无盐阴/阳离子表面活性剂中富勒烯的囊泡增溶和碳纳米管的稳定分散
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富勒烯和碳纳米管结构新颖,性质独特,应用前景极为广阔。然而水溶性差、容易聚集等问题大大阻碍了对其深入的研究和实际应用。胶体与界面化学的研究,特别是表面活性剂溶液有序聚集体的研究,为解决上述难题提供了新的思路和手段。论文以十四烷基三甲基氢氧化铵(TTAOH)和月桂酸(LA)复配得到的无盐阴/阳离子表面活性剂混合体系为主线,详细研究了其水相和非水相性质和相行为,并在此基础上系统研究了富勒烯C_(60),C_(60)/C_(70)混合物在TTAOH/LA/H_2O体系中的增溶及其碳纳米管的稳定分散;同时系统研究了一系列亲水基团修饰的C_(60)衍生物水相中的聚集行为及其与表面活性剂和碳纳米管的相互作用。论文的具体内容如下:
     第一章分别从表面活性剂物理化学和富勒烯化学的角度,简要介绍了国内外相关研究背景,阐述了论文选题的科学意义。
     第二章系统研究了TTAOH/LA/H_2O体系的相行为和流变学性质,绘制了三元相图。研究发现,随着LA和TTAOH混合比例(n_(LA)/n_(TTAOH))和表面活性剂总浓度(c_(TTAOH+LA))的变化,体系表现出丰富的相行为。当TTAOH过量时,在n_(LA)/n_(TTAOH)<0.87时形成各向同性的L_1相(胶束相),其粘度随样品组成的不同而有很大变化。随着LA含量的增加,具有双折射现象的L_α相开始形成,在某些区域,L_1相和L_α相共存,上部双折射的L_α相与下部各向同性的L_1相之间有明显的界面,两者的体积比随着样品的组成而变化。在LA和TTAOH混合比例接近和达到1∶1以及LA稍过量时,形成了淡蓝色的囊泡相。其中高浓度的囊泡相具有明显的双折射现象,而浓度较低时,双折射现象不明显。另外,在表面活性剂总浓度极低时,体系容易发生宏观相分离,且这一现象随着n_(LA)/n_(TTAOH)值的增大而变得尤其明显。TTAOH/LA/H_2O体系丰富的相行为是微观上各种聚集体生长和相互演变的宏观反映,这种生长和演变也导致了体系流变学行为的变化。以表面活性剂总浓度为25 mg/mL的系列样品为例,随着n_(LA)/n_(TTAOH)的变化,可依次观察到牛顿流体区,剪切增稠区,具有Maxwell流体特性的蠕虫状胶束区和弹性模量远大于粘性模量、具有屈服应力的密堆积囊泡区。我们分别对各相区的稳态剪切和振荡剪切特性进行了深入研究和探讨,同时考察了温度的影响。结果表明,升高温度大大抑制胶束的生长,使样品失去粘弹性,但对囊泡相却影响不大。此外,对L_1/L_α两相共存区相分离前后的流变学性质以及剪切和时间诱导的双折射L_α相的偏光织构也进行了研究。
     第三章系统研究了TTAOH/LA混合体系在多种有机溶剂中的性质,在合适的表面活性剂组成和少量水存在的情况下,构筑了反相囊泡并详细研究了反相囊泡的性质和在模版合成无机纳米粒子方面的潜在应用价值。反相囊泡样品由于对自然光的散射而呈现蓝色,偏光显微镜观察表明它们具有明显的双折射纹理,直径可达微米数量级。深入研究发现,反相囊泡的性质及稳定性与所用溶剂和温度密切相关。在环已烷和苯类溶剂如甲苯及第三丁基苯中,反相囊泡的形成是自发的且具有很高的稳定性,而在烃类溶剂如庚烷中,反相囊泡的形成往往需要外力的帮助,而且不够稳定,随时间的延长或离心力的增加而发生宏观相分离。反相囊泡对温度变化非常敏感,升高温度会导致形成反相囊泡的表面活性剂组成向着LA含量高的一端移动,反之亦然。向反相囊泡溶液中加入少许含无机离子如Zn~(2+),S~(2-)等的水溶液不会破坏其结构,但过多无机离子的引入会导致反相囊泡结构的消失。通过小心控制实验条件,反相囊泡可以作为模版用来合成特定形貌的无机纳米粒子。我们在这方面进行了初步尝试,取得了一些阶段性成果。
     第四章系统研究了富勒烯C_(60)和C_(60)/C_(70)混合物在TTAOH/LA/H_2O体系中的增溶以及增溶后C_(60)吸收光谱和富勒烯增溶诱导的混合体系宏观相行为的变化。增溶过程经历了一个中间步骤,即首先使富勒烯和表面活性剂分子在富勒烯良性溶剂甲苯中达到分子水平的均匀混合。研究发现,TTAOH/LA/H_2O体系尤其是等摩尔量混合时形成的囊泡相有可观的增溶富勒烯的能力。例如,对于等摩尔量混合时50 mmol/L的囊泡相,当增溶C_(60)的浓度达到0.588 mg/mL时仍然没有发生宏观相分离。而此前文献报道的表面活性剂水体系中C_(60)的最大增溶量仅为0.4mg/mL。对TTAOH/LA/H_2O体系其它相区的研究表明,双折射L_α相也具有可观的增溶富勒烯的能力,相比之下,L_1相尤其是粘弹性的蠕虫状胶束增溶富勒烯的能力较弱。当LA过量时,样品随着n_(LA)/n_(TTAOH)的增大逐渐失去增溶富勒烯的能力。对增溶富勒烯后混合体系宏观相行为的研究表明,将样品稀释时,富勒烯和一部分表面活性剂会沉淀出来,生成沉淀的量随样品的持续稀释而增加。相对于囊泡相,胶束相的抗稀释能力较强。研究还发现,C_(60)增溶后紫外-可见特征吸收光谱消失,吸收曲线发生红移,整体向长波方向移动。与此相伴随的是混合体系颜色的变化。深入研究发现样品颜色变化和C_(60)吸收光谱消失的速度与光照和氧气的存在无明显关系,而随着混合表面活性剂中TTAOH含量的增加而加快。分析后认为,除了C_(60)分子间的团聚,增溶过程中C_(60)分子与OH~-之间很可能发生了某种电子转移反应。
     第五章借助PEO-PPO-PEO三嵌段共聚物F127和聚乙烯吡咯烷酮(PVP)将碳纳米管稳定分散于TTAOH/LA/H_2O体系中,并详细研究了聚合物的加入和碳纳米管的分散对TTAOH/LA/H_2O体系流变学性质的影响,同时研究了分散后碳纳米管的紫外-可见-近红外吸收光谱的特征。对TTAOH/LA/H_2O体系剪切增稠区、蠕虫状胶束区和囊泡区的流变学测量表明,聚合物尤其是F127的加入大大抑制了聚集体的生长,表现为体系粘度的下降和弹性的丧失。在聚合物加入质量相等的情况下,F127的影响明显大于PVP,这一结论也为表面张力的测定结果所证实。这主要是由于F127与TTAOH/LA/H_2O体系之间存在较强的疏水相互作用且能够形成氢键的缘故。研究发现,TTAOH/LA/H_2O体系本身不具备良好的分散碳纳米管的能力,然而在聚合物F127和PVP的帮助下,碳纳米管能够很好地分散于混合体系中。紫外-可见-近红外吸收光谱研究结果表明,碳纳米管的分散效果随聚合物加入量密切相关。流变学的测量结果表明,碳纳米管的掺杂使混合体系的粘弹性降低,弛豫时间变长。
     第六章系统研究了两种树枝状单加成羧酸类C_(60)衍生物(1,2)、三种星状[3∶3]六加成季铵盐类C_(60)衍生物(3,4,5)和两种星状[3∶3]六加成羧酸类C_(60)衍生物(6,7)的水溶液性质和聚集行为,以及它们与表面活性剂和碳纳米管的相互作用。1和2具有很高的水溶性,紫外-可见吸收光谱和动态激光光散射的研究结果表明它们在水中均能够发生一定程度的自聚集,但不同亲水枝的接入导致它们的自聚集行为有所不同。随着阳离子表面活性剂TTAOH的加入,1和2的自聚集行为变得异常显著,以致出现沉淀。对上清液的冷冻刻蚀电子显微镜的观察发现了单层囊泡的存在。3-5也具有很高的水溶性,在水溶液中的自聚集行为不显著。但它们仍然具有两亲性,且能够分散碳纳米管。6和7能够很好地溶解于中性尤其是弱碱性缓冲溶液中,但在纯水中的溶性性极差。当加入适量NaOH,使它们转变为相应的钠盐6-Na和7-Na后,水溶性大大提高。通过研究1-5以及6-Na和7-Na水溶液中自聚集行为得出的共同结论是它们的亲水基团过于庞大而疏水基团偏小,分子的HLB值偏大,自聚集行为不显著。此外还研究了高离子强度水溶液中1,2,6-Na和7-Na的自聚集行为,电子显微镜观察得到了形貌多样的聚集体。
As novel nanostructures,fullerenes and carbon nanotubes are known to have many unique properties and great potential applications.However,their poor solubility in water together with their propensity to form large aggregates has long been an obstacle for further study and practical applications.To solve these problems,the means originating from colloid and interface science especially those from surfactant science are frequently adopted.In this doctoral dissertation,the detailed phase behavior of tetradecyltrimethylammonium hydroxide(TTAOH)/lauric acid(LA)surfactant mixture has been investigated both in aqueous and non-aqueous media.After that.this mixed surfactant system is selected to solubilize fullerene C_(60)and C_(60)/C_(70)mixture as well as to disperse carbon nanotubes.In addition to improve the solubility of pristine fullerenes and carbon nanotubes in aqueous media,we have also investigated the properties and aggregation behavior in water of some C_(60)amphiphiles given by Andreas Hirsch from Germany.The interactions between these C_(60)amphiphiles and traditional surfactants as well as carbon nanotubes are also discussed.The outline and contents of this doctoral dissertation are as follows:
     ChapterⅠis a brief introduction of the research background of this work,in which the history and recent progress in surfactant science as well as fullerene chemistry are reviewed from a worldwide angle of view.The objective and the scientific significance of this doctoral dissertation are also pointed out at the end of this part.
