in Cotton. J Proteome Res, 2008,7: 4623-4637.
    150. Yao YA, Wang J, Ma X, Lutts S, Sun C, Ma J, Yang Y, Achal V, Xu G Proteomic Analysis of Mn-induced Resistance to Powdery Mildew in Grapevine. J Exp Bot, 2012,63:5155-5170.
    151. Zambounis AG, Kalamaki MS, Tani EE, Paplomatas EJ, Tsaftaris AS. Expression Analysis of Defense-Related Genes in Cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum Infection and Following Chemical Elicitation using a Salicylic Acid Analog and Methyl Jasmonate. Plant Mol Biol Report, 2011,30: 225-234.
    152. Zhai W, Li X, Tian W, Zhou Y, Pan X, Cao S, Zhao X, Zhao B, Zhang Q, Zhu L. Introduction of a rice blight resistance gene,Xa21, into five Chinese rice varieties through an Agrobacterium-mediated system. Sci China C Life Sci, 2000,43: 361-368.
    153. Zhang B, Yang Y, Chen T, Yu W, Liu T, Li H, Fan X, Ren Y, Shen D, Liu L, Dou D, Chang Y. Island cotton Gbvel gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS ONE, 2012,7:e51091.
    154. Zhang B, Yang Y-W, Zhang Y, Liu J-Y. A high-confidence reference dataset of differentially expressed proteins in elongating cotton fiber cells. Proteomics, 2013a: n/a-n/a.
    155. Zhang Y, Wang XF, Ding ZQ Ma Q, Zhang GR, Zhang SL, Li ZK, Wu LQ, Zhang GY, Ma ZY. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics, 2013b,14:637.
    156. Zhao Fa, Fang W, Xie D, Zhao Y, Tang Z, Li W, Nie L, Lv S. Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae. Plant Sci (Amsterdam, Neth),2012,185-186: 176-184.
    157. Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM, Xia GX. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res, 2009.
    158. Zheng M, Wang Y, Liu K, Shu H, Zhou Z. Protein expression changes during cotton fiber elongation in response to low temperature stress. J Plant Physiol, 2012, 169:399-409.
    159. Zhu J, Shi H, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A, 2004,101:9873-9878.
    160. Zhu L, Tu L, Zeng F, Liu D, Zhang X. An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agronomic Sinica, 2005,31:1657-1659.
    161. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006,125:749-760.
    162. Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol,2008,20:10-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700