黄河口湿地沉积物中营养盐分布及交换通量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口潮滩湿地是海陆相互作用的重要环境界面,其水动力作用强烈、泥沙输移和冲淤变化复杂、生物多样性丰富,具有独特的环境功能和生态价值。黄河口湿地是由黄河携带的泥沙冲淤而成,是我国暖温带最完整、最广阔、最年轻的新生湿地生态系统,其典型性强,生态环境类型独特,自然资源丰富,越来越受到国内外学者的重视。开展黄河口湿地的研究,具有重要的科学意义和应用价值。
     本论文以黄河口湿地表层沉积物及柱状沉积物为研究对象,分析了沉积物中总氮(TN)、总磷(TP)及间隙水中磷酸盐(PO4-P)、氨氮(NH4-N)、亚硝酸盐(NO2-N)、硝酸盐(NO3-N)、硅酸盐(SiO3-Si)的含量和分布特征,通过实验室培养法计算了营养盐在沉积物-水界面的交换通量,并结合盐度等相关参数,讨论营养盐在沉积物-水界面交换过程的影响因素,为进一步研究黄河口湿地营养盐的迁移、转化及沉积物中营养盐的再生循环提供基础数据。本论文得出的主要结论如下:
     (1)黄河口湿地沉积物含水率为17.14%-33.90%;沉积物中值粒径是5.4-56.21μm,各站沉积物的组成主要是粉砂,粘土和砂含量较少。沉积物含水率和中值粒径分布基本呈相反趋势,二者有较好的负相关性,说明沉积物颗粒越细,沉积物持水能力越强,沉积物的含水率也就越高。
     (2)黄河口湿地表层间隙水中PO4-P的含量变化范围是0.21-26.8μmol/L,平均值为2.82±4.48μmol/L。表层间隙水中NH4-N、NO2-N、NO3-N的含量变化范围分别是12.13-580.3、0.40-143.0、0.06-4464μmol/L,平均值分别为136.7±117.3、19.63±32.16、774.5±940.6μmol/L。表层间隙水中Si03-Si的含量变化范围是41.83-464.0μmol/L,平均值是111.7±86.24μmol/L。
     表层沉积物中TP、TN的含量变化范围分别是8.10-42.43、41.66-293.7μg/g,平均值分别为19.15±8.20、140.3±58.26gg/g。沉积物的粒度是影响TP、TN含量的重要因素,表层沉积物颗粒越细,TP、TN含量越高。
     (3)黄河口湿地柱状沉积物间隙水中PO4-P的含量变化范围是0.18-2.18μmol/L。在垂直分布上,PO4-P的含量基本随深度增加逐渐降低,到一定深度之后,其含量随深度继续增加有逐渐增加的趋势。沉积物间隙水中NH4-N、NO2-N、NO3-N、DIN的含量变化范围分别为4.51-348.1、0.16-130.0、1.71-2002、20.45-2314μmol/L。沉积物间隙水中无机氮的含量随深度增加基本呈现逐渐降低的趋势。沉积物间隙水中SiO3-Si的含量变化范围是59.72-256.1μmol/L。在垂直分布上,SiO3-Si含量随深度增加有逐渐增加的趋势。
     沉积物中TP、TN的含量变化范围分别为4.54-43.07、11.69-293.7μg/g。在垂直分布上,TP、TN的含量基本随深度增加逐渐降低,主要受到沉积物粒度的制约。
     (4)P04-P、NH4-N、N02-N、N03-N、Si03-Si在沉积物-水界面的交换通量分别在-0.30-0.045、-9.16-6.94、-1.20~2.10、-22.8~144、0~1.63mmol/m2/d范围内。
     营养盐在沉积物-水界面的交换通量受氧化还原条件及盐度影响较大。
The estuarine and coastal tidal flat, as a typical transitional zone between land and ocean, is characterized by intense hydrodynamic conditions, frequent sediment transport and material exchange and high biodiversity, It has special environmental function and ecological values. The Yellow River estuary wetland is formed by the erosion of the sediment carried by Yellow River, which is the most complete, the most extensive and the most youngest new wetland ecosystem in the warm temperate of China. Because of its strong typicalness, the unique ecological environment and the rich natural resources, it attracts more and more attention of the researchers at home and abroad. Therefore, there are scientific and practical values to do research on the Yellow River estuary wetland.