     In ChapterⅡ,the phase behavior and rheological properties of TTAOH/LA/H_2O system are investigated in detail.It is found the system exhibits a rich phase behavior with the variation of molar ratio of LA to TTAOH(n_(LA)/n_(TTAOH))and total surfactant concentration (C_(TTAOH+LA))at 25℃.In TTAOH rich side,an isotropic L_l phase(micellar phase)forms at n_(LA)/n_(TTAOH)<0.87.whose viscosity changes significantly with solution parameter.As n_(LA)/n_(TTAOH)increases from the border of L_l phase,birefringent L_αphase begins to form.In certain region,L_l phase and L_αphase coexist with birefringent L_αphase at the top.An obvious interface can be found between bottom L_l phase and top L_αphase and the volume ratio of L_αphase to L_l phase varies with solution parameter.Around equimolar mixing ratio of LA to TTAOH,bluish vesicular phase is observed which extends to the region where LA is in slight excess.At low concentration of total surfactants,the system tends to macroscopically phase separate and this phenomenon will be more obvious at higher LA content.The rich phase behavior of TTAOH/LA/H_2O system with variation of solution parameter is a macroscopic reflection of aggregate growth and evolution among different kinds which occurs at microscopic length scale.The growth and evolution of aggregates also induce significant rheological property changes of the system.Take the series of samples with c_(TTAOH+LA)=25 mg/mL for example,a Newton fluid region,a shear-thickening region,a worm-like micellar region which exhibits Maxwell fluid character and a gel-like vesicular region are observed in turn with increasing n_(LA)/n_(TTAOH). We have investigated the detailed rheological properties by means of both steady state and oscillatory measurements within each region as a function of total surfactant concentration and temperature.It is found micelle growth is greatly suppressed at higher temperatures while temperature rise has a much less influence on vesicular phases.The rheological property of the L_l and L_αphase within the two-phase region has been carried out as a whole as well as separately.The textures of the birefringent L_αphase are also investigated by a polarized microscope as a function of shear and time.
     In ChapterⅢ,the phase behavior of TTAOH/LA mixed system is investigated in various organic solvents.After monitoring the experimental conditions,reverse vesicles with dimensions usually at micrometer scale are successfully constructed in several non-polar organic solvents including toluene,tert-butyl benzene,cyclohexane and n-heptane.The formation of reverse vesicles occurs within a rather narrow range of surfactant composition and a small amount of water is always necessary.The reverse vesicular phases show a blue color against room light and exhibit strong birefringence under polarized microscope.It is found the property and stability of reverse vesicles depends greatly on the selected organic solvent and temperature.In toluene,tert-butyl benzene and cyclohexane,reverse vesicles can form spontaneously and show high stability at room temperature.An increase in temperature can make the composition of surfactants within which reverse vesicles are constructed move to LA-rich side and vice versa.In n-heptane,however,the formation of reverse vesicles usually needs external energy and these reverse vesicles are not stable at room temperature.Instead.they will disappear from the top upon time and centrifugation.Ultimately macroscopic phase separation is observed,which will be accelerated at higher temperatures,and a gel-like phase forms at the bottom.Reverse vesicles may not be destroyed if suitable amount of aqueous solutions containing certain inorganic ions such as Zn~(2+)and S~(2-)is added,but adding too much will of course destroy the structure of reverse vesicles.By designing experiments with great care,reverse vesicles can be used as nano-reaction center for inorganic particle synthesis.Investigation toward this direction has also been carried out and some interesting results have been obtained.
     Based on the knowledge of TTAOH/LA mixed system both in aqueous and non-aqueous media obtained from the former two chapters,in ChapterⅣwe investigate the solubilization of fullerene C_(60)and C_(60)/C_(70)mixture in TTAOH/LA/H_2O system via a medium step where an organic solvent toluene is involved.The changes of spectral features of fullerenes before and after solubilization as well as fullerene solubilization induced phase behavior changes of the mixed system have also been clarified.It is found the solubilization capability is considerable high for the vesicular phases especially those formed at n_(LA)/n_(TTAOH)=1.For example,the 50 mmol/L vesicular phase at n_(LA)/n_(TTAOH)=1 Can solubilize C_(60)up to 0.588 mg/mL without macroscopic phase separation.This is already higher than the solubilization maximum of C_(60)in other surfactant systems reported in literatures,which is 0.4 mg/mL.Further investigations indicate the L_αphases also have considerable capability to solubilize fullerenes while the L_l phase especially the worm-like micellar phases can not effectively solubilize fullerenes.In LA rich side.the system loses the ability to solubilize fullerenes gradually with increasing n_(LA)/n_(TTAOH).We have investigated the phase behavior of TTAOH/LA/H_2O system with fullerenes solubilized as a function of total surfaetant concentration.It is found precipitate will form when the samples are diluted by water and the amount of precipitate depends on the kind of phase as well as the extent of dilution.Compared with vesicular or lamellar phases. micellar phases with fullerenes solubilized are more stable against dilution. Thermogravimetric analysis indicates the precipitate is a mixture of fullerenes and surfactants rather than fullerenes only.UV-vis-NIR measurements indicate the characteristic absorptions of fullerenes disappeared after solubilization and an Einstein shift occurs for the whole absorption curve together with an interesting color change of the samples.Further investigations have revealed the color change of the samples and the disappearance of the characteristic absorptions of fullerenes are influenced little by light. but depends greatly on the content of TTAOH in total surfactants.So it seems that electron transfer reactions occur between fullerenes and OH~- during solubilization together with an aggregation of fullerene molecules.
     In ChapterⅤ,the dispersion of carbon nanotubes(CNTs)in TTAOH/LA/H_2O system is investigated at the presence of two kinds of nonionic polymers.Pluronic F127 and polyvinylpyrrolidone(PVP).The rheological property changes of TTAOH/LA/H_2O system induced by polymer and CNTs addition are investigated in detail,respectively.The UV-vis-NIR measurements have also been carried out on the TTAOH/LA/polymer/CNTs mixed samples.It is found that the addition of polymers greatly suppresses aggregate growth both in micellar region and vesicular region,which can be seen simply by shaking. and visual inspection.This conclusion gains further proof from rheological measurements which are carried out on the shear-thickening region,the worm-like micellar region and the vesicular region.At the same weight fraction of polymers,the influence of F127 is much more obvious than that of PVP,which is also consistent with the results of surface tension measurements.This is due to the strong hydrophobic interaction as well as hydrogen bond formation between F127 and TTAOH/LA/H_2O system.TTAOH/LA/H_2O system itself can not disperse CNTs effectively.After addition of F127 or PVP.however. CNTs can be well dispersed into the bulk aqueous solutions.UV-vis-NIR measurements indicate the quality of the final dispersion is influenced greatly by the amount of added polymer.After introduction of CNTs into the matrix of ordered molecular assemblies such as worm-like micelles,the rheological properties of mixed system change obviously with a decrease in viscoelastic property and a rise in relaxation time.
     In the last chapter,we have investigated the properties and aggregation behavior in aqueous solutions of seven C_(60)amphiphiles with different molecular structures which are kindly given by Andreas Hirsch from Germany.The interaction between these C_(60) amphiphiles and traditional surfactants as well as CNTs is also discussed.1 and 2 have 18 and 9 terminal carboxy groups as hydrophilic part,respectively,and are highly soluble in water.They belong to monoadducts of C_(60)derivatives and have a dendritic molecular structure.The aggregation behavior of 1 and 2 in water is not obvious as proved by transition electron microscopy(TEM)observations.UV-vis and dynamic laser light scattering(DLLS)measurements show,however,they can still form aggregates in water. This conclusion gains further proof from the fact that they can disperse MWNTs.It is found the aggregation behavior of 1 and 2 is different from each other due to their different hydrophilic parts.The aggregate formation of 1 and 2 can be greatly enhanced when a cationic surfactant,TTAOH is added.The[3:3]hexakisadducts of C_(60)amphiphiles 3-5 are star-like.They are also highly soluble in water and each has six terminal quartery ammonium headgroups together with different number of ethyloxide groups as hydrophilic part.Similar with 1 and 2,the aggregation behavior of 3-5 in water is not obvious,either.But they still exhibit moderate amphiphilic character in aqueous solutions as proved by surface tension measurements and can disperse CNTs which are rich in SWNTs.The[3:3]hexakisadducts of C_(60)amphiphiles 6 and 7 are also star-like.They have 6 and 18 terminal carboxy groups,respectively,and are almost insoluble in water but soluble in basic aqueous solutions.After being transformed into their corresponding sodium salts 6-Na and 7-Na,the solubility is greatly improved and they can be subsequently used to disperse MWNTs.Investigations have been carried out on the aggregation behavior of 1.2,6-Na and 7-Na in aqueous solutions containing highly concentrated salts and interesting fraetals are observed besides well-defined spherical aggregates.
引文
1.赵国玺,朱步瑶.《表面活性剂作用原理》中国轻工业出版社.
    2.Rosen M.J.;Hua X.Y.Surface concentrations and molecular interactions in binary mixtures of surfaetants.J.Colloid and Interface Sci.1982,86,164-172.
    3.Rosen M.J.;Zhou Q.Surfaetant-surfactant interactions in mixed monolayer and mixed micelle formation.Langmuir,2001,17.3532-3537.
    4.Schwartz,A.M.;Perry,J.W.Surface active agents.New York.1949.
    5.Kaler,E.W.;Herrington,K.L.;Murthy,A.K.;Zasadzinski,J.A.N.Spontaneous vesicle formation in aqueous mixtures of single-tailed surfaetants.Science 1989,245,1371-1374.
    6.Kaler,E.W.;Herrington,K.L.;Murthy,A.K.Phase behavior and structure of mixtures of anionic and cationic surfaetants,J.Phys.Chem.1992,96,6698-6707.
    7.Herrington,K.L.;Kaler,E.W.;Miller,D.D.;Zasadzinski,J.A.;Chiruvolu,S.Phase behavior of aqueous mixtures of dodeeyltrimethylammonium bromide(DTAB)and sodium dodecyl sulfate (SDS).J.Phys.Chem.1993,97,13792-13802.
    8.Yateilla M.T.;Herrington,K.L.;Brasher,L.L.;Kaler,E.W.;Chiruvolu,S.;Zasadzinski.J.A.Phase behavior of aqueous mixtures of eetyltrimethylarnmonium bromide(CTAB)and sodium octyl sulfate(SOS).J.Phys.Chem.1996,100,5874-5879.
    9.Iampietro,D.;Kaler,E.W.Phase behavior and microstructure of aqueous mixtures of celyltrimethylammonium bromide and sodium perfluorohexanoate.Langmuir 1999.15.8590-8601.
    10.Koehler,R.D.;Raghavan,S.R.;Kaler.E.W.Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants.J.Phys.Chem.B 2000,104.11035-11044.
    11.Raghavan,S.R.;Fritz,G.;Kaler.E.W.Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants.Langmuir 2002,18,3797-3803.
    12.Schubert,B.A.;Kaler,E.W.;Wagner,N.J.The microstructure and rheology of mixed cationic/anionic wormlike miceiles.Langmuir 2003,19,4079-4089.
