甜菜M14品系特异表达基因编码蛋白性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜M14品系具有无融合生殖特性。为了研究甜菜M14品系特异表达基因M14-263和M14-341编码蛋白的性质,为进一步将两基因转化入模式植物奠定基础,解开基因M14-263和M14-341的功能之谜,本实验以pET-28a为基础载体,利用E.coli BL21(DE3)表达体系,将甜菜M14品系表达基因M14-263和M14-341的cDNA全长分别重组于原核表达载体pET-28a,成功建立了甜菜M14品系特异表达基因M14-263和M14-341的原核表达体系。经SDS-PAGE凝胶电泳及Western印迹检测表明,两个融合蛋白正确表达,其中M14-263融合蛋白的分子量约为26kD,M14-341融合蛋白分子量约为36kD。
     为了优化融合蛋白表达条件,提高蛋白表达量,本实验选择可能影响蛋白表达的四个因素(培养时间、IPTG浓度、诱导时间、诱导温度)作为研究对象,设计了四因素三水平正交实验。极差和方差分析结果显示:影响融合蛋白M14-263表达条件的关键因子为诱导时间,培养时间和诱导温度对M14-263蛋白表达量有一定的影响作用,而IPTG浓度的影响效果不显著;影响融合蛋白M14-341表达条件的关键因子为诱导温度,诱导时间和IPTG浓度的影响次之,培养时间的影响不显著。实验结果表明,融合蛋白M14-263的最优表达条件为:IPTG浓度1.2mmol/L,培养时间3h,诱导时间6h,诱导温度37℃,此条件下获得的融合蛋白M14-263占菌体总蛋白的百分比高达33.2%,融合蛋白M14-263浓度为401.9mg/L;融合蛋白M14-341的最优表达条件为:IPTG浓度0.8mmol/L,培养时间3h,诱导时间7h,诱导温度28℃,此条件下获得的融合蛋白M14-341占菌体总蛋白的百分比较优化前显著提高,达16.1%,融合蛋白M14-341浓度为70.98mg/L。
     热稳定性研究结果表明,M14-263融合蛋白和M14-341融合蛋白均较稳定。亲水性研究结果表明,M14-263融合蛋白较亲水,与前期生物信息学预测结果一致,但M14-341融合蛋白在前期生物信息学预测中呈疏水性,在本实验中则表现出很强的亲水性,可能是由于蛋白折叠后含有多个亲水的α螺旋,或者由于附加序列的作用导致其具有亲水性。
M14 is a monosomic addition line with the characteristic of apomixis. To research the property of M14-263 protein and M14-341 protein expressed by M14-263 and M14-341 of specially expressed genes of M14,and lay the foundation of the study about the transformation of of M14-263 gene and M14-341 gene into model plants,the two gene were recombinated to the expression region of prokaryotic vector pET-28a respectively,as a basic vector,resulted in the successful construction of prokaryotic expression system of M14-263 gene and M14-341 gene by E.coli BL21(DE3)expression system. By the SDS-PAGE and western blotting,the results showed that two fusion proteins could be expressed correctly,the molecular weight of M14-263 fusion protein is about 26kD,and the molecular weight of M14-341 fusion protein is about 36kD.
     To optimize the expression conditions of M14-263 gene and M14-341 gene,raise the production of the two fusion protein,four effect factors were chose for a four-factored,three -leveled orthogonal experiment. The results obtained from range analysis and variance analysis showed that the key factor in the expression conditions of M14-263 is the inducement time, the effect of the inducement temperature and the culture time are weaker, and the concentration of IPTG had no significant influence. The key factor in the expression conditions of M14-341 is the inducement temperature,the inducement time and the concentration of IPTG had some effect,and the culture time had no significant influence. By validating experiments,the optimum expression condition of M14-263 gene is that the concentration of IPTG is 1.2mmol/L,the culture time is 3h,inducement time is 6h,and inducement temperature is 37℃. In this condition,the percentage of M14-263 fusion protein in total proteins is up to 33.2%; the concentration of M14-263 fusion protein is 401.9 mg/L. The optimum expression condition of M14-341 gene is that the concentration of IPTG is 0.8mmol/L,the culture time is 3h,inducement time is 7h,and inducement temperature is 28℃. In this condition,the percentage of M14-341 fusion protein in total proteins reaches 16.1%; the concentration of M14-341 fusion protein is 70.98 mg/L.