     The paper was based on the surface sediment and the columnar sediment of Yellow River estuary wetland. The content and distribution characteristics of TN and TP in sediment and PO4-P, NH4-N, NO2-N, NO3-N and SiO3-Si in sediment pore water were discussed. Benthic exchange processes of nutrients at the sediment-water interface were measured according to the lab incubation experiments, and the influences to the exchange flux were discussed. This paper provides a basis for further research of nutrient migration, transformation and nutrient recycling in sediment of the Yellow River estuary wetland. The main conclusions are as follows:
     (1)The water content of sediment is 17.14-33.90%, and the median diameter of sediment is between 5.4 and 56.2μm. The main composition of sediment is silty sand, and the content of clay and sand are less. The distribution of water content of sediment and median diameter of sediment are contrary trend, and they has basic negative correlation, it means that the smaller of sediment particles, the stronger ability of sediments to hold water, and the moisture cotent of sediment are higher.
     (2) The concentration scopes of PO4-P in the surface sediment pore water ranges from 0.21 to 26.8μmol/L. The concentration scopes of NH4-N, NO2-N, NO3-N range from 12.13 to 580.3,0.40 to 143.0, and 0.06 to 4464μmol/L。The concentration of SiO3-Si ranges from 41.83 to 464.0μmol/L
     The concentration of TP and TN in sediment range from 8.10 to 42.43μg/g and 41.66 to 293.7μg/g, sediment particle size is the important influence factors to TP and TN, the smaller of sediment particles, the higher content of TP and TN. Besides, the inputs of exogenous particle nitrogen may affect the concentration of TN.
     (3) The concentration of PO4-P in marsh sediment pore water in Yellow River Estuary ranges from 0.18 to 2.18μmol/L. The vertical distribution of PO4-P first decreases with the depth, and then increases with the further increasing of depth.The concentrations of NH4-N, NO2-N, NO3-N and DIN in the sediment pore water range form 4.51-348.1,0.16-130.0, 1.71-2002,20.45-2314μmol/L. The concentration of inorganic nitrogen decreases with the depth. The concentration of SiO3-Si increases with the depth.
     The TP and TN in the sediment range from 4.54-43.07,11.69-293.7μg/g. The vertical distribution of TP and TN mainly decrease with the depth, which are affected by the sediment grain size.
     (4) According to the incubation experiment, the flux of nutrients between sediment and water are calculated, and factors that affect the exchange process are discussed. The results show that the fluxes of PO4-P, NH4-N, NO2-N, NO3-N and SiO3-Si between sediment and water are-0.30-0.045,-9.16-6.94,-1.20-2.10,-22.8-144,0-1.63 mmol/m2/d, respectively.
     The flux of nutrients are affected by salinity and redox environment.
引文
[1]孙广友.中国湿地科学的进展与展望.地球科学进展,2000,15(6):666-672.
    [2]杨永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展,2002,21(2):111-120.
    [3]Allan C. Millennium Wetland Event Program with Abstracts:proceedings of the Quebec 2000. Canda: Elizabeth MacKay,2000.1-256.
    [4]徐艳艳,徐艳东.国内外湿地研究进展和展望.河北渔业,2008,(1):3-7,25.
    [5]余国营.湿地研究进展与展望.世界科技研究与发展,2000,22(3):61-66.
    [6]吕宪国,黄锡畴.我国湿地研究进展——献给中国科学院长春地理研究所成立40周年.地理科学,1998,18(4):293-300.
    [7]殷康前,倪晋仁.湿地研究综述.生态学报,1998,18(5):539-546.