    13.Gonzalez,Y.I.;Stjemdahl,M.;Danino,D.;Kaler,E.W.Spontaneous vesicle formation and phase behavior in mixtures of an anionic surfactant with imidazoline compounds.Langmuir 2004,20.7053-7063.
    14.Jokela,P.;Jonsson,B.;Khan,A.Phase equilibria of catanionic surfactant-water systems.J.Phys.Chem.1987,91,3291-3298.
    15.Fukuda,H.;Kawata,K.;Okuda,H.Bilayer-forming ion-pair amphiphiles from single-chain surfactants.J.Am.Chem.Soc.1990,112,1635-1637.
    16.Hassan,P.A.;Valaulikar,B.S.;Manohar,C.;.Kern.F.;Bourdieu.L.;Candau,S.J.Vesicles to micelle transition:rheoiogical investigations.Langmuir 1996,12,4350-4357.
    17.Narayanan,J.;Manohar,C.;Kern,F.;Lequeux,F.;Candau,S.L.Linear viscoelasticity of wormlike micellar solutions found in the vicinity of a vesicle-micelle transition.Langmuir 1997.13,5235-5243.
    18.Horbaschek,K.;Hoffmann,H.;Thunig,C.Formation and properties of lamellar phases in systems of cationic surfactants and hydroxyl-naphthoate.J.Colloid Interface Sci.1998,206,439-456.
    19.Horbaschek,K.;Hoffmann,H.;Hao,J.Classic L_α phases as opposed to vesicle phases in cationic-anionic surfactant mixtures.J.Phys.Chem.B 2000.104,2781-2784.
    20.Hao,J.;Liu,W.;Xu,G.;Zheng,L.Vesicles from salt-free cationic and anionic surfactant solutions.Langmuir 2003,19,10635-10640.
    21.Song A.;Dong S.;Jia,X.;Hao,J.;Liu,W.;Liu,T.An onion phase in salt-free zero-charged catanionic surfactant solutions.Angew.Chem.Int.Ed.2005,44,4018-4021.
    22.Shen.Y.;Hao,J.;Hoffmann.H.Reversible phase transition between salt-free catanionic vesicles and high-salinity catanionic vesicles.Soft.Matter.2007.3,1407-1412.
    23.Zemb,Th.;Dubois,M.;Deme,B.;Gulik-Krzywicki,Th.Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions.Science 1999,283,816-819.
    24.Dubois.M.;Deme,B.;Gulik-Krzywicki,Th.;Dedieu.J.-C.;Vautrin,C.;Desert.S.;Perez.E.;Zemb.Th.Self-assembly of regular hollow icosahedra in salt-free catanionic solutions.Nature 2001.411,672-675.
    25.Meister,A.;Dubois.M.;Belloni,L.;Zemb,Th.Equation of state of self-assembled disklike and icosahedral crystallites in the dilute range.Langmuir 2003,19,7259-7263.
    26.Dubois,M.;Lizunov,V.;Meister,A.;Gulik-krzywicki,Th.;Verbavatz,J.M.;Perez.E.;Zimmerberg.J.;Zemb,Th.Shape control through molecular segregation in giant surfactant aggregates.PNAS 2004,101,15082-15087.
    27.Kroto,H.W.;Heath,J.;O'Brien,S.C.;Curl,R.F.;Smalley.R.E.C_(60):Buckminsterfullerene.Nature 1985,318,162-163.
    28.Kratschmer,W.;Lamb,L.D.;Fostiropoulos,K.;Huffman,D.R.Solid C_(60):a new form of carbon.Nature 1990,347.354-358.
    29.Iijima.S.Helical mierotubules of graphitic carbon.Nature,1991,354,56-58.
    30.Iijima.S.;lchihashi,T.Single-shell carbon nanotubes of 1-nm diameter.Nature.1993.363.603-605.
    31.Smith,B.W.;Monthioux,M.;Luzzi,D.E.Encapsulated C_(60)in carbon nanotubes.Nature 1998.396,323-324.
    32.Xie.Q.;Perez-Cordero,E;Echegoyen,L.Electrochemical detection of C_(60)~(6-)and C_(70)~(6-):enhanced stability of fullerides in solution.J.Am.Chem.Soc.1992,114,3978-3980.
    33.Guldi,D.M.;Prato,M.Excited-state properties of C_(60)fullerene derivatives.Acc.Chem.Res.2000.33,695-703.
    34.Bachilo,S.M.;Strano,M.S.;Kittrell,C.;Hauge,R.H.;Smalley,R.E.;Weisman.R.B.Structure-assigned optical spectra of single-wailed carbon nanotubes.Science 2002.298.2361-2366.
    35.Hirsch,A.Functionalization of single-wailed carbon nanotubes.Angew.Chem.Int.Ed.2002.41.1853-1859.
    36.Strano,M.S.;Dyke,C.A.;Usrey,M.L.;Barone,P.W.;Allen,M.J.;Shan.H.;Kittrell.C.;Hauge.R.H.;Tour.J.M.;Smalley.R.E.Electronic structure control of single-walled carbon nonotube functionalization.Science 2003,301,1519-1522.
    37.Maggini,M.;Scorrano,G.;Prato,M.Addition of azomethine ylides to C_(60):synthesis.characterization,and functionalization of fullerene pyrrolidines.J.Am.Chem.Soc.1993.115.9798-9799.
    38.Bingle,C.Functional polypedes-chiral nematic fullerenes.Chem.Ber.1993,126,1957-1959.
    39.Brettreich,M.;Burghardt,S.;Bottcher,Ch.;Bayerl,Th.;Bayerl.S.;Hirsch.A.Globular amphilphiles:membrane-forming hexaadducts of C_(60).Angew.Chem.Int.Ed.2000.39.1845-1848.
    40.Braun,M.;Hartnagel,U.;Ravanelli,E.;Schade,B.;Bottcher,C.;Vostrowsky,O.;Hirsch.A.Amphiphilic[5:1]-and[3:3]-Hexakisadducts of C_(60).Eur.J.Org.Chem.2004.9,1983-2001.
    41.Burghardt.S.;Hirsch,A.;Schade.B.;Ludwig,K.;Bottcher,C.Switchable supramolecular organization of structurally defined micelles based on an amphiphilic fullerene.Angew.Chem.Int.Ed.2005,44,2976-2979.
    42.Sawamura,M.;Nagahama,N.;Toganoh,M.;Hackler.U.E.;lsobe,H.;Nakamura,E.;Zhou.S.;Chu,B.Pentaorgano[60]fullerene R_5C_(60)~-.A water soluble hydrocarbon anion.Chem.Lett.2000,1098-1099.
    43.Zhou,S.;Burger,C.;Chu,B.;Sawamura,M.;Nagahama,N.;Toganoh,M.;Hackler,U.E.;Isobe.H.;Nakamura,E.Spherical bilayer vesicles of fullerene-based suffactants in water:a laser light scattering study.Science 2001,291,1944-1947.
    44.Burger,C.;Hao,J.;Ying,Q.;Isobe.H.;Sawamura,M.;Nakamura,E.;Chu,B.Multilayer vesicles and vesicle clusters formed by the fullerene-based suffactant C_(60)(CH_3)_5K.J.Colloid Inter.Sci.2004,275,632-641.
    45.Song,T.;Dai,S.;Tam,K.C.;Lee,S.Y.;Gob,S.H.Aggregation behavior of C_(60)-end-capped poly(ethylene oxide)s.Langmuir 2003,19.4798-4803.
    46.Yang,J.;Li,L.;Wang,C.Synthesis of a water soluble,monosubstituted C_(60)polymeric derivative and its photoconductive properties.Macromolecules 2003,36,6060-6065.
    47.Tan,C.H.;Ravi,P.;Dal,S.;Tam,K.C.Polymer-induced fractal patterns of[60]fullerene containing poly(methacrylic acid)in salt solutions.Langmuir 2004,20,9901-9904.
    48.Verma,S.;Hauck,T.;El-Khouly,M.E.;Padmawar,P.A.;Canteenwala,T.;Pritzker,K.;Ito.O.;Chiang,L.Y.Self-assembled photoresponsive amphiphilic diphenylaminofluorene-C_(60)conjugate vesicles in aqueous solution.Langrauir 2005,21,3267-3272.
    49.Wharton,T.;Kini,V.U.;Mortis,R.A.;Wilson,L.J.New non-ionic,highly water-soluble derivatives of C_(60)designed for biological compatibility.Terra.Lett.2001,42,5159-5162.
    50.Hebard,A.F.;Rosseinsky,M.J.Superconductivity at 18 K in potassium-dopped C_(60).Nature 1991.350.600-601.
    51.Cagle,D.W.;Kennel,S.J.;Mirzadeh,S.;Alford,J.M.;Wilson,L.J.In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers.PNAS 1999,96.5182-5187.
    52.Kato,H.;Kanazawa,Y.;Okumura,M.;Taninaka,A.;Yokawa,T.;Shinohara,H.Lanthanoid endohedral metaliofullerenols for MRI contrast agents.J.Am.Chem.Soc.2003.125.4391-4397.
    53.Bolskar,R.D.;Benedetto,A.F.;Husebo,L.O.;Price,R.E.;Jackson,E.F.;Wallace,S.;Wilson,L.J.;Alford,J.M.First soluble M@C_(60)derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C_(60)[C(COOH)_2]_(10)as a MRI contrast agent.J.Am.Chem.Soc.2003,125,5471-5478.
    54.Kuciauskas,D.;Liddell,P.A.;Lin,S.;Stone,S.;Moore,A.L.;Moore,T.A.;Gust.D.Photoinduced electron transfer in carotenoporphyrin-fullerene triads:temperature and solvent effects.J.Phys.Chem.B 2000.104,4307-4321.
    55.Liddell.P.A.;Kuciauskas,D.;Sumida.J.P.;Nash,B.;Nguyen.D.;Moore,A.L.;Moore.T.A.;Gust,D.Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad,J.Am.Chem.Soc.1997,119,1400-1405.
    56.Carbonera,D.;Di Valentin,M.;Corvaja,C.;Agostini,G.;Giacomerti,G.;Liddell.P.A.;Kuciauskas,D.;Moore,A.L.;Moore,T.A.;Gust,D.EPR investigation of photoinduced radical pair formation and decay to a triplet state in a carotene-porphyrin-fullerene triad.J.Am.Chem.Soc.1998,120,4398-4405.
    57.Kuciauskas,D.;Liddell,P.A.;Moore,A.L.;Moore,T.A.;Gust,D.Magnetic switching of charge separation lifetimes in artificial photosynthetic reaction centers,J.Am.Chem.Soc.1998.120.10880-10886.