     The two fusion proteins were both stable in the experiment of thermal stability. In the experiment of hydrophilicity,M14-263 fusion protein showed hydrophilicity,which is in accordance with the previous bioinformatics analysis results,and M14-341 fusion protein also showed hydrophilicity,which is different from the theory analysis results. For this difference,two aspects can be considered. Firstly,M14-341 fusion protein forms many hydrophilicα-helix structures from the previous bioinformatics analysis results in the hydrophilicity. Secondly,foreign sequence from vector can influence the property of M14-341 fusion protein.
引文
[1] Nogler G A. Genetics of apospory in apomictic Ranuncuclus auricomus [J]. V Conclusion Bot Helv, 1984, 94: 411-422.
    [2]白丽荣,张燕敏.植物的无融合生殖研究进展[J].衡水学院学报, 2005, 7(1): 10-12.
    [3] Henry D. Molecular strategies for gene containment in transgenic crops [J]. Nail Biotech, 2002, 20: 581-586.
    [4] Richards AJ. Apomixis in flowering plant: an overview [J]. PhilTransR Soe Lond B, 2003, 358: 1085-1093.
    [5]王志伟,李荣田,郭德栋.植物无融合生殖研究进展[J].中国生物工程杂志, 2004, 24(6):34-38.
    [6]马三梅,王永飞,等.植物无融合生殖研究的新进展[J].热带亚热带杭物学报, 2004, 12(5): 477-481.
    [7] Pichot C, EL-Maataoui M, Raddi S, et al. Surrogate mother for endangered Cupressus [J]. Nature, 2001, 412(6842): 39.
    [8] Hanna W W. Use of Apomixes in Cultivar Developmentt [J]. Advances in Agronomy, 1995, 59: 333-350.
    [9]马三梅,王永飞,赵男先,等.植物无融合生殖鉴定方法研究进展[J].西北植物学报, 2002, 22(4): 985- 993.
    [10] Ebina M, Nakagawa H. RAPD analysis of apomictic and sexual lines in guineagrass (Panicum maximum Jacq.)[J]. Grassland Sci, 2001, 47(3): 251-255.
    [11] Amsellem L, Noyer J L, Hossaert-mckey M. Evidence for a switch in the reproductive biology of Rubus alceifolius (Rosaceae) towards apomixes, between its native range and its area of introduction [J]. Amer J Bot, 2001, 88(12): 2243-2251.
    [12] Pessino S C, Espinoza F, Martinez E J, et al. Isolation of cDNA clones differentially expressed in flowers of apomictic and sexual Paspalum notatum [J]. Hereditas, 2001, 134(1): 35-42.
    [13] Bantin J, Matzk F, Dresselhaus T. Dresselhaus dactyloides (Poaceae): a natural model system to study parthenogenesis [J]. Sex Plant Reprod, 2001, 14(4): 219-226.
    [14] Vinkenoog R, Scott R J. Autonomous endosperm development in flowering plants:how to overcome the imprinting problem?[J]. Sex plant Reprod, 2001, 14(4): 189 - 194.
    [15] Koltunow A M, Johnson S D, Lynch M, et al. Expression of rolB in apomictic Hieracium piloselloides Vill. Causes ectopic meristems in plant and changes in ovule formation where apomixes initiates at higher frequency [J]. Planta, 2001, 214: 196-205.
    [16] Barcaccia G, Varotto S, Meneghetti S, et al. Analysis of gene expression during flowering in apomeiotic mutants of Medicago ssp. cloing of ESTs and candidate genes for an eggs [J]. Sex Plant Reprod, 2001, 14(4): 233-238.
    [17] Boutilier K, Offringa R, Sharma V J. Ectopic Expression of BABYBOOM triggers a conversion from vegetative to embryonic growth [J]. Plant Cell, 2002, 14: 1737-1749.