    [8]中国生物多样性国情研究报告编写组.中国生物多样性国情研究报告.北京:中国环境科学出版社,1998.
    [9]王宪礼,李秀珍.湿地的国内外研究进展.生态学杂志,1997,16(1):58-62,77.
    [10]马敬能,孟沙,贾知行,等.中国生物多样性保护综述.北京:中国林业出版社,1998.
    [11]朱笑虹,孙棋锋.湿地研究综述.江西林业科技,2007,(3):47-49,59.
    [12]Song K-Y, Zoh K-D, Kang H. Release of phosphate in a wetland by changes in hydrological regime. Science of The Total Environment,2007,380(1-3):13-18.
    [13]Yang SL, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta:On the role of physical and biotic controls. Estuarine, Coastal and Shelf Science,2008,77(4): 657-671.
    [14]高磊.长江口潮滩湿地主要生源要素的动力学过程研究:[博士学位论文].上海:华东师范大学,2006.
    [15]刘杰.长江口潮滩无机氮界面交换研究:[博士学位论文].上海:华东师范大学,2006.
    [16]丁东,李日辉.黄河口地区湿地的研究和保护.海岸工程,2001,20(3):33-38.
    [17]吴丰昌,万国江,黄荣贵.湖泊沉积物-水界面营养元素的生物地球化学作用和环境效应Ⅰ.界面氮循环及其环境效应.矿物学报,1996,16(4):403-409.
    [18]石峰,王修林,石晓勇,等.东海沉积物-海水界面营养盐交换通量的初步研究.海洋环境科学,2004,23(1):5-8.
    [19]吴丰昌,万国江,蔡玉蓉.沉积物-水界面的生物地球化学作用.地球科学进展,1996,11(2):192-197.
    [20]Ruiz CE, Aziz NM, Schroeder PR. RECOVERY:A Contaminated Sediment-Water Interaction Model. Environmental Modeling and Assessment,2001,6(3):151-158.
    [21]Berelson WM, Heggie D, Longmore A, et al. Benthic Nutrient Recycling in Port Phillip Bay, Australia. Estuarine, Coastal and Shelf Science,1998,46(6):917-934.
    [22]Friedl G, Dinkel C, Wehrli B. Benthic fluxes of nutrients in the northwestern Black Sea. Marine Chemistry,1998,62(1-2):77-88.
    [23]]玉坤宇,刘素美,张经,等.海洋沉积物-水界面营养盐交换过程的研究.环境化学,2001,20(5):425-431.
    [24]Santschi P, HOhener P, Benoit G, et al. Chemical processes at the sediment-water interface. Marine Chemistry,1990,30:269-315.
    [25]侯立军.长江口滨岸潮滩营养盐环境地球化学过程及生态效应:[博士学位论文].上海:华东师范大学,2004.
    [26]陆健健,何文珊,童春富,等.湿地生态学.北京:高等教育出版社,2006.110-138.
    [27]吴莹,张经,李道季.营养盐(氮,磷)在湿地中的迁移与循环.海洋科学,2004,28(3):69-72.
    [28]宋金明.中国近海生物地球化学.济南:山东科学技术出版社,2004.22-34.
    [29]Aller RC, Mackin JE, Ullman WJ,等. Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea. Continental Shelf Research,1985,4(1-2):227-251.
    [30]孙宏发,刘占波,谢安.湿地磷的生物地球化学循环及影响因素.内蒙古农业大学学报,2006,27(1):148-152.
    [31]高建华,欧维新,杨桂山.潮滩湿地N、P生物地球化学过程研究.湿地科学,2004,2(3):220-227.
    [32]Denis L, Grenz C, Alliot E, et al. Temporal variability in dissolved inorganic nitrogen fluxes at the sediment-water interface and related annual budget on a continental shelf (NW Mediterranean). Oceanologica Acta,2001,24(1):85-97.
    [33]Gunnars A, Blomqvist S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry,1997,37(3):203-226.