    58.Kuciauskas,D.;Liddell,P.A.;Lin,S.;Johnson,T.E.;Weghorn;S.J.;Lindsey,J.S.;Moore.A.L.;Moore,T.A.;Gust,D.An artificial photosynthetic antenna-reaction center complex.J.Am.Chem.Soc.1999,121,8604-8614.
    59.Steinberg-Yfrach,G.;Liddell,P.A.;Hung,S.-C.;Moore,A.L.;Gust.D.;Moore.T.A.Artificial photosynthetic reaction centers in iiposomes:photochemical generation of transmembrane proton potential.Nature 1997,385,239-241.
    60.Friedman,S.H.;DeCamp,D.L.;Sijbesma,R.P.;Srdanov,G.;Wudl,F.;Kenyon,G L.Inhibition of the HIV- 1 protease by fuilerene derivatives:model building studies and experimental verification,J.Am.Chem.Soc.1993,115,6506-6509.
    61.Tokuyama,H.;Yamago,S.;Nakamura,E.;Shiraki,T.;Sugiura,Y.Photoinduced biochemical acitivity of fuilerene earboxylic acid.J.Am.Chem.Soc.1993,115,7918-7919.
    62.Dugan,L.L.;Turetsky,D.M.;Du.C.;Lobner,D.;Wheeler,M.;Almli,C.R.;Shen,C.K.-F.;Luh.T.-Y.;Choi,D.W.;Lin,T.-S.Carboxyfullerenes as neuroproteetive agents.PNAS 1997.94.9434-9439.
    63.Cassell,A.M.;Scrivens,W.A.;Tour,J.M.Assembly of DNA/fullerene hybrid materials.Angew Chem.Int.Ed.1998,37,1528-1531.
    64.Nakamura.E.;Isobe,H.;Tomita,N.;Savamura,M.;Jinno,S.;Okayama,H.Functionalized fullerene as an artificial vector for transfection.Angew.Chem.Int.Ed.2000.39,4254-4257.
    65.Isobe,H.;Sugiyama,S.;Fukui,K.;Iwasawa,Y.;Nakamura.E.Atomic force microscope studies on condensation of plasmid DNA with functionalized fullerenes.Angew.Chem.Int.Ed.2001.40.3364-3367.
    66.Guo,Z.-X.;Sun,N.;Li,J.;Dai,L.;Zhu.D.Nanoseale aggregation of fullerene in nafion membrane.Langmuir 2002,18,9017-9021.
    67.Li,J.;Zhang,S.;Zhang,P.;Liu,D.;Guo,Z.-X.;Ye,C.;Zhu,D.Nanoseale cavities for fulleropyrrolidinium in nation membrane.Chem.Mater 2003,15,4739-4744.
    68.Obeng,Y.S.;Bard,A.J.Langmuir films of C_(60)at the air-water interface,J.Am.Chem.Soc.1991. 113,6279-6280.
    69.Nakamura,T.;Tachibana,H.;Yumura.M.;Matsumoto.M.;Azumi.R.;Tanaka,M.;Kawabata,Y.Formation of Langmuir-Blodgett films of a fullerene.Langmuir 1992.8.4-6.
    70.Back.R.;Lennox.R.B.Fullerenes,C_(60)and C_(70)at the air-water interface.J.Phys.Chem.1992.96,8149-8152.
    71.Maliszewskyj,N.C.;Heiney,P.A.Langmuir films of C_(60).C_(60)O and C_(61)H_2.Langmuir 1993.9.1439-1441.
    72.Matsumoto,M.;Tachibana.H.;Azumi,R.;Tanaka,M.;Nakarnura.T.;Yunome,G.;Abe,M.;Yamago,S.;Nakamura,E.Langmuir-Blodgett film of amphiphilic C_(60)carboxylic acid.Langmuir 1995,11,660-665.
    73.Guldi,D.M.;Tian,Y.;Fendler,J.H.;Hungerbuhler,H.;Asmus,K.-D.Compression-dependent structural changes of funetionaiized fullerene monolayers,J.Phys.Chem.1996.100.2753-2758.
    74.Wang,S.;Leblanc,R.M.;Arias.R.;Eehegoyen,L.Surface and optical properties of Langmuir and LB films of a crown-ether C_(60)derivative.Langmuir 1997,13,1672-1676.
    75.Cardullo,F.;Diederieh,F.;Eehegoyen.L.;Habieher,T.;Jayaraman,N.;Leblanc.R.M.;Stoddart.J.F.;Wang,S.Stable Langmuir and Langmuir-Biodgett films of fullerene-glycodendron conjugates.Langmuir 1998,14,1955-1959.
    76.Oh-ishi,K.;Okmmura.J.;Ishi-i.T.;Sano,M.;Shinkai,S.Large monolayer domain formed by C_(60)-azobenzene derivative.Langmuir 1999,15,2224-2226.
    77.Guldi.D.M.;Maggini,M.;Mondini,S.;Guerin.F.;Fendler,J.H.Formation.Characterization.and Properties of nanostruetured[Ru(bpy)_3]~(2+)-C_(60)Langmuir-Blodgett films in situ at the air-water interface and ex situ on substrates.Langmuir 2000.16,1311-1318.
    78.Maiorhofer,A.P.;Braun,M.;Vostrowsky,O.;Hirseh,A.;Langridge,S.;Bayerl.T.M.Control of the receptor binding to a ligand-containing monolayer at the air/water interface by the lateral pressure:a film balance and neutron and infrared reflection study,J.Phys.Chem.B 2001.105.3639-3645.
    79.Nierengarten,J.-F.;Eckert.J.-F.;Rio,Y.;Carreon.M.P.;Gallani,J.-L.;Guilion.D.Amphiphilic diblock dendrimers:synthesis and incorporation in Langmuir-Biodgett films.J.Am.Chem.Soc.2001,123,9743-9748.
    80.Cao,T.;Wei.F.;Yang.Y.;Huang.L.;Zhao,X.;Cao.W.Mierotribologic properties of a covalently attached nanostruetured self-assembly film fabricated from fullerene carboxylic acid and diazoresin.Langmuir 2002,18.5186-5189.
    81.Zhang,S.;Rio,Y.;Cardinali,F.;Bourgogne,C.;Cailani.J.-L.;Nierengarten.J.-F.Amphiphilic diblock dendrimers with a fullerene core.J.Org.Chem.2003,68,9787-9797.
    82.Gao,Y.;Tang.Z.;Watkins,E.;Majewski.J.;Wang.H.-L.Synthesis and characterization of arnphiphilic fullerenes and their Langrnuir-Blodgett films.Langmuir 2005.21.1416-1423.
    83.Vuorinen,T.;Kaunisto,K.;Tkachenko,N.V.;Efimov,A.;Lemmetyinen,H.;Alekseev.A.S.;Hosomizu,K.;Imahori,H.Photoinduced electron transfer in Langmuir-Blodgett monolavers of porphyrin-fullerene dyads.Langmuir 2005,21,5383-5390.
    84.Burghardt,S.;Hirsch,A.;Medard,N.;Kachfhe,R.A.;Aussere.D.;Valignat,M.-P.;Gallani.J.-L.Preparation of highly stable organic steps with a fullerene-based molecule Langmuir 2005.21.7540-7544.
    85.Nakamura,E.;Isobe,H.Functionalized fullerenes in water.The first 10 years of their chemistry.biology,and nanoscience.Acc.Chem.Res.2003,36,807-815.
    86.Guldi,D.M.;Zerbetto,F.;Georgakilas,V.;Prato,M.Ordering fullerene materials at nanometer dimensions,Acc.Chem.Res.2005,38,38-43.
    87.Ros,T.D.;Prato,M.Medicinal chemistry with fullerenes and fuilerene derivatives.Chem.Commun.1999,663-669.
    88.Sano,M.;Oishi.K.;Ishi-i,T.;Shinkai,S.Vesicle formation and its fractal distribution by bola-amphiphilic[60]fullerene.Langmuir 2000,16,3773-3776.
    89.Nakashima,N.;Ishii,T.;Shirakusa,M.;Nakanishi,T.;Murakami,H.;Sagara,T.Molecular bilayer-based superstructures of a fullerene-carrying ammonium amphiphile:structure and electrochemistry.Chem.Eur.J.2001,7,1766-1772,
    90.Jeng,U.;Lin,T.-L.;Tsao,C.-S.;Lee,C.-H.;Canteenwala,T.;Wang,L.Y.;Chiang,L.Y.;Han.C.C.Study of aggregates of fullerene-based ionomers in aqueous solutions using small angle neutron and X-ray scattering.J.Phys.Chem.B 1999,103,1059-1063.
    91.Tsao,C.-S.;Lin,T.-L.;Jeng,U.-S.Study of the aggregation of fullerene-based ionomers in water solutions using small angle neutron scattering and small angle X-ray scattering.J.Phys.Chem Solids 1999,60.1351-1353.
    92.Jeng,U.;Lin,T.-L.;Liua,W.-J.;Tsao,C.-S.;Canteenwala,.T.;Chiang,L.Y.;Sung,L.P.;Han.C.C.SANS and SAXS study on aqueous mixtures of fullerene-based star ionomers and sodium dodecyl sulfate.Physica A 2002,304,191-201.
    93.Lin,T.-L.;Jeng` U.;Tsao,C.-S.;Liu,W.-J.;Canteenwala,T.;Chiang L.Y.Effect of arm length on the aggregation structure of fullerene-based star ionomers.J.Phys.Chem.B 2004.108.14884-14888.
    94.Sawamura,M.;Kawai,K.;Matsuo,Y.;Kanie,K.;Kato,T.;Nakamura,E.Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals.Nature 2002.419,702-705.
    95.Georgakilas,V.;Pellarini,F.;Prato,M.;Guldi,D.M.;Melle-Franeo,M.;Zerbetto.F.Supramolecular self-assembled fullerene nanostructures.PNAS 2002,99,5075-5080.
    96.Ruoff,R.S.;Tse,D.S.;Malhotra,R.;Lorents,D.C.Solubility of C_(60)in a variety of solvents.J.Phys.Chem.1993,97,3379-3383.
    97.Deguchi.S.;Alargova,R.G.;Tsujii,K.Stable dispersions of fullerenes.C_(60)and C_(70).in water.Preparation and characterization.Langmuir 2001,17.6013-6017.
    98.Andersson,T.;Nilsson,K.;Sundahl,M.;Westman,G.;Wennerstrom.O.C_(60)embedded in γ-cyciodextrin:a water-soluble fullerene.Chem.Commun.1992,604-606.
    99.Atwood,J.L.;Koutsantionis,G.A.;Raston,C.L.Purification of C_(60)and C_(70)by selective complexation with calixarenes.Nature 1994,368,229-231.