    [18] Hecht V, Vielle-Calzada J P, Harog M V, et al. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryo and enhances embryo-genic competence in culture [J]. Plant physiol, 2001, 127: 803-816.
    [19] Nanxy A E. Patterns of gene expression in apomixes [J]. Plant cell, 2003, 15: 1499 - 1501.
    [20] Tucker M R, Araujo A G, Paech N A, et al. Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways [J]. Plant cell, 2003, 15: 1524-1537.
    [21]马三梅,王永飞.植物无融合生殖相关基因的研究进展[J].种子, 2005, 24(10): 42-44.
    [22]马国华,赵南先,黄学林.雀稗属无融合生殖研究进展.热带亚热带植物学报[J]. 2005, 13(2): 179-184.
    [23]母锡金,蔡雪,孙德兰.被子植物的无融合生殖和它的应用前景[J].作物学报, 2001, 27(5):590-599.
    [24] Jassem B. Apomixis in the genus Beta [J]. Apomixis Newsl, 1990, 2: 7-23.
    [25]郭德栋,等.栽培甜菜(Beta vulgaris L.)×白花甜菜(Beta corolliflora Zoss.)种间杂交的研究[J].中国遗传学研究, 1991, 93-94.
    [26]郭德栋,刘丽萍,康传红,等.甜菜无融合生殖单体附加系的繁殖传递特性[J].黑龙江大学自然科学学报, 2001, 3: 104-107.
    [27]郭德栋,刘丽萍,康传红,等.无融合生殖单体附加系的获得和鉴定[J].哈尔滨医科大学学报, 2000, 5: 1-3.
    [28] Fang X, Gu S, Xu Z. Construction of a binary BAC library for an apomictic monosomic adition line of Beta corolliflora in sugar beet and identification of the clones derived from the alien chromosome[J]. Theor Appl Genet, 2004, 108: 1420-1425
    [29]马春泉.利用抑制消减杂交技术寻找无融合生殖相关基因[D].硕士学位论文,黑龙江大学, 2005.
    [30]于冰,李海英,马春泉.甜菜无融合生殖系花期差异表达基因cDNA文库的构建[J].高技术通讯, 2006, 9: 954-958.
    [31]李海英,马春泉,于冰,等.利用mRNA差异显示技术分离分离甜菜M14品系特异表达基因的cDNA片段[J].植物研究, 2007, 27(4): 465-468.
    [32]张莹.甜菜M14品系花期特异表达基因cDNA文库的构建及筛选[D].硕士学位论文,黑龙江大学, 2007.
    [33]朱明.甜菜M14品系花期特异表达基因cDNA全长的获得及其蛋白质结构预测[D].硕士学位论文,黑龙江大学, 2007.
    [34]戈岩,何光存,王志伟,郭德栋.无融合生殖甜菜M14的GISH和BAC-FISH研究[J].中国科学, 2007, 37(2): 209-216.
    [35]吕品,李建华,张岩,刘银谦,陈玉玲.植物小G蛋白研究进展[J].师范大学学报(自然科学版), 2005, 29(2): 193-199.
    [36]武维华,赵云云.植物细胞G蛋白研究进展[J].植物学报, 1996, 38(5): 406-413.
    [37] BISCHOFF F, MOLENDIJK A, RAJENDRAKUMAR C S, et al. GTP-binding proteins in plants [J]. Cell Mol Life Sci, 1999, 55: 233-256.
    [38] TAKAI Y, SASAKI T, MATOZAKI T. Small GTP-binding proteins [J]. Physiol Rev, 2001, 81: 153-208.
    [39]王昕,种康.植物小G蛋白功能的研究进展[J].植物学通报. 2005, 22(1): 1-10.
    [40] YANG Zhen-biao. Small GTPase:Versatile signaling switches in plants [J]. Plant Cell, 2002, 14(Suppl): S375-S388.
    [41] ZHENG Zhi-liang, YANG Zhen-biao. The Rop GTPase:An emerging signaling switch in plants [J]. Plant Mol Biol, 2000, 44: 1-9.