    [34]刘素美,张经,于志刚,等.渤海莱州湾沉积物-水界面溶解无机氮的扩散通量.环境科学,1999,20(2):12-16.
    [35]Cowan J, Boynton W. Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay:Seasonal patterns, controlling factors and ecological significance. Estuaries and Coasts, 1996,19(3):562-580.
    [36]戚晓红,刘素美,张经.东、黄海沉积物-水界面营养盐交换速率的研究.海洋科学,2006,30(3):9-15.
    [37]Seiki T, Izawa H, Date E. Benthic nutrient remineralization and oxygen consumption in the coastal area of Hiroshima Bay. Water Research,1989,23(2):219-228.
    [38]Billen G. A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuarine and Coastal Marine Science,1978,7(2):127-146.
    [39]Kaspar HF, Asher RA, Boyer IC. Microbial nitrogen transformations in sediments and inorganic nitrogen fluxes across the sediment/water interface on the South Island West Coast, New Zealand. Estuarine, Coastal and Shelf Science,1985,21(2):245-255.
    [40]Krom MD, Berner RA. The diagenesis of phosphorus in a nearshore marine sediment. Geochimica et Cosmochimica Acta,1981,45(2):207-216.
    [41]Li YH, Gregory S. Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta,1974,38(5):703-714.
    [42]Ullman WJ, Aller RC. Diffusion coefficients in nearshore marine sediments. Limnology and Oceanography,1982,29(12):766-766.
    [43]蒋凤华.营养盐在胶州湾沉积物-海水界面上的交换速率和通量研究:[硕士学位论文].青岛:青岛海洋大学,2002.
    [44]刘素美,江文胜,张经.用成岩模型计算沉积物水界面营养盐的交换通量——以渤海为例.中国海洋大学学报(自然科学版),2005,35(1):145-151.
    [45]李肖娜.河流输送和沉积物-水界面交换对东、黄海营养盐的贡献:[硕士学位论文].青岛:中国海洋大学,2004.
    [46]石峰.营养盐在东海沉积物-海水界面交换速率和交换通量的研究:[硕士学位论文].青岛:中国海洋大学,2003.
    [47]Hammond DE, Fuller C, Harmon D, et al. Benthic fluxes in San Francisco Bay. Hydrobiologia, 1985,129(1):69-90.
    [48]de la Lanza Espino G, Flores Verdugo F. Nutrient Fluxes in Sediment (NH4+ and PO43-) in N.W. Coastal Lagoon Mexico Associated with an Agroindustrial Basin. Water, Air,& Soil Pollution,1998,107(1):105-120.
    [49]Rowe GT, Clifford CH, Smith KL, et al. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature,1975,255(5505):215-217.
    [50]Forja JM, GOmez-Parra A. Measuring nutrient fluxes across the sediment-water interface using benthic chambers. Marine Ecology Progress Series,1998,164:95-105.
    [51]Berelson WM, Hammond DE, Cutter GA. In situ measurements of calcium carbonate dissolution rates in deep-sea sediments. Geochimica et Cosmochimica Acta,1990,54(11):3013-3020.
    [52]Black K, Paterson D. Measurement of the erosion potential of cohesive marine sediments:A review of current in situ technology Journal of Marine Environmental Engineering,1997,4(1):43-83.
    [53]Tolhurst TJ, Black KS, Shayler SA, et al. Measuring the in situ Erosion Shear Stress of Intertidal Sediments with the Cohesive Strength Meter (CSM). Estuarine, Coastal and Shelf Science,1999,49(2): 281-294.
    [54]Tolhurst TJ, Black KS, Paterson DM, et al. A comparison and measurement standardisation of four in situ devices for determining the erosion shear stress of intertidal sediments. Continental Shelf Research, 2000,20(10-11):1397-1418.
    [55]Bale AJ, Widdows J, Harris CB, et al. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Continental Shelf Research,2006,26(10): 1206-1216.