    100.Hungerbuhler,H.;Guldi,D.M.;Asmus,K.D.Incorporation of C_(60)into artifical lipid membranes.J.Am.Chem.Soc.1993.115,3386-3387.
    101.Bensasson,R.V.;Bienvenue,E.;Dellinger,M.;Leach,S.;Seta,P.C_(60)in model biological systems.A visible-UV absorption study of solvent-dependent parameters and solute aggregation.J.Phys.Chem.1994,98,3492-3500.
    102.Beeby,A.;Eastoe,J.;Heenan.R.K.Solubilisation of C_(60)in aqueous micellar solution.Chem.Commun.1994,173-175.
    103.Yamakoshi,Y.N.;Yagami,T.;Fukuhara,K.;Sueyoshi,S.;Miyata,N.Solubilization of fullerenes into water with polyvinyipyrrolidone applicable to biological tests.Chem.Commun.1994.517-518.
    104.Eastoe,J.;Crooks,E.R.;Beeby,A.;Heenaa,R.K.Structure and photophysies in C_(60)-micellar solutions.Chem.Phys.Lett.1995,245,571-577.
    105.Lai,D.T.;Neumarm,M.A.;Matsumoto,M.;Sunamoto,J.Complexation of C_(60)fullerene with cholesteryl group-bearing pullulan in aqueous medium.Chem.Lett.2000,39,64-65.
    106.Li,H.;Jia,X.;Li,Y.;Shi X.;Hao.J.A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C_(60)in water.J.Phys.Chem.B 2006,110,68-74.
    107.Li,Hi;Han,J.Phase behavior of salt-free catanionic surfactant aqueous solutions with fullerene C_(60)solubilized.J.Phys.Chem.B 2007.111,7719-7724.
    108.Vaisman.L.;Wagner,H.D.;Marom.G.The role of surfactants in dispersion of carbon nanotubes.Adv,.Colloid Interface Sci.2006.128-130,37-46.
    1.Kaler.E.W.;Herrington,K.L.;Murthy,A.K.;Zasadzinski,J.A.N.Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants.Science 1989,245,1371-1374.
    2.Kaler,E.W.;Herrington.K.L.;Murthy.A.K.Phase behavior and structure of mixtures of anionic and cationic surfactants.J.Phys.Chem.1992,96,6698-6707.
    3.Herrington,K.L.;Kaler,E.W.;Miller,D.D.;Zasadzinski,J.A.;Chiruvolu,S.Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide(DTAB)and sodium dodecyl sulfate (SDS).J.Phys.Chem.1993,97,13792-13802.
    4.Yatcilla M.T.;Herrington,K.L.;Brasher,L.L.;Kaler.E.W.;Chiruvolu.S.;Zasadzinski.J.A.Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide(CTAB)and sodium octyl sulfate(SOS).J.Phys.Chem.1996,100,5874-5879.
    5.Iampietro,D.;Kaler,E.W.Phase behavior and microstructure of aqueous mixtures of cetyltrimethylammonium bromide and sodium perfluorohexanoate.Langmuir 1999.15.8590-8601.
    6.Koehler,R.D.;Raghavan,S.R.;Kaler,E.W.Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants.J.Phys.Chem.B 2000.104.11035-11044.
    7.Raghavan,S.R.;Fritz,G.;Kaler,E.W.Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants.Langmuir 2002.18,3797-3803.
    8.Schubert,B.A.;Kaler,E.W.;Wagner,N.J.The microstructure and rheoiogy of mixed cationic/anionic wormlike micelles.Langmuir 2003,19,4079-4089.
    9.Gonzalez,Y.I.;Stjemdahl,M.;Danino,D.;Kaler,E.W.Spontaneous vesicle formation and phase behavior in mixtures of an anionic surfactant with imidazoline compounds.Langmuir 2004.20.7053-7063.
    10.Yu,Z.-J.;Zhao,G.-X.The physicochemical properties of aqueous mixtures of cationic-anionic surfactants.I.the effect of chain length symmetry.J.Colloid Interface Sci.1989,130,414-420.
    11.Yu,Z.-J.;Zhao,G.-X.The physicochemical properties of aqueous mixtures of cationic-anionic surfactants.Ⅱ.Micelle growth pattern of equimolar mixtures.J.Colloid Interface Sci.1989,130.421-431.
    12.Zhao,G.-X.;Xiao,J.-X.Rheoiogical properties of the aqueous mixtures of cationic-anionic surfactants.Colloid & Polymer Science 1995,273,1088-1094.
    13.Huang,J.-B.;Zhao,G.X.Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant.Colloid & Polymer Science 1995,273,156-164.
    14.Horbaschek,K.;Hoffmann,H.;Thunig,C.Formation and properties of lamellar phases in systems of cationic surfactants and hydroxyl-naphthoate.J.Colloid Interface Sci.1998,206,439-456.
    15.Horbaschek,K.;Hoffmann,H.;Hao,J.Classic L_α phases as opposed to vesicle phases in cationic-anionic surfaetant mixtures.J.Phys.Chem.B 2000,104,2781-2784.
    16.Hao,J.;Liu,W.;Xu,G.;Zheng,L.Vesicles from salt-free cationic and anionic surfactant solutions.Langmuir 2003,19,10635-10640.
    17.Song A.;Dong S.;Jia,X.;Hao,J.;Liu,W.;Liu,T.An onion phase in salt-free zero-charged catanionic surfactant solutions.Angew.Chem.Int.Ed.2005,44,4018-4021.
    18.Shen,Y.;Hao,J.;Hoffmann,H.Reversible phase transition between salt-free catanionic vesicles and high-salinity catanionic vesicles.Soft.Matter.2007,3,1407-1412.
    19.Zemb,Th.;Dubois,M.;Deme,B.;Gulik-Krzywicki.Th.Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions.Science 1999,283,816-819.
    20.Dubois,M.;Deme B.;Gulik-Krzywieki,Th.;Dedieu,J.-C.;Vautrin,C.;Desert,S.;Perez.E.;Zemb,Th.Self-assembly of regular hollow icosahedra in salt-free catanionic solutions.Nature 2001.411,672-675.
    21.Meister,A.;Dubois.M.;Belioni,L.;Zemb,Th.Equation of state of self-assembled disklike and icosahedral crystallites in the dilute range.Langmuir 2003,19,7259-7263.
    22.Dubois,M.;Lizunov,V.;Meister,A.;Gulik-krzywieki,Th.;Verbavatz,J.M.;Perez.E.;Zimmerberg,J.;Zemb,Th.Shape control through molecular segregation in giant surfactant aggregates.PNAS 2004,101,15082-15087.
    23.Yamashita,Y.;Savchuk,K.;Beck,R.;Hoffmann,H.Vesicle phases from alkyldimethylaminoxides and strong acids.The Hofmeister series of anions and the L_1/L_α-phase transition.Curr.Opion.Colloid Interface Sci.2004,9,173-177.
    24.Li,H.;Jia,X.;Li,Y.;Shi,X.;Hao,J.A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C_(60)in water J.Phys.Chem.B 2006,110,68-74.
    25.Hoffmann,H.Fascinating phenomena in suffactant chemistry.Adv.Mater.1994,6,116-129.
    26.Morigaki,K.;Walde,P.Giant vesicle formation from oleic acid/sodium oleate on glass surfaces induced by adsorbed hydrocarbon molecules.Langmuir 2002,18,10509-10511.
    27.Gamez-Corrales,R.;Borret,J.-F.;Walker,L.M.;Oberdisse,J.Shear-thickening dilute suffactant solutions:equilibrium structure as studied by small-angle neutron scattering.Langrauir 1999.15.6755-6763.
    28.Aswal,V.K.;Goyal.P.S.;Thiyagarajan,P.Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic miceilar solutions,J.Phys.Chem.B 1995,102,2469-2473.
    29.Hayashi,S.;Ikeda,S.Miceile size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions,J.Phys.Chem.1980,84,744-751.
    30.Jindal,V.K.;Kalus,J.;Pilsl,H.;Hoffmann,H.;Lindner,P.Dynamic small-angle neutron scattering study of rodlike micelles in a surfactant solution.J.Phys.Chem.1990,94,3129-3138.
    31.Warr,G.G.;Magid,L.J.;Caponetti,E.;Martin,C.A.Micellar growth and overlap in aqueous solutions of hexadecyloctyldimethylammonium bromide:a fluorescence quenching,and small-angle neutron scattering study.Langmuir 1988,4.813-817.
    32.Imae,T.Nonionic rodlike micelles in dilute and semidilute solutions:intermicellar interaction and the scaling law.d.Phys.Chem.1988,92,5721-5726.
    33.Bernheim-Groswasser,A.;Wachtel,E.;Talmon,Y.Micellar growth,network formation,and criticality in aqueous solutions of the nonionic surfactant C_(12)E_5.Langmuir 2000,16,4131-4140.
    34.Hassan,P.A.;Valaulikar,B.S.;Manohar,C.;Kern,F.;Bourdieu,L.;Candau,S.J.Vesicles to micelle transition:rheological investigations.Langmuir 1996,12,4350-4357.
    35.Narayanan,J.;Manohar,C.;Kern,F.;Lequeux,F.;Candau,S.L.Linear viscoelasticity of wormlike micellar solutions found in the vicinity of a vesicle-micelle transition.Langmuir 1997.13,5235-5243.
    36.Cares,M.E.Reptation of living polymers:dynamics of entangled polymers in the presence of reversible chain-scission reactions.Macromolecules 1987,20,2289-2296.
    37.Rouse,P.E.A theory of the linear viscoelastic properties of dilute solutions of coiling polymers.J.Chem.Phys.1953,21,1272-1280.
    38.Lin,Z.Branched worm-like micelles and their networks.Langmuir 1996,12.1729-1737.
    39.Danino.D.;Talmon,Y.;Levy,H.;Beinert,G.;Zana,R.Branched threadlike micelles in an aqueous solution of a trimeric soffactant.Science 1995,269,1420-1421.
    40.Candau,S.J.;Hirsch,E.;Zana,R.;Delsanti,M.Rheologicai properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium bromide in the presence of potassium bromide.Langmuir 1989,.5,1225-1229.
    41.Kern,F.;Zana,R.;Candau,S.J.Rheologicai properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride.Langmuir 1991,7,1344-1351.
    3.Bangham,A.D.;Home,R.W.J.Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope.Mol.Biol.1964.8.660-668.
    3.Kaler,E.W.;Herrington,K.L.;Murthy,A.K.;Zasadzinski,J.A.N.Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants.Science 1989,245,1371-1374.
    3.Kunieda,H.;Nakamura,K.;Evans,D.F.Formation of reversed vesicles.J.Am.Chem.Soc.1991,113,3,1051-1052.