    [42]樊俊蝶,王伟,梁爱华. Rab蛋白的结构、功能及进化[J].生命的化学, 2004 , 24(1): 31-33.
    [43] Bonifacino J S, Glick B S. The mechanisms of vesicle budding and fusion [J]. Cell, 2004, 116: 53-66.
    [44] Grote E, Novick P J. Promiscuity in Rab-SNARE Interactions [J]. Mol Bio Cell, 1999, 10: 4149- 4161.
    [45] Botstein D, Segev N, Stearns T, et al. Diverse biological functions of small GTP-binding proteins in yeast [J]. Cold Spring Harb Symp Quant Biol, 1988, 53(2): 6629-6365.
    [46] Nebenfuhr A. Vesicle traffic in the endomembrane system:a tale of COPs, Rabs and SNAREs [J]. Curr Opin Plant Biol, 2002, 5: 507-512.
    [47] Dumas J J, et al. Structure basis of activation and GTP hydrolysis in rab proteins [J]. Structure, 7: 413-423.
    [48] Chattopadhyay D, Langsley G, et al. Structureof the nucleotide-binding domain of plasmodium falciparum Rab6 in the GDP-bound form [J]. Acta Crystallogr, 2000, D56(8): 937-944.
    [49] Stroupe C, Brunger A T. Crystal structures of a Rab protein in its inactive and active confor- mations [J]. J Mol Biol, 2000, 304: 585-598.
    [50] Stenmerk H, Olkkonen V M. The Rab GTPase family [J]. Genome Biol, 2001, 2(5): 3007.
    [51]陈宣茂,孙朝辉,等. Rab家族基因的背景资料[J].云南大学学报(自然科学版), 1999, 21: 373-374.
    [52] Noviek P, ZerialM. The diversity of Rab Proteins in vesiele transport [J]. CurrOPinCell Biol, 1997, 9: 496-504.
    [53] Zerial M, McBride H. Rab Proteins as membrane organizers [J]. Nat Rev Mol Cell Biol, 2001, 2: 107-117.
    [54]李定琴,汪萌,张家明.玉米Rab1 B基因功能的初步研究[J].生命科学研究, 2006, (4): 304-308.
    [55] Chow C M, Neto H, Foucart C. Moore I. Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate [J]. Plant Cell, 2008, 20(1): 101-123.
    [56] Agarwal P K, Agarwal P, et al. Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco [J]. Plant Cell Rep, 2008, 27(1):105-115.
    [57] Goh T, Uchida W, et al. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana [J]. Plant Cell, 2007, 19(11): 3504-3515.
    [58] Heo J B, Rho HS, et al. OsGAP1 functions as a positive regulator of OsRab11-mediated TGN to PM or vacuole trafficking [J]. Plant Cell Physiol, 2005, 46(12): 2005-2018.
    [59]胡丽芳,金志强,徐碧玉. MADS-box基因在果实发育、成熟过程中的作用[J].分子植物育种, 2005, 3(3): 415-420.
    [60]曾英,胡金勇,李志坚.植物MADS盒基因与花器官的进化发育[J].植物生理学通讯, 2001, 37: 281-287.
    [61]张则婷,李学宝. MADS-box基因在植物发育中的功能[J].植物生理学通讯, 2007, 43(2):218-222.
    [62] Jack T, Brockman L L, Meyerowitz E.M.. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens [J]. Cell, 1992, 68(4): 683-697.
    [63] Shore P, Sharrocks AD. The MADS-box family of transcription factors [J]. Eur J Biochem, 1995, 229, 1-13.
    [64] Yang Y, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins [J], APETALA3 and PISTILLATA. Plant J, 2003, 33: 47-59.
    [65] Ratcliffe O J, Nadzan G C, et al. Regulation of flowering in Arabidopsis by an FLC homologue[J]. Plant Physiol, 2001, 126: 122-132.
    [66] Schwarz-Sommer Z, et al. Genetic control of flower development by homeotic genes in Antirrhinum majus [J]. Science, 1990, 250: 931-936.
    [67] Kramer EM, et al. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms [J]. Genetics, 2004, 166: 1011-1023.