    [56]Nedwell DB, M.Trimmer. Nitrogen fluxes through the upper estuary of the great ouse,England:the role of the bottom sediments.1996,142:273-286.
    [57]Cowan JLW, Pennock JR, Boynton WR. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay.Alabama (USA):regulating factors andecological significance. Marine Ecology Progress Series,1996,141:229-245.
    [58]Boynton WR, Kemp WM. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Marine Ecology Progress Series,1985,23:45-55.
    [59]宋金明.中国近海沉积物-海水界面化学.北京:海洋出版社,1997.9-15.
    [60]Kristensen E, Jensen MH, Andersen TK. The impact of polychaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. Journal of Experimental Marine Biology and Ecology,1985,85:75-91.
    [61]WenzhOfer F, Glud RN. Small-scale spatial and temporal variability in coastal benthic O2 dynamics:effects of fauna activity. Limnology and Oceanography,2004,49:1471-1481.
    [62]Waldbusser GG, Marinelli RL, Whitlatch RB, et al. The effcts of infaunal biodiversity on biogeochemistry of marine sediments. Limnology and Oceanography,2004,49(5):1482-1492.
    [63]Hansen K, Kristensen E. Impact of Macrofaunal Recolonization on Benthic Metabolism and Nutrient Fluxes in a Shallow Marine Sediment Previously Overgrown with Macroalgal Mats. Estuarine, Coastal and Shelf Science,1997,45(5):613-628.
    [64]Callender E, Hammond DE. Nutrient exchange across the sediment-water interface in the Potomac River estuary. Estuarine, Coastal and Shelf Science,1982,15(4):395-413.
    [65]Asmus RM, Jensen MH, Jensen KM, et al. The Role of Water Movement and Spatial Scaling for Measurement of Dissolved Inorganic Nitrogen Fluxes in Intertidal Sediments. Estuarine, Coastal and Shelf Science,1998,46(2):221-232.
    [66]Yin K, Harrison PJ. Influences of flood and ebb tides on nutrient fluxes and chlorophyll on an intertidal flat. Marine Ecology Progress Series,2000,196:75-85.
    [67]叶曦雯,刘素美,张经.鸭绿江口潮滩沉积物间隙水中的营养盐.环境科学,2002,23(3):92-96.
    [68]宋金明,李鹏程.南沙群岛海域沉积物-海水界面间营养物质的扩散通量.海洋科学,1996,(5):43-50.
    [69]刘培芳,陈振楼,刘杰.盐度和pH对崇明东滩沉积物中NH4+释放的影响研究.上海环境科学,2002,21(5):271-273.
    [70]王东启,陈振楼,钱嫦萍,等.盐度对崇明东滩沉积物-水界面NH4+交换行为的影响.海洋环境科学,2002,21(3):5-9.
    [71]张德荣.夏季珠江口外近海沉积物/水界面营养盐的交换通量.热带海洋学报,2005,24(6):53-59.
    [72]van Luijn F, Boers PCM, Lijklema L, et al. Nitrogen fluxes and processes in sandy and muddy sediments from a shallow eutrophic lake. Water Research,1999,33(1):33-42.
    [73]章家恩,徐琪.现代生态学研究的几大热点问题透视.地理科学进展,1997,16(3):31-39.
    [74]庄亚辉.全球生物地球化学循环研究的进展.地学前缘,1997,(Z1):167-172.
    [75]Pujo-Pay M, Raimbault P. Improvement of the wet-oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters. Marine Ecology Progress Series,1994,105: 203-207.
    [76]Raimbault P, Diaz F, Pouvesle W, et al. Simultaneous determination of particulate organic carbon, nitrogen and phosphorus collected on filters, using a semi-automatic wet-oxidation method. Marine Ecology Progress Series,1999,180:289-295.
    [77]扈传昱,王正方,吕海燕.海水和海洋沉积物中总磷的测定.海洋环境科学,1999,18(3):48-52.