    3.Kunieda.H.;Nakamura,K.;Davis,H.T.;Evans,D.F.Formation of vesicles and microemulsions in a water/tetraethyiene glycol dodecyl ether/dodecane system.Langmuir 1991,7,1915-1919.
    3.Kunieda H.;Makino.S.,Ushio,N.Anionic reversed vesicles,J.Colloid Interface Sci.1991,147.286-288.
    3.Kunieda H.;Yamagata,M.Conditions to produce reversed vesicles,J.Colloid Interface Sci.1992.150,277-280.
    3.Kunieda,H.;Nakamura,K.;Infante,M.R.;Solans,C.Reversed vesicles from biocompatible surfactants.Adv.Mater.1992.4.291-293.
    3.Kunieda.H.;Akimaru,M.;Ushio,N.;Nakamura.K.Reverse vesicles:counter structure of biological membranes.J.Colloid Interface Sci.1993,156,446-453.
    3.Kunieda,H.;Nakamura,K.;Olsson,U.;Lindman,B.Spontaneous formation of reverse vesicles.J.Phys.Chem.1993,97,9525-9531.
    3.Kunieda,H.;Kamei,N.;Uemoto,A.;Tobita.I.Structure of reverse vesicles in a sucrose monoalkanoate system.Langmuir 1994.10,4006-4011.
    3.Nakamura.K.;Uemoto,A.;Imae.T.;Solans.C.;Kunieda,H.Stability and size control of reverse vesicles.J.Colloid Interface Sci.1995.170.367-373.
    3.Oisson,U.;Nakamura.K.;Kunieda.H.;Strey,R.Normal and reverse vesicles with nonionic surfactant:solvent diffusion and permeability.Langmuir 1996,12,3045-3054.
    3.Kunieda.H.;Shigeta,K.;Suzuki,M.Phase behavior and formation of reverse vesicles in long-polyoxyethylene-chain nonionic surfactant systems.Langmuir 1999,15.3118-3122.
    3.Ebbing,M.H.K.;Villa.M.J.;Vaipuesta,J.M.;Prados.P.;Mendoza,J.Resorcinarenes with 2-benzimidazolone bridges:self-aggregation,self-assembled dimeric capsules,and guest encapsulation.PNAS 2002,99,4962-4966.
    3.Rangelov,S.;Aimgren,M.;Edwards,K.;Tsvetanov,C.Formation of normal and reverse bilayer structures by self-assembly of nonionic block copolymers bearing lipid-mimetic units.J.Phys.Chem.B 2004,108,7542-7552.
    3.Shrestha.L.K.,Kaneko,M.,Sato,T.,Aeharya,D.P.,Iwanaga.T.,Kunieda.H.Phase behavior of diglyeerol fatty acid esters-nonpolar oil systems.Langmuir 2006,22,1449-1454.
    3.Tanford,C.Mieelle shape and size.J.Phys.Chem.1972.76.3020-3024.
    1.Nakamura,E.;lsobe.H.Functionalized fullerenes in water.The first 10 years of their chemistry.biology,and nanoscience.Acc.Chem.Res.2003,36,807-815.
    2.Hungerbuhler,H.;Guldi,D.M.;Asmus,K.D.Incorporation of C_(60)into artifical lipid membranes.J.Am.Chem.Soc.1993,115,3386-3387.
    3.Bensasson,R.V.;Bienvenue,E.;Dellinger,M.;Leach,S.;Seta,P.C_(60)in model biological systems.A visible-UV absorption study of solvent-dependent parameters and solute aggregation,J.Phys.Chem.1994,98,3492-3500.
    4.Beeby,A.;Eastoe,J.;Heenan,R.K.Solubilisation of C_(60)in aqueous micellar solution.Chem.Commun.1994,173-175.
    5.Yamakoshi,Y.N.;Yagami,T.;Fukuhara,K.;Sueyoshi,S.;Miyata,N.Solubilization of fullerenes into water with polyvinyipyrrolidone applicable to biological tests.Chem.Commun.1994,517-518.
    6.Eastoe,J.;Crooks,E.R.;Beeby,A.;Heenan,R.K.Structure and photophysics in C_(60)-micellar solutions.Chem.Phys.Lett.1995,245,571-577.
    7.Lai,D.T.;Neumann,M.A.;Matsumoto.M.;Sunarnoto,J.Complexation of C_(60)fullerene with cholesteryl group-bearing pullulan in aqueous medium.Chem.Lett.2000,39,64-65.
    8.Li,H.;Jia,X.;Li,Y.;Shi X.;Hao,J.A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C_(60)in water.J.Phys.Chem.B 2006,110,68-74.
    9.Li,H.;Hao,J.Phase behavior of salt-free catanionic surfactant aqueous solutions with fullerene C_(60)solobilized,J.Phys.Chem.B 2007,111,7719-7724.
    10.Kaler,E.W.;Herrington,K.L.;Murthy,A.K.;Zasadzinski,J.A.N.Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants.Science 1989,245,1371-1374.
    11.Boulas,P.;Kumer,W.;Jones,M.T.;Kadish,K.M.Bucky(basket)ball:Stabilization of electrogenerated C_(60)~(·-)radical monoanion in water by means of cyciodextrin inclusion chemistry,J.Phys.Chem.1994,98,1282-1287.
    12.Johnson,R.D.;Meijer,G,;Bethune,D.S.C_(60)has icosahedral symmetry.J.Am.Chem.Soc.1990. 112,8983-8984.
    13.Ghosh,H.N.;Sapre,A.V.;Mittal,J.P.Aggregation of C_(70)in Solvent Mixtures.J.Phys.Chem.1996.100,9439-9443.
    14.Nath,S.;Pal,H.;Palit,D.K.;Sapre.A.V.;Mittal,J.P.Aggregation of fullerene.C_(60).in benzonitrile.J.Phys.Chem.B 1998,102.10158-10164.
    15.Alargova,R.G.;Deguchi,S.;Tsujii,K.Stable colloidal dispersions of fullerenes in polar organic solvents.J.Am.Chem.Soc.2001,123.10460-10467.
    16.Mrzel,A.;Merteij,A.;Omerzu,A.;Copic,M.;Mihaiiovic,D.Investigation of encapsulation and soivatochromism of fullerenes in binary solvent mixtures.J.Phys.Chem.B 1999.103.11256-11260.
    17.Sun,Y.-P.;Ma,B.;Bunker,C.E.;Liu,B.All-carbon polymers(polyfullerenes)from photochemical reactions of fullerene clusters in room-temperature solvent mixtures.J.Am.Chem.Soc.1995.117,12705-12711.
    18.Rudalevige.T.;Francis,A.H.Spectroscopic studies of fullerene aggregates.J.Phys.Chem.A 1998.102.9797-9802.
    19.Deguehi,S.;Alargova,R.G.;Tsujii,K.Stable dispersions of fullerenes,C_(60)and C_(70).in water.preparation and characterization.Langmuir 2001,17,6013-6017.
    20.Ying,Q.;Marecek,J.;Chu,B.Slow aggregation of buekminsterfullerene(C_(60))in benzene solution.Chem.Phys.Lett.1994,219,214-218.
    21.Bokare,A.D.;Patnaik,A.Self-organization of C_(60)nanoparticles in carbon disulfide solution.J.Phys.Chem.B 2003,107,6079-6086.
    22.Bokare,A.D.;Patnaik,A.C_(60)aggregate structure and geometry in nonpolar o-xylene.J.Phys.Chem.B 2005,109,87-92.
    23.Gayathri,S.S.;Agarwal,A.K.;Suresh,K.A.;Patnaik,A.Structure and dynamics in solvent-polarity-induced aggregates from a C_(60)fullerene-based dyad.Langmuir,2005.21.12139-12145.
    24.Gayathri,S.S.;Patnaik,A.Aggregation of a C_(60)-didodeeyloxybenzene dyad:Structure.dynamics.and mechanisms of vesicle growth.Langmuir,2007,23,4800-4808.
    25.Dubois,D.;Moninot,G.;Kutner,W.;Jones,M.T.;Kadish,K.M.Eleetroreduction of buekminsterfuilerene,C_(60),in aprotic solvents:solvent,supporting electrolyte,and temperature effects,J.Phys.Chem.1992,96,7137-7145.
    26.Boiskar,R.D.;Gallagher,S.H.;Armstrong,R.S.;Lay,P.A.Analysis of the near-infrared spectra of C_(60)~-.Chem.Phys.Lett.1995,247,57-62.
    27.Greaney,M.A.;Gorun,S.M.Production,spectroscopy,and electronic structure of soluble fuilerene ions.J.Phys.Chem.1991,9.5,7142-7144.
    28.Khaled,M.M.;Carlin,R.T.;Truiove,P.C.;Eaton,G.R.;Eaton,S.S.Electrochemical generation and electron paramagnetic resonance studies of C_(60)~-,C_(60)~(2-),and C_(60)~(3-).J.Am.Chem.Soc.1994,116,3465-3474.
    29.Nakanishi,T.;Ohwaki,H.;Tanaka,H.;Murakami,H.;Sagara,T.;Nakashima,N.Electrochemical and chemical reduction of fullerenes C_(60)and _C_(70)embedded in cast films of artificial iipids in aqueous media.J.Phys.Chem.B 2004,108,7754-7762.
    30.Dubois,D.;Kadish,K.M.;Flanagan,S.;Haufler,R.E.;Chibante.P.F.;Wilson,L.J.Spotroelectrochemical study of the C_(60)and C_(70)fullerenes and their mono-,di-,tri-,and tetraanions.J.Am.Chem.Soc.1991.113,4364-4366.
    31.Cammarata,V.;Guo,T.;lilies,A.;Li,L.;Shevlin,P.Gas-phase observation of multiply charged C_(60)anions,J.Phys.Chem.A 2005,109,2765-2767.
    32.Qu,B.;Hawthorn,G,;Mau,A.W.H.;Dai,L.Photochemical generation of polymeric alkyl-C_(60)radicals:ESR detection and identification.J.Phys.Chem.B 2001,105,2129-2134.
    33.Guldi,D.M.;Hungerbuhler,H.;Janata,E.;Asmus,K.-D.Radical-induced redox and addition reactions with C_(60)studied by pulse radiolysis.Chem.Commun.1993,84-86.
    34.Fukuzumi,S.;Nakanishi,I.;Maruta,J.;Yorisue.T.;Suenobu,T.;ltoh,S.;Arakawa,R.;Kadish,K.M.Formation of radical anions in the reaction of p-benzoquinone and C_(60)with alkoxide ions.J.Am.Chem.Soc.1998,120,6673-6680.