    [68] Lamb R S, Irish V F. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages [J]. Proc Natl Acad Sci USA, 2003, 100: 6558-6563.
    [69] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs [J]. Nature, 2001, 409: 525-529.
    [70]吕山花,孟征. MADS-box基因家族基因重复及其功能的多样性[J].植物学通报, 2007, 24(1): 60-70.
    [71] Liu C, Chen H, et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 2008 , 135(8): 1481-1491.
    [72] Lee S, Choi S C, An G. Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses[J]. Plant J, 2008, 54(1): 93-105.
    [73] Chen M K, Lin I C, Yang C H. Functional analysis of three Lily (Lilium longiflorum) APETALA1-like MADS Box genes in regulating floral transition and formation [J]. Plant Cell Physiol, 2008 Mar 26 [Epub ahead of print].
    [74] Tapia-López R, García-Ponce B, et al. Regulates root meristem cell proliferation and flowering transition in Arabidopsis [J]. Plant Physiol, 2008, 146(3):1182-1192.
    [75] Ito Y, Kitagawa M, et al. DNA binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato-fruit ripening regulator RIN [J]. Plant J, 2008 Mar 20 [Epub ahead of print].
    [76] Lee S, Woo YM, et al. An G. Further characterization of a rice AGL12-group MADS-box gene, OsMADS26 [J]. Plant Physiol, 2008 Mar 19 [Epub ahead of print].
    [77] Colombo M, Masiero S, et al. A Type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis [J]. Plant J, 2008 Mar 13 [Epub ahead of print].
    [78]周国钰,胡学强,胡骏,等.可溶性TAT PTD-Ngb融合蛋白的原核表达、鉴定与纯化及其对皮质神经元的跨膜转导[J].生物化学与生物物理进展, 2007, 28(2): 146-151.
    [79]宁尚勇,伊瑶,陈斯勇,等.甲型肝炎病毒P1B、P2A、P3AB和P3D蛋白在原核系统中的表达和抗原活性分析[J].中华实验和临床病毒学杂志, 2007, 21(1): 50-52.
    [80] Peng C, Zhou R L, et al. Expression of lysosome-associated protein transmembrane 4B-35 in cancer and its correlation with the differentiation status of hepatocellular carcinoma[J]. World JGastroenterol, 2005, 11(18): 2704-2708.
    [81] Li L, Zhao D, et al. Prokaryotic expression and polyclonal antibody preparation of novel ZLG10 protein involved in infection of RSV on SPC-A1 cells [J]. Protein Expr Purif, 2005, 41(1): 170-176.
    [82] Saradhi M, Krishna B, et al. Purification of full-length human pregnane and xenobiotic receptor: polyclonal antibody preparation for immunological characterization [J]. Cell Res. 2005, 15(10): 785-795.
    [83] Yang J, Guo S Y, Pan F Y, et al. Prokaryotic expression and polyclonal antibody preparation of a novel Rab-like protein mRabL5 [J]. Protein Expr Purif, 2007, 53(1): 1-8.
    [84] Ning B A, Ma R, et al. Preparation and activity analysis of RGD-mSAK (K130T, K135R) [J]. Sheng Wu Gong Cheng Xue Bao, 2005, 21(3): 456-460.
    [85] Yang F, He YL, et al. Cloning, expression, purification and characterization of human endostatin gene[J]. Di Yi Jun Yi Da Xue Xue Bao, 2005, 25(4): 416-418.
    [86] Wang H W, Cole D, et al. Engineering and functional evaluation of a single-chain antibody against HIV-1 external glycoprotein gp120 [J]. Clin Exp Immunol, 2005, 141(1): 72-80.
    [87] Malygin A, Parakhnevitch N, Karpova G. Human ribosomal protein S13: cloning, expression, refolding, and structural stability [J]. Biochim Biophys Acta, 2005, 1747(1): 93-97.
    [88] Liu MY, Yang YS, et al. Identification of a novel zebrafish SULT1 cytosolic sulfotransferase: cloning, expression, characterization, and developmental expression study[J]. Arch Biochem Biophys, 2005, 437(1):10-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700