    [78]黄祥飞.湖泊生态调查观测与分析.北京:中国标准出版社,1999.67-71.
    [79]王正方,扈传昱,吕海燕.海水和海洋沉积物中总N的测定青岛海洋大学学报(自然科学版),1999,(S1):161-166.
    [80]Maher W, Krikowa F, Wruck D, et al. Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath:comparison with Kjeldahl digestion. Analytica Chimica Acta,2002,463(2):283-293.
    [81]李学刚,宋金明,牛丽凤,等.近海沉积物中氮磷的同时测定及其在胶州湾沉积物中的应用.岩矿测试,2007,26(2):87-92.
    [82]孙有斌,高抒,鹿化煜.前处理方法对北黄海沉积物粒度的影响.海洋与湖沼,2001,32(6):665-671.
    [83]王君波,朱立平.不同前处理对湖泊沉积物粒度测量结果的影响.湖泊科学,2005,17(1):17-23.
    [84]张晓东,翟世奎,许淑梅.长江口外近海表层沉积物粒度的级配特性及其意义.中国海洋大学学报(自然科学版),2007,37(2):328-334.
    [85]李军.使用激光粒度仪测定海洋沉积物碳酸盐含量和粒度分布的尝试.海洋通报,2008,27(3):82-87.
    [86]Howes BL, Goehringer DD. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a new England salt marsh sediment. Marine Ecology Progress Series, 1994,114:289-301.
    [87]Slomp CP, Malschaert JFP, Raaphorst WV. The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments. Limnology and Oceanography,1998,43(5):832-846.
    [88]王爱萍.长江口滨海湿地磷的迁移转化及净化功能的研究:[博士学位论文].上海:同济大学,2005.
    [89]Bubba MD, Arias CA, Brix H. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Research,2003,37(14):3390-3400.
    [90]Flindt MR, Pardal MA, Lilleb(?) Ana I, et al. Nutrient cycling and plant dynamics in estuaries:A brief review. Acta Oecologica,1999,20(4):237-248.
    [91]Wigand C, Stevenson JC, Cornwell JC. Effects of different submersed macrophytes on sediment biogeochemistry. Aquatic Botany,1997,56(3-4):233-244.
    [92]Vouve F, Guiraud G, Marol C, et al. NH4+ turnover in intertidal sediments of Marennes-Oleon Bay (France):effect of sediment temperature. Oceanologica Acta,2000,23(5):575-584.
    [93]Laima M, Brossard D, Sauriau PG, et al. The influence of long emersion on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-Oleon Bay, France. Marine Environmental Research, 2002,53(4):381-402.
    [94]Kerner M. Coupling of microbial fermentation and respiration processes in an intertidal mudflat of the Elbe estuary. Limnology and Oceanography,1993,38(2):314-330.
    [95]Kuwae T, Kibe E, Nakamura Y. Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay. Estuarine, Coastal and Shelf Science,2003,57(5-6):929-940.
    [96]Wigand C, Finn M, Findlay S, et al. Submersed macrophyte effects on nutrient exchanges in riverine sediments. Estuaries and Coasts,2001,24(3):398-406.
    [97]Cufrey JM, Kemp WM. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnology and Oceanography,1992,37(7):1483-1495.
    [98]Dixit S, Van Cappellen P, van Bennekom AJ. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Marine Chemistry,2001,73(3-4):333-352.
    [99]Van Cappellen P, Qiu L. Biogenic silica dissolution in sediments of the Southern Ocean. Ⅰ. Solubility. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1997,44(5):1109-1128.
    [100]Van Cappellen P, Qiu L. Biogenic silica dissolution in sediments of the Southern Ocean. Ⅱ. Kinetics. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1997,44(5):1129-1149.
    [101]孙云明,宋金明.中国近海沉积物在生源要素循环中的功能.海洋环境科学,2002,21(1):26-33.
    [102]吕晓霞,翟世奎,逄礴.长江口柱状沉积物中生源要素的地球化学特征.海洋环境科学,2008,27(2):118-123.