    35.Fukuzumi,S.;Nakanishi,I.;Suenobu,T.;Kadish,K.M.Electron-transfer properties of C_(60)and tert-butyl-C_(60)radical,J.Am.Chem.Soc.1999,121,3468-3474.
    36.Fukuzumi,S.;Suenobu,T.;Patz,M.;Hirasaka,T.;ltoh,S.;Fujitsuka,M.;Ito,O.Selective one-electron and two-electron reduction of C_(60)with NADH and NAD dimer analogues via photoinduced electron transfer.J.Am.Chem.Soc.1998,120,8060-8068.
    37.Fukuzumi,S.;Suenobu,T.;Hirasaka,T.;Arakawa,R.;Kadish,K.M.Formation of C_(60)adducts with two different alkyl groups via combination of electron transfer and S_N2 reactions,J.Am.Chem.Soc.1998,120,9220-9227.
    38.Xie,Q.;Perez-Cordero,E.;Echegoyen,L.Electrochemical detection of C_(60)~(6-)and C_(70)~(6-):Enhanced stability of fullefides in solution.J.Am.Chem.Soc.1992,114,3978-3980.
    39.Boyd,P.D.W.;Bhyrappa,P.;Paul,P.;Stinchcombe.J.;Boiskar,R.D.;Sun,Y.;Reed,C.A.The C_(60)~(2-)fulleride ion.J.Am.Chem.Soc.1995,117,2907-2914.
    40.Johnson,R.D.;Bethune,D.S.;Yannoni,C.S.Fullerene structure and dynamics:A magnetic resonance potpourri.Acc.Chem.Res.1992,25,169-175.
    41.Reed,C.A.;Bolskar,R.D.Discrete fulleride anions and fullerenium cations.Chem.Rev:2000.100,1075-1120.
    1.lijima,S.Helical microtubules of graphitic carbon.Nature,1991,354,56-58.
    2.lijima,S.;lchihashi,T.Single-shell carbon nanotubes of 1-nm diameter.Nature,1993.363,603-605.
    3.Dai,H.J.;Hafner,J.H.;Rinzler,A.G.;Colbert,D.T.;Smalley,R.E.Nanotubes as nanoprobes in scanning probe microscopy.Nature,1996,384,147-150.
    4.Liu,C.;Fan,Y.Y.;Liu,M.;Cong,H.T.;Cheng,H.M.;Dresselhaus,M.S.Hydrogen storage in single-wailed carbon nanotubes at room temperature.Science,1999,286,1127-1129.
    5.Kong,J.;Franklin,N.R.;Zhou,C.;Chapline,M.G.;Peng,S.;Cho,K.Nanotube molecular wires as chemical sensors.Science,2000,287,622-625.
    6.Sugie,H.;Tanemura,M.;Filip,V.;lwata,K.;Takahashi,K.;Okuyama,F.Nanotubes as electron source in an x-ray tube.Appl Phys Lett,2001,78,2578-2580.
    7.Dresselhaus,M.S.;Dresselhaus,G.;Avouris,P.Carbon Nanotubes:synthesis,structure,properties,and applications.NewYork:Springer,2000,148-151,381-383.
    8.Liu,J.;Rinzler,A.G.;Dai,H.J.;Hafner,J.H.;Bradley,R.K.;Boul,P.J.;Lu,A.;lverson.T.;Shelimov,K.;Huffman,C.B.;Rodriguez-Macias,F.;Short,Y.S.;Lee,T.R.;Colbert.D.T.;Smalley,R.E.Fullerene pipes.Science,1998,280,1253-1256.
    9.Liu,Z.;Shen,Z.;Zhu,T.;Hou,S.;Ying,L.;Shi,Z.;Gu,Z.Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique.Langmuir.2000.16.3569-3573.
    10.Yang,Y.;Zhang,Z.;Nan,X.;Liu,Z.Toward the chemistry of carboxylic single-walled carbon nanotubes by chemical force microscopy.J.Phys.Chem.B 2002.106,4139-4144.
    11.Vaisman,L.;Wagner,H.D.;Marom,G.The role of surfactants in dispersion of carbon nanotubes.Advances in Colloid and Interface Science,2006,128-130,37-46,a review.
    12.Bonard,J.M.;Stora,T.;Salvetat,J.P.;Maier,F.;Stochli,T.;Dischl,C.;Forro,L.;Heer.W.;Chatelain,A.Purification and size-selection of carbon nanotubes.Adv.Mater.,1997,9,827-831.
    13.Vigolo,B.;Penicaud,A.;Couion,C.;Sauder,C.;Pailler,R.;Kpirmet,C.;Bermoer.P.Macroscopic fibers and ribbons of oriented carbon nanotubes.Science,2000,290,1331-1134.
    14.O'Cormell,M.J.;Bachilo,S.M.;Huffman,C.B.;Moore,V.C.;Strano,M.S.;Haroz.E.H.;Rialon,K.L.;Boul,P.J.;Noon,W.H.;Kittrell,C.;Ma,J.;Hauge,R.H.;Weisman,R.B.;Smalley.R.E.Band gap fluorescence from individual single-walled carbon nanotubes.Science,2002.297.593-596.
    15.Bachilo,S.M.;Strano,M.S.;Kittrell,C.;Hauge,R.H.;Smalley,R.E.;Weisman,R.B.Structure-assigned optical spectra of single-walled carbon nanotubes.Science.2002.298,2361-2365.
    16.Strano,M.S.;Dyke,C.A.Usrey.M.L.;Barone,P.W.;Allen,M.J.;Shan,H.;Kittrell.C.;Hauge. R.H.;Tour,J.M.;Smalley,R.E.Electronic structure control of single-walled carbon nanotube functionalization.Science,2003,301,1519-1522.
    17.Moore,V.C.;Strano,M.S.;Haroz,E.H.;Hauge,R.H.;Smalley,R.E.Individually suspended single-walled carbon nanotubes in various surfactants.Nano Lett.,2003,3,1370-1382.
    18.Shvartzman-Cohen,R.;Nativ-Roth,E.;Baskaran,E.;Levi-Kalisman,Y.;Szleifer.1.;Yerushalmi-Rozen.R.Selective dispersion of single-wailed carbon nanotubes in the presence of polymers:the role of molecular and colloidal length scales.J.Am.Chem.Soc.,2004,126,14850-14857.
    19.Shvartzman-Cohen,R.;Lavi-Kalisman,Y.;Nativ-Roth.E.;Yerushalmi-Rozen,R.Generic approach for dispersing single-walled carbon nanotubes:the strength of a weak interaction.Langmuir,2004,20,6085-6088.
    20.Monteiro-Riviere,N.A.;Inman,A.O.;Wang,Y.Y.;Nemanich.R.J.Surfactant effects on carbon nanotube interactions with human epidermal keratinocytes.Nanomedicine,2005,1,293-299.
    21.Vaisman,L.;Marom,G.;Wagner,H.D.;Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers.Adv.Funct.Mater.,2006.16,357-363.
    22.O'Connell,M.J.;Boul,P.;Ericson,L.M.;Huffman.C.;Wang,Y.;Haroz,E.;Kuper,C.;Tour,J.;Ausman,K.D.;Smalley,R.E.Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping.Chem.Phys.Lett.2001,342,265-271.
    23.Nap,R.;Szleifer,1.Control of carbon nanotube-sufface interactions:the role of grafted polymers.Langmuir,2005,21,12072-12075.
    24.Grunlan,J.C.;Liu,L.;Kim,Y.S.Tunable single-walled carbon nanotube microstructure in the liquid and solid states using poly(acrylic acid).Nano Lett.,2006,6,911-915.
    25.Li,H.;Zhou,B.;Lin,Y.;Gu,L.;Wang,W.;Fernando,K.A.S.;Kumar,S.;Ailarcl,L.F.;Sun,Y.P.Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes.J.Am.Chem.Soc.,2004,126,1014-1015.
    26.Kang,Y.;Taton,T.A.Miceile-encapsulated carbon nanotubes:a route to nanotube composites.J.Am.Chem.Soc.,2003,125,5650-5651.
    27.Chen.,J.;Liu,H.;Weimer,W.A.;Halls,M.D.;Waldeck,D.H.;Walker,G.C.Noncovalent engineering of carbon nanotube surfaces by rigid,functional conjugated polymers.J.Am.Chem.Soc.,2002,124,9034-9035.
    28.Zheng,M.;Jagota,A.;Smeke,E.D.;Diner,B.A.;Mclean,R.S.;Lustig,S.R.;Richardson.R.E.;Tassi,N.G.DNA-assisted dispersion and separation of carbon nanotubes.Nat.Mater.,2003.2.338-342.
    29.Star,A.;Steuerman,D.W.;Heath,J.R.;Stoddart,J.F.Starched carbon nanotubes.Angew:Chem.Int.Ed.,2002,41,2508-2512.
    30.Bandyopadhyaya,R.;Nativ-Roth,E.;Regev,O.;Yerushalmi-Rozen,R.Stabilization of individual carbon nanotubes in aqueous solutions.Nano Lett.,2002,2,25-28.
    31.Zhu,J.;Yudasaka.M.;Zhang,M.;Iijima,S.Dispersing carbon nanotubes in water:a noncovalent and nonorganic way.J.Phys.Chem.B,2004,108,11317-11320.
    32.Chen,R.J.;Zhang,Y.;Wang,D.;Dai,H.Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization.J.Am.Chem.Soc.,2001,123,3838-3839.
    33.Nakashima,N.;Tomonari,Y.;Murakami,H.Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion.Chem.Lett..2002.31,638-639.
    34.Nakashima,N.;Tanaka,Y.;Tomonari,Y.;Murakami,H.;Kataura,H.;Sakaue,T.;Yoshikawa.K.Helical superstructures of fullerene peapods and empty single-wailed carbon nanotubes formed in water.J.Phys.Chem.B,2005,109,13076-13082.
    35.Bandow,S.;Asaka,S.;Saito,Y.;Rao,A.M.;Grigorian,L.;Richter,E.;Eklund,P.C.Effect of the growth temperature on the diameter distribution and chirality of single-walled carbon nanotubes.Phys.Rev.Lett.,1998,80.3779-3782.
    36.Saito,Y.;Dresselhaus,G.;Dresselhaus,M.S.Trigonai warping effect of carbon nanotubes.Phys.Rev.B 2000,61,2981-2990.
    37.Hirsch,A.Functionalization of single-walled carbon nanotubes.Angew.Chem.lnt.Ed.2002.41.1853-1859.
    1.Nakamura.E.;lsobe,H.Functionalized fullerenes in water.The first 10 years of their chemistry,biology,and nanoscience.Acc.Chem.Res.2003,36,807-815.