    [103]kufel L. The mechanism of phosphate buffering in the water-bottom sediments system. Polish Archives of Hydrobiology,1977,24(2):207-216.
    [104]Eckert W, Nishri A, Parparova R. Factors Regulating the Flux of Phosphate at the Sediment-Water Interface of a Subtropical Calcareous Lake:a Simulation Study with Intact Sediment Cores. Water, Air,& Soil Pollution,1997,99(1):401-409.
    [105]Seitzinger SP. The effect of pH on the release of phosphorus from Potomac estuary sediments: Implications for blue-green algal blooms. Estuarine, Coastal and Shelf Science,1991,33(4):409-418.
    [106]Williams JDH, Jaquet JM, Thomas RL. Forms of phosphorus in the surficial sediments of Lake Erie. Journal of the Fisheries Research Board of Canada,1976,33(3):413-429.
    [107]倪建宇,Maggiulli M,刘小涯,等.赤道东北太平洋表层沉积物间隙水中营养盐的剖面分布及其海底扩散通量.地球化学,2005,34(6):587-594.
    [108]Ullman WJ, Sandstrom MW. Dissolved nutrient fluxes from the nearshore sediments of Bowling Green Bay, central Great Barrier Reef Lagoon (Australia). Estuarine, Coastal and Shelf Science,1987,24(3): 289-303.
    [109]扈传昱,潘建明,刘小涯,等.南大洋沉积物间隙水中营养盐分布及扩散通量研究.海洋学报,2006,28(4):102-107.
    [110]沈志良,陆家平,刘兴俊.黄河口附近海区沉积物间隙水中的营养盐.海洋学报,1991,13(3):407-411.
    [111]高磊,李道季,余立华,等.长江口崇明东滩沉积物间隙水中营养盐剖面及其数学模拟.沉积学报,2006,24(5):722-732.
    [112]顾德宇,汤荣坤,余群.大亚湾沉积物间隙水的无机磷硅氮营养盐化学.海洋学报(中文版),1995,17(5):73-80.
    [113]黄小平,郭芳,岳维忠.南海北部沉积物间隙水中营养盐研究.热带海洋学报,2006,25(5):43-48.[114]刘敏,许世远,侯立军.长江口潮滩沉积物-水界面营养盐环境生物地球化学过程.北京:科学出版社,2007.
    [115]林荣根,吴景阳.黄河口沉积物对磷酸盐的吸附与释放.海洋学报,1994,16(4):82-90.
    [116]Boatman CD, Murray JW. Modeling exchangeable NH4+ adsorption in marine sediments:Process and controls of adsorption. Limnology and Oceanography,1982,27(1):99-110.
    [117]Gardner W, Seitzinger S, Malczyk J. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments:Does ion pairing affect ammonium flux? Estuaries and Coasts, 1991,14(2):157-166.
    [118]Conley DJ, Stockenberg A, Carman R, et al. Sediment-water Nutrient Fluxes in the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science,1997,45(5):591-598.
    [119]Devol AH, Christensen JP. Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. Journal of Marine Research,1993,51:345-372.
    [120]Jahnke RA, Jahnke DB. Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep Sea Research Part Ⅰ:Oceanographic Research Papers,2000,47(8): 1405-1428.
    [121]刘素美.黄、渤海沉积物-水界面营养盐的交换及其质量平衡:[博士学位论文].青岛:青岛海洋大学,2001.
    [122]陈振楼,王东启,许世远,等.长江口潮滩沉积物-水界面无机氮交换通量.地理学报,2005,60(2):328-336.
    [123]周伟华,吴云华,陈绍勇.南沙群岛海域沉积物间隙水营养盐(氮、磷、硅)的研究.热带海洋学报,2001,20(4):49-55.
    [124]丘耀文,王肇鼎,高红莲,等.大亚湾养殖水域沉积物-海水界面营养盐扩散通量.热带海洋,1999,18(3):83-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700