    2.Guldi,D.M.;Zerbetto,F.;Georgakilas,V.;Prato,M.Ordering fullerene materials at nanometer dimensions.Acc.Chem.Res.2005,38,38-43.
    3.Brettreich,M.;Burghardt.S.;Bottcher,Ch.;Bayed,Th.;Bayed.S.;Hirsch,A.Globular amphiphiles:membrane-forming hexaadducts of C_(60).Angew.Chem.Int.Ed.2000,39,1845-1848.
    4.Braun,M.;Hartnagei.U.;Ravanelli,E.;Schade,B.;Bottcher,C.;Vostrowsky,O.;Hirsch,A.Amphiphilic[5:1]- and[3:3]-Hexakisadducts of C_(60).Eur.J.Org.Chem.2004,9,1983-2001.
    5.Burghardt,S.;Hirsch,A.;Schade,B.;Ludwig,K.;Bottcher,C.Switchable supramolecular organization of structurally defined micelles based on an amphiphilic fullerene.Angew.Chem.Int.Ed.2005,44,2976-2979.
    6.Sawamura,M.;Nagahama,N.;Toganoh,M.;Hackler,U.E.;lsobe,H.;Nakamura,E.;Zhou,S.;Chu,B.Pentaorgano[60]fullerene R_5C_(60)~-.A water soluble hydrocarbon anion.Chem.Lett.2000.1098-1099.
    7.Zhou,S.;Burger,C.;Chu,B.;Sawamura,M.;Nagahama,N.;Toganoh,M.;Hackler,U.E.;Isobe.H.;Nakamura,E.Spherical bilayer vesicles of fullerene-based suffactants in water:a laser light scattering study.Science 2001,291,1944-1947.
    8.Burger,C.;Hao,J.;Ying,Q.;Isobe,H.;Sawamura,M.;Nakamura,E.;Chu,B.Multilayer vesicles and vesicle clusters formed by the fuilerene-based surfactant C_(60)(CH_3)_5K.J.Colloid Inter.Sci.2004,275,632-641.
    9.Song,T.;Dai,S.;Tam,K.C.;Lee,S.Y.;Gob,S.H.Aggregation behavior of C_(60)-end-capped poly(ethylene oxide)s.Langmuir 2003,19.4798-4803.
    10.Yang,J.;Li,L.;Wang.C.Synthesis of a water soluble,monosubstituted C_(60)polymeric derivative and its photoconductive properties.Macromolecules 2003,36,6060-6065.
    11.Tan,C.H.;Ravi,P.;Dai,S.;Tam,K.C.Polymer-induced fractal patterns of[60]fullerene containing poly(methacrylic acid)in salt solutions.Langmuir 2004,20,9901-9904.
    12.Verma,S.;Hauck,T.;El-Khouly,M.E.;Padmawar,P.A.;Canteenwala,T.;Pritzker,K.;lto.O.;Chiang,L.Y.Self-assembled photoresponsive amphiphilic diphenylaminofluorene-C_(60)conjugate vesicles in aqueous solution.Langmuir 2005,21,3267-3272.
    13.Wharton,T.;Kini,V.U.;Mortis.R.A.;Wilson,L.J.New non-ionic,highly water-soluble derivatives of C_(60)designed for biological compatibility.Tetra.Lett.2001,42,5159-5162.
    14.Sano,M.;Oishi,K.;Ishi-i,T.;Shinkai,S.Vesicle formation and its fractal distribution by bola-amphiphilic[60]fullerene.Langmuir 2000.16.3773-3776.
    15.Nakashima.N.;lshii,T.;Shirakusa,M.;Nakanishi,T.;Murakami,H.;Sagara,T.Molecular bilayer-based superstructures of a fullerene-carrying ammonium amphiphile:structure and electrochemistry.Chem.Eur.J.2001,7,1766-1772.
    16.Jeng,U.;Lin,T.-L.;Tsao,C.-S.;Lee,C.-H.;Canteenwala.T.;Wang,L.Y.;Chiang,L.Y.;Han.C.C.Study of aggregates of fullerene-based ionomers in aqueous solutions using small angle neutron and X-ray scattering.J.Phys.Chem.B 1999,103,1059-1063.
    17.Tsao,C.-S.;Lin,T.-L.;Jeng,U.-S.Study of the aggregation of fullerene-based ionomers in water solutions using small angle neutron scattering and small angle X-ray scattering.J.Phvs.Chem.Solids 1999,60.1351-1353.
    18.Jeng,U.;Lin,T.-L.;Liua,W.-J.;Tsao,C.-S.;Canteenwala,T.;Chiang,L.Y.;Sung,L.P.;Han.C.C.SANS and SAXS study on aqueous mixtures of fullerene-based star ionomers and sodium dodecyl sulfate.Physica A 2002,304,191-201.
    19.Lin,T.-L.;Jeng,U.;Tsao,C.-S.;Liu,W.-J.;Canteenwala,T.;Chiang,L.Y.Effect of arm length on the aggregation structure of fullerene-based star ionomers.J.Phys.Chem.B 2004.108,14884-14888.
    20.Sawamura,M.;Kawai,K.;Matsuo,Y.;Kanie,K.;Kato,T.;Nakamura,E.Stacking of conical molecules with a fuilerene apex into polar columns in crystals and liquid crystals.Nature 2002.419,702-705.
    21.Georgakilas,V.;Pellarini,F.;Prato,M.;Guldi,D.M.;Melle-Franeo.M.;Zerbetto.F.Supramolecular self-assembled fullerene nanostruetures.PNAS 2002,99,5075-5080.
    22.Brettreieh,M.;Hirsch,A.A highly water-soluble dendro[60]fullerene.Tetra.Lett.1998.39.2731-2734.
    23.Braun,M.;Ataliek,S.;Guldi,D.M.;Lanig,H.;Brettreich,M.;Burghardt,S.;Hatzimarinaki.M.;Ravanelli,E.;Prato,M.;Eidik,R.;Hirseh,A.Electrostatic complexation and photoinduced electron transfer between Zn-cytochrome c and polyanionic fullerene dendrimers.Chem.Eur.J.2003,9,3867-3875.
    24.Guldi,D.M.;Prato,M.Excited-state properties of C_(60)fullerene derivatives.Acc.Chem.Res.2000.33,695-703.
    25.Ros,T.D.;Prato,M.Medicinal chemistry with fullerenes and fullerene derivatives.Chem Commun.1999,663-669.
    26.Texier,1.;Berberan-Santos,M.N.;Fedorov,A.;Brettreieh,M.;Sehonberger,H.;Hirsch.A.;Leach,S.;Bensasson R.V.Photophysics and photochemistry of a water-soluble C_(60)dendrimer:fluorescence quenching by halides and photoinduced oxidation of I~-.J.Phys.Chem.A 2001.105.10278-10285.
    27.Tamisier-Karolakl,S.-L.;Pagliaruscol,S.;Herrenknechtl,C.;Brettreieh,M.;Hirsch,A.;Ceolin.R.;Bensasson,R.V.;Szwarc,H.;Moussa,F.Electrophoretic behavior of a highly water-soluble dendro[60]fullerene.Electrophoresis 2001,22,4341-4346.
    28.Gharbi.N.;Burghardt,S.;Brettreich,M.;Herrenknecht.C.;Tamisier-Karolak,S.;Bensasson.R.V.;Szwarc,H.;Hirsch,A.;Wilson,S.R.;Moussa.F.Chromatographic separation and identification of a water-soluble dendritic methano[60]fullerene octadecaacid.Anal.Chem.2003.75,4217-4222.
    29.Quaranta,A.;MeGarvey,D.J.;Land,E.J.;Brettreich.M.;Burghardt.S.;Schonberger,H.;Hirsch.A.;Gharbi,N.;Moussa,F.;Leach,S.;Gottingere,H.;Bensasson,R.V.Photophysical properties of a dendritic methano[60]fullerene octadeca acid and its tert-butyl ester:evidence for aggregation of the acid form in water.Phys.Chem.Chem.Phys.2003,5,843-848.
    30.Maierhofer,A.P.;Brettreich,M.;Burghardt,S.;Vostrowsky,O.;Hirsch,A.;Langridge,S.;Bayerl.T.M.Structure and electrostatic interaction properties of monolayers of amphiphilic molecules derived from C_(60)-fullerenes:a film balance,neutron,and infrared reflection study.Langmuir 2000.16,8884-8891.
    31.Burghardt,S.;Hirsch,A.;Medard,N.;Kachfhe.R.A.;Aussere,D.;Valignat.M.-P.;Gallani.J.-L.Preparation of highly stable organic steps with a fullerene-based molecule.Langmuir 2005,21.7540-7544.
    32.Brettreieh,M.;Burghardt,S.;Botteher,Ch.;Bayed,Th.;Bayerl,S.;Hirseh,A.Globular amphiphiles:membrane-forming hexaadduets of C_(60).Angew.Chem.Int.Ed.2000,39,1845-1848.
    33.J.Hao,H.Li,W.Liu,A.Hirsch,Well-defined self-assembling supramolecular structures in water containing a small amount of C_(60).Chem.Commun.2004,602-603.
    34.Chen,R.J.,Zhang,Y.,Wang,D.,Dai,H.Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization.J.Am.Chem.Soc.2001,123,3838-3839.
    35.Nakashima,N.,Tomonari,Y.,Murakarni,H.Water-soluble single-walled carbon nanotubes via noncovalent sidewall-funetionalization with a pyrene-carrying ammonium ion.Chem.Lett.2002.638-639.
    36.Nakashirna,N.,Tanaka,Y.,Tomonari,Y.,Murakami,H..Kataura.H..Sakaue,T..Yoshikawa.K.Helical superstructure of fullerene peapods and empty single-walled carbon nanotubes formed in water.J.Phys.Chem.B 2005,109,13076-13082.
    37.Li,H.,Zhou,B..Lin,Y..Gu,L.,Wang,W.,Fernando,K.A.S.,Kurnar,S..Allard.L.F..Sun.Y.P.Selective interactions of porphyrins with semicondueting single-wailed carbon nanotubes.J.Am.Chem.Soc.2004,126.1014-1015.
    38.Chen,J.,Liu,H.,Weimer.W.A.,Halls,M.D.,Waldeck.D.H.,Walker.G C.Noncovalent engineering of carbon nanotube surfaces by rigid,functional conjugated polymers.J.Am.Chem.Soc.2002,124,9034-9035.
    39.Takaguehi,Y.,Tamura,M.,Sako,Y.,Yanagimoto,Y.,Tsuboi,S.,Uchida,T..Shimamura.K..Kimura,S.,Wakahara.T.,Maeda,Y.,Akasaka.T.Fullerodendron-assited dispersion of single-walled carbon nanotubes via noncovalent functionalization.Chem.Lett.2005.34.1608-1609